Visualization of Irregular Data
Types of Volume Data

- **Regular**
 - Regular grids are orthographic and the nodes are equally spaced and lie at integer positions; connectivity information is implicit

- **Rectilinear**
 - Orthographic with non-constantly spaced nodes

- **Curvilinear**
 - Non-orthographic with non-constantly spaced grid nodes

- **Unstructured**
 - No logical organization and no implicit cell-adjacency information.
Different Rendering Approaches

- Resampling to a regular grid
 - Involve two steps:
 - Identify the cell in which a sampling point is actually located
 - Interpolate \(F \) inside a warped (nonregular) cell primitive based on the values of \(F \) at the cell’s nodes.
 - Often results in large grids
 - Large cells require substantial subsampling

- Direct rendering through projection
 - All cells are projected onto the image plane in back-to-front or front-to-back order
 - Compute color and opacity from the data at grid nodes
 - Use depth-sorted lists of the cell faces per pixel for correct color accumulation

- Raycasting of nonregular/unstructured data
 - Computational-space-based
 - Sweep-plane-based
Computational Space Based Raycasting

- Raycasting is applied in regular computational space
 - Avoids difficulties of computing ray/cell-face intersections and of performing interpolations
 - Speeds up the visualization process

- Computational space:
 - An abstract representation of the logical organization of non-regularly structured physical grid
 - Mapping the warped grid to a regular grid
 - Applicable to rectilinear and curvilinear grids
 - Size, quality and topology information of the original data is preserved.
Coordinates Transformation

- Relationship between physical coordinates and computational coordinates

\[x_i = J_{ij} \cdot \xi_j \]

with the Jacobian matrix

\[J_{ij} = \frac{\partial x_i}{\partial \xi_j} \]
Casting Rays

- Assign rays (vectors) at all physical nodes
 - Direction is determined by the viewpoint and the projection type

- Use isoparametric formulation to transform the vectors to computational space using

\[r_{Cj} = J_{ij}^{-1} \cdot r_{Pi} \quad \text{with} \quad J_{ij} = \frac{\partial x_i}{\partial \xi_j} = \frac{1}{2} \left(\frac{x_i(n) - x_i(n-I)}{\xi_j(n) - \xi_j(n-I)} + \frac{x_i(n+I) - x_i(n)}{\xi_j(n+I) - \xi_j(n)} \right) \]

\[r_{Cj} = \frac{1}{2} \left[x_i(n+1) - x_i(n-1) \right]^{-1} \cdot r_{Pi} \]
Bent Rays

- Tangential curves in the vector field \mathbf{r}_c are the rays \mathbf{R}_c through the computational space

$$\frac{d\xi_j}{dt} = r_{Cj}(\xi_i)$$

with t as the integrational parameter along a streamline
Example: 2D Case

Stage 1: Physical Space
* Generates the dataset and Plots them
* Calculates the Rp vector and plots them on the dataset

Stage 2: Computational Space
* Physical Space is converted to Computational Space
* Calculates the Rc vector and plots them on the dataset

Stage 3: Final Output in Computational Space
* Integrated and the complete ray is casted through the grid
Sweep-Plane Based Raycasting

- A hybrid-type approach

- Handles unstructured irregular grids
 - Including disconnected and nonconvex grids
 - Using adjacency information to determine ordering

- Sweeping 3D-space reduces the raycasting problem to a 2D cell sorting problem
 - Sweep-plane is orthogonal to the viewing plane (the xy-plane) and parallel to scanlines (i.e., parallel to the xz plane)
 - Raycasting within each slice of the sweep plane by a sweep line method.
Sweep Data Structure and Algorithm

- Sort the vertices of mesh S by their y-coordinates and put them into an event priority queue, an array A

- Use the active tetrahedra list (ATL) to maintain a list of the tetrahedra currently intersected by the sweep plane

- While A is not empty, do:
 - Pop the event queue until hit is vertex
 - Update ATL
 - Render current scanline

- The algorithm terminates once the last scanline is processed.
References

• T. Fruhauf, Raycasting of nonregularly structured volume data, Eurographics ‘94, 13, 293, 1994

• P. Bunyk et al., Simple, fast, and robust ray casting of irregular grids, Proceedings of the Dagstuhl ’97—Scientific Visualization Conference, 30, 1997