Tensor Visualization
Tensor data

- A tensor is a multivariate quantity
 - Scalar is a tensor of rank zero $s = s(x,y,z)$
 - Vector is a tensor of rank one $\mathbf{v} = (v_x, v_y, v_z)$
 - For a symmetric tensor of rank 2, its nine components A_{ij} are related by $A_{ij} = A_{ji}$ for $i,j = 1,2,3$.

- A tensor field is a field which associates a tensor with each point in space

- Examples are
 - Stress tensor
 - Strain tensor
 - Momentum flux density tensor
 - DT-MRI: Diffusion tensor magnetic resonance imaging
Stress Tensor

• Stress tensor describes the state of stress in a 3D material

• Diagonal components: normal stresses
 ➢ compression or tension
 ➢ Act perpendicular to the surface

• Off-diagonal components: shear stresses
 ➢ act tangentially to the surface

\[
\sigma = \begin{bmatrix}
\sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\
\sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\
\sigma_{zx} & \sigma_{zy} & \sigma_{zz}
\end{bmatrix}
\]

Symmetric tensor
\[
\sigma_{xy} = \sigma_{yx}; \sigma_{yz} = \sigma_{zy}; \sigma_{xz} = \sigma_{zx}
\]
Tensor Eigenvalue Equation

- The eigenvectors and eigenvalues of tensor (matrix) A are obtained as follows

$$A \cdot x = \lambda x$$

$$\det |A - \lambda I| = 0$$

- Eigenvectors form a 3D orthogonal coordinate system; axes are called the principal axes of the tensor (directions of normal stresses)

- A 3x3 tensor field A is decomposed into three vector fields called eigenfields (characterized by 3 eigenvectors v_i and 3 eigenvalues λ_i)

$$v_i = \lambda_i e_i \quad \text{with } i = 1, 2, 3$$

- For order $\lambda_1 \geq \lambda_2 \geq \lambda_3$, the vectors v_1, v_2 and v_3 are referred to as the major, medium and minor eigenvectors
Point Icons

• Two types of glyphs used for tensor field visualization
 ➢ Density of the displayed icons must be kept low to avoid visual clutter

• Tensor axes
 ➢ Displaying scaled and oriented principal axes of the stress tensor

• Ellipsoids
 ➢ The principal axes can be taken as minor, medium and major axes of an ellipsoid
 ➢ The shape and orientation of ellipsoid represent the size of the eigenvalues and orientation of the eigenvectors
Hyperstreamlines

- An extension of streampolygon technique of a vector field to the case of a tensor field
 - Provide continuous representation of a tensor field
- Constructed by creating a streamline through one of three eigenfields, and sweeping a geometric primitive (ellipse or cross) along the streamline
- Ellipse:
 - Sweeping the ellipse along the eigenfield streamline result in a tubular shape
 - Other two eigenvectors define major and minor axes of the ellipse
- Cross:
 - Sweeping the cross results in a helical shape since the cross arms may rotate in some tensor fields
 - Other two eigenvectors control length and orientation of the cross arms
- Color and trajectory of a hyperstreamline represent the longitudinal eigenvector, and the cross-section encodes two transverse eigenvectors
- Hyperstreamlines can be called major, medium or minor hyperstreamlines depending on the longitudinal eigenvector field.
A Point Load on Surface

- Property of an elastic tensor field produced by a compressive force on the top surface of the material (Boussinesq’s problem)
- Analytic expressions for the stress components are known
- Visualizing these analytical results

Below are two example tensor visualizations

To the left tensor ellipsoids, to the right Hyperstreamlines.
Global Visualization

- Global visualization is done by encoding the behavior of a large number of hyperstreamlines with display of critical points.

- Locus is the set of the critical points in the trajectory of the hyperstreamlines where the longitudinal eigenvector vanishes.

- Surface is the locus of points where the cross-section is singular (i.e., reduced to a straight line or a point).
DT-MRI Data

- Characteristic microstructure of the brain’s neural tissue, which contains the diffusion of water molecules
 - Anisotropic diffusion: diffusivity is greater in some directions than in others.
 - grey matter: largely isotropic
 - white matter: more anisotropic because of the alignment of myelinated neural axons

It is possible to image the neural pathways connecting the brain.

- Fibrous muscle tissue of the heart.

- Diffusion tensor:
 \[
 D = \begin{pmatrix}
 D_{xx} & D_{xy} & D_{xz} \\
 D_{yx} & D_{yy} & D_{yz} \\
 D_{zx} & D_{zy} & D_{zz}
 \end{pmatrix}
 \]
DT-MRI Visualization

- Combination of scalar, vector and tensor methods

- Scalar metrics:
 - Reducing DT-MRI data to scalar data
 Trace of the diffusion tensor = $D_{xx} + D_{yy} + D_{zz}$
 Ratio = D_{xx} / D_{zz}
 - Combinations of eigenvalues:
 A set of three metrics that measure linear, planar and spherical diffusions
 $$C_L = \frac{\lambda_1 - \lambda_2}{\lambda_1 + \lambda_2 + \lambda_3}; C_P = \frac{2(\lambda_2 - \lambda_3)}{\lambda_1 + \lambda_2 + \lambda_3}; C_S = \frac{3\lambda_3}{\lambda_1 + \lambda_2 + \lambda_3}$$
 Parameterize a barycentric space in which the three shape extremes (linear, planar, and spherical) are at the corners of a triangle.
More on DT-MRI Visualization

• Eigenvector color maps:
 ➢ Display the spatial patterns of the principal eigenvector only when the principal eigenvector is aligned with the coherent fibers.
 ➢ R,G,B color according to the X, Y, Z components of the vector.
 ➢ Modulates the saturation of the RGB color with an anisotropic metric.

• Glyphs:
 ➢ Ellipsoids
 ➢ Superquadrics: cylinders for linear anisotropy, a sphere for isotropy and boxes are for intermediate anisotropies.

• Tractography:
 ➢ To obtain curves of neural pathways
 ➢ extraction of the underlying continuous anatomical structures
 ➢ Streamlines, streamtubes, streamsurfaces.