Scientific Visualization
Scientific Datasets

• Gaining insight into scientific data by representing the data by computer graphics

• Scientific data sources
 ➢ Computation
 Real material simulation/modeling (e.g., molecular dynamics simulation, electronic calculations)
 Solving differential equations (e.g., fluid dynamics, electro-magnetic field)
 Climate modeling

 ➢ Experiment
 Medical and biological: magnetic resonance imaging, computer tomography, confocal microscopy,
 Other data: 3D laser scanner, atomic force microscopy, seismic tomography
Data Challenges

• Scale
 ➢ MRI dataset: \(256^3 = 16\) MB per slice (each slice is 3 micron thick)
 How many slices to cover a particular organ
 ➢ A million-atom simulation: \(7\) GB per step (each step is 1 femtosecond)
 How many steps to simulate a particular physical/chemical/biological phenomenon

• Dimensionality
 ➢ 3D volume data
 ➢ 4D space-time data

• Scalar, vector and tensor data
 ➢ Density or temperature distribution
 ➢ Data from flow dynamics
 ➢ Stress-strain data
Scalar Visualization Techniques
Scalar Dataset

- A single quantity that can be expressed as a function of position in space
 \[S = S(x,y,z) \]

 Array \(S \) represents data at discrete locations in space

- Describe the value at any continuous location by defining an interpolation function \(F(x,y,z) \)

- Volume data (MRI, confocal, finite element modeling)

- Represented through regular grids
 If irregular grids, preprocessing of data to regular grid

- Each data element (cube or cell) often called **voxel**
Different Rendering Techniques

- Simple approaches
 - Symbols, Color mapping, Contour display

- Isosurface rendering
 - Marching cubes algorithm, Fast extraction approaches

- Implicit surfaces
 - Particle sampling, Dividing cubes algorithm, Shape function interpolation

- Volume slicing
 - Clipping, Sampling planes, Interactive clipping, Clip objects

- Volume rendering
 - Object-oriented, Image-oriented, Hybrid techniques
Simple Approaches
Symbols or Off-Path Displays

- Useful for displaying one or two dimensional scalar data
 - Temperature distribution along a rod or on sheet

- Off-path displays
Color Mapping: Lookup Table

- Useful for scalar visualization in 1D, 2D or 3D
- Map scalar data to colors to display on the screen
- Lookup table:
 - Holds an array of colors (RGB components)
 - Scalar values serve as indices
 For each s_i, there is index i

$$i = n \left(\frac{s_i - \text{min}}{\text{max} - \text{min}} \right)$$
Color Mapping: Transfer Function

- **Transfer function**
 - An expression that maps the scalar value into a color specification
 - Mapping to separate intensity values of R, G and B

- A lookup table is a discrete sampling of a transfer function
Examples of Color Mapping

Mean January air temperature on the Earth's surface

Data: NCEP/NCAR Reanalysis Project, 1958-1997 Climatologies
Multiscale Color Mapping

Two-level mapping:

Fine-level scale uses the red and blue colors to represent the positive and negative differences with magnitude up to 0.002 (in units of \(\text{Å}^{-3} \)).

Coarse-level scale adds green color component to red and blue colors to map the positive and negative differences with magnitudes higher than 0.002.
Contour Display

• Common method for displaying scalar data across a surface
• Contour lines: represent a constant value across the surface (isovalue lines)
Edge Tracking Algorithm

• Select an element or cell
 Consider a 4-vertex quadrilateral element with scalar values S_1, S_2, S_3 and S_4

• If all S_i’s $>$ S_{iso} or all S_i’s $<$ S_{iso}, no contour line passes through the element

• Otherwise, start at the first pair of vertices, determine if the isovalue exists along the edge
 If one vertex value $>$ S_{iso} while the other vertex value $<$ S_{iso}, isovalue exists, in either order
 If not, proceed in either clockwise or anticlockwise order until an edge containing the isovalue is found

CSC 7443: Scientific Information Visualization
• Once an edge with S_{iso} is found between vertices i and j, compute isovalue location along the edge by linear interpolation

\[
x = x(i) + fac \ast (x(j) - x(i))
\]

\[
y = y(i) + fac \ast (y(j) - y(i))
\]

Where \(fac = \left(\frac{S(j) - S_{iso}}{S(j) - S(i)} \right) \)

➢ This isovalue location will be the first point of the contour line

 Default location: mid point

• Examine each subsequent edge until the next edge containing an isovalue is found and repeat previous step

➢ Connect these two points to form the contour segment

➢ Use shape function to give isolines some curvature.
Marching Squares Algorithm

- Select a square element or cell
 - Values at four corners
 - Below isovalue (marked)
 - Above isovalue (unmarked)

- Calculate inside or outside state of each vertex of the cell

- Determine the topology state of the cell by referring to a case table that has a list of all possible configurations
 - Each square is either inside, outside or intersected
 - 2D cell index: 4-bit, 2^4 (16) cases

- Calculate the contour location (via interpolation) for each edge in the case table
 - No or one intersection per edge
Cases of 2D Cells (Squares)

By complementary and rotational symmetries (equivalence), the number of the basic cases is reduced to 4
2D Ambiguous Cases

- Ambiguous cases:
 - 5, 10
- Contour ambiguity arises when adjacent vertices in different states but diagonal vertices in the same state
- Break contour
 - Join contour
- Both are valid
Contour Lines of MRI Data

Contour display of MRI data of a human head (single image and a stack of four images)

2D contour

3D contour

CSC 7443: Scientific Information Visualization

B. B. Karki, LSU