
BB Karki, LSUCSC 7443: Scientific Information Visualization

Viewing

BB Karki, LSUCSC 7443: Scientific Information Visualization

Creating and Viewing a Scene

• How to view the geometric models that you can
now draw with OpenGL

• Two key factors:
 Define the position and orientation of geometric

objects in 3D space (creating the scene)
 Specify the location and orientation of the viewpoint

in the 3D space (viewing the scene)

• Try to visualize the scene in 3D space that lies
deep inside your computer

BB Karki, LSUCSC 7443: Scientific Information Visualization

A Series of Operations Needed

• Transformations
 Modeling, viewing and projection operations

• Clipping
 Removing objects (or portions of objects) lying

outside the window

• Viewport Transformation
 Establishing a correspondence between the

transformed coordinates (geometric data) and screen
pixels

BB Karki, LSUCSC 7443: Scientific Information Visualization

The Camera Analogy

• Position and aim the Camera at the scene
 Viewing transformation: Position the viewing volume in the world

• Arrange the scene to be photograph into the desired
composition
 Modeling transformation: Position the models in the world

• Choose a camera lens or adjust the zoom to adjust field of view
 Projection transformation: Determine the shape of the viewing volume

• Determine the size of the developed (final) photograph
 Viewport transformation

BB Karki, LSUCSC 7443: Scientific Information Visualization

Transformation Matrix

• Transformation is represented by matrix multiplication

• Construct a 4x4 matrix M which is then multiplied by the
coordinates of each vertex v in the scene to transform
them to new coordinates v'

€

′ v = Mv

€

′ x
′ y
′ z
′ w

=

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

x
y
y
w

Homogenous Coordinates:
v = (x, y, z, w)T

Relation between Cartesian and
homogeneous coordinates:
xc = x/w, yc = y/w, zc = z/w

BB Karki, LSUCSC 7443: Scientific Information Visualization

Different Matrices

€

MT =

1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

€

MS =

sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

€

MI =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

€

MR =

1 0 0 0
0 cosθ sinθ 0
0 sinθ cosθ 0
0 0 0 1

Identity Matrix Translation Matrix

Rotation Matrix (about x-axis) Scaling Matrix

BB Karki, LSUCSC 7443: Scientific Information Visualization

Order of Matrix Multiplication

• Each transformation command multiplies a new matrix M by
the current matrix C
 Last command called in the program is the first one applied to the

vertices
glLoadIdentity();
glMultMatrixf(N);
glMultMatrixf(M)
glMultMatrix(L)
glBegin(GL_POINTS);

glVertec3f(v);
glEnd();
The transformed vertex is INMLv
Transformations occur in the opposite order than they applied

• Transformations are first defined and then objects are drawn

BB Karki, LSUCSC 7443: Scientific Information Visualization

Coordinate Systems

• Grand, fixed coordinate system
 Geometric models are transformed in the fixed coordinate system
 Matrix multiplication occur in the opposite order from how they

appear in the code, e.g.,
glMultMatrixf(T);
glMultMatrixf(R);

The order is T(Rv)

• Local coordinate system
 The system is tied to the object you are drawing
 All operations occur relative to this moving coordinate system
 Matrix multiplications appear in the natural order, e.g,

R(Tv)
 Useful for applications such as robot arms

BB Karki, LSUCSC 7443: Scientific Information Visualization

General Purpose Transformation Commands

• void glMatrixMode(GLenum mode);
 Specifies which matrix will be modified, using

GL_MODELVIEW or GL_PROJECTION for mode

• Multiplies the current matrix C by the specified matrix
M and then sets the result to be the current matrix

Final matrix will be CM
 Combines previous transformation matrices with the new one
 But you may not want such combinations in many cases

• void glLoadIdentity(void);
 Sets the current matrix to the 4x4 identity matrix
 Clears the current matrix so that you avoid compound

transformation for new matrix

BB Karki, LSUCSC 7443: Scientific Information Visualization

More Commands

• void glLoadMatrix(const TYPE *m);
 Specifies a matrix that is to be loaded as the current matrix
 Sets the sixteen values of the current matrix

to those specified by m

• void glMultMatrix(const TYPE *m);
 Multiplies the matrix specified M by the current matrix and

stores the result as the current matrix
€

M =

m11 m12 m13 m14
m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

BB Karki, LSUCSC 7443: Scientific Information Visualization

Modeling Transformations

• Positioning and orienting the geometric model
 MTs appear in display function

• Translate, rotate and/or scale the model
 Combine different transformations to get a single matrix
 Order of matrix multiplication is important

• Affine transformation

€

′ v = Av + b

€

′ x
′ y
′ z
1

=

a11 a12 a13 b1
a21 a22 a23 b2
a31 a32 a33 b3
0 0 0 1

x
y
z
1

BB Karki, LSUCSC 7443: Scientific Information Visualization

OpenGL Routines for MTs

• void glTranslate{fd}(TYPE x, TYPE y, TYPE z);
 Moves (translates) an object by given x, y and z values

• void glRotate{fd}(TYPE angle, TYPE x, TYPE y,
TYPE z);
 Rotates an object in a counterclockwise direction by

angle (in degrees) about the rotation axis specified by
vector (x,y,z)

• void glScale{fd}(TYPE x, TYPE y, TYPE z);
 Shrinks or stretches or reflects an object by specified

factors in x, y and z directions

BB Karki, LSUCSC 7443: Scientific Information Visualization

Transformed Cube

void {display}
{

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(0.0,0.0,5.0, 0.0,0.0,0.0,
0.0,1.0,0.0);
glutSolidCube(1);
glTranslatef(3, 0.0, 0.0);
glScalef(1.0, 2.0, 1.0);
glutSolidCube(1);

}

First cube is centered at (0,0,0)

Second cube is at (3,0,0)
and its y-length is scaled twice

x

y

z

BB Karki, LSUCSC 7443: Scientific Information Visualization

Viewing Transformations

• Specify the position and orientation of viewpoint

• Often called before any modeling transformations so that
the later take effect on the objects first
 Defined in display or reshape functions

• Default: Viewpoint is situated at the origin, pointing
down the negative z-axis, and has an up-vector along the
positive y-axis

• VTs are generally composed of translations and rotations

• Define a custom utility for VTs in specialized
applications

BB Karki, LSUCSC 7443: Scientific Information Visualization

Using GLU Routine for VT

• void gluLookAt(GLdouble eyex, GLdouble eyey, GLdouble
eyez, GLdouble centerx, GLdouble centery, GLdouble
centerz, GLdouble upx, GLdouble upy, GLdouble upz);
 Defines a viewing matrix and multiplies it by the current matrix
 eyex,eyz,eyz = position of the viewpoint
 centerx,centery,centerz = any point along the desired line of sight
 upx,upy,upz = up direction from the bottom to the top of vewing

volume
gluLookAt(0.0,0.0,5.0, 0.0,0.0,-10.0, 0.0,1.0,0.0);

x

y

z

BB Karki, LSUCSC 7443: Scientific Information Visualization

Using glTranslate and glRotate for VT

• Use modeling transformation commands to emulate viewing
transformation

• glTranslatef(0.0, 0.0, -5.0)
 Moves the objects in the scene -5 units along the z-axis
 This is equivalent to moving the viewpoint +5 units along the z-axis

• glRotatef(45.0, 0.0, 1.0, 0.0);
 Rotates objects (local coordinates) by 45 degrees about y-axis
 To view objects from the side
 This is equivalent to rotating camera in opposite sense

• Total effect is equivalent to
gluLookAt (3.53,0.0,3.53, 0.0,0.0,0.0, 0.0,1.0,0.0);

BB Karki, LSUCSC 7443: Scientific Information Visualization

Modelview Matrix

• Modeling and viewing transformations are complimentary
so they are combined to the modelview matrix mode

• To activate the modelview transformation
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslate();
glRotate();

• Default mode is set at modelview
 Needs to be specified only if the other mode (projection) is

activated and you want to go back to modelview mode

BB Karki, LSUCSC 7443: Scientific Information Visualization

Example 1

• Modeling and Viewing Transofrmations

BB Karki, LSUCSC 7443: Scientific Information Visualization

Projection Transformations

• Call glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 activate the projection matrix
 PT is defined in reshape function

• To define the field of view or viewing volume
 how an object is projected on the screen
 which objects or portions of objects are clipped out of

the final image

BB Karki, LSUCSC 7443: Scientific Information Visualization

Two Types of Projection

• Perspective projection
 Foreshortening:

The farther an object is from the camera, the smaller it
appears in the final image

 Gives a realism: How our eyes work
 Viewing volume is frustum of a pyramid

• Orthographic projection
 Size of object is independent of distance
 Viewing volume is a rectangular parallelepiped (a

box)

BB Karki, LSUCSC 7443: Scientific Information Visualization

glFrustum

• void glFrustum(GLdouble left, GLdouble right, GLdouble
bottom, GLdouble top, GLdouble near, GLdouble far);
 Creates a matrix for perspective-view frustum
 The frustum’s viewing volume is defined by the coordinates of the

lower-left and upper-right corners of the near clipping plane

left

right

top

bottom
near

far

BB Karki, LSUCSC 7443: Scientific Information Visualization

gluPerspective

• void gluPerspective(GLdouble fovy, GLdouble aspect,
GLdouble near, GLdouble far);
 Creates a matrix for a symmetric perspective-view frustum
 Frustum is defined by fovy (angle in yz plane) and aspect ratio
 Near and far clipping planes

fovy

h

aspect = w/h

w

near

far

BB Karki, LSUCSC 7443: Scientific Information Visualization

Orthographic Projection

• Void glOrtho(GLdouble left, GLdouble right,
GLdouble bottom, GLdouble top, GLdouble
near, GLdouble far);
 Creates an orthographic parallel viewing volume

farnear
bottom

left
right

top

BB Karki, LSUCSC 7443: Scientific Information Visualization

Viewing Volume Clipping

• Clipping
 Frustum defined by six planes (left, right, bottom, top, near, and far
 Clipping is effective after modelview and projection transformations

• Further restricting the viewing volume by specifying
additional clipping planes (up to 6)

• glClipPlane(GLenum plane, const GLdouble *equation)
 Defines a clipping plane.
 The equation argument points to the coefficients of the plane

equation Ac+By+Cz+D=0
 Only points that satisfy (A B C D)M-1(xe ye ze we)T >=0 are kept.
 The plane argument is GL_CLIP_PLANEi, where is labels the

clipping plane
 Needs to be enabled and disabled

BB Karki, LSUCSC 7443: Scientific Information Visualization

Example2: Clipping

void display (void)
{

GLdouble eqn0[4] = {0.0, 1.0, 0.0, 0.0);
GLdouble eqn1[4] = {1.0, 0.0, 0.0, 0.0);

glClearColor (0.0, 0.0, 0.0, 0.0);
glClear (GL_COLOR_BUFFER_BIT);
glColor3f (1.0, 0.0, 0.0);

glClipPlane (GL_CLIP_PLANE0, eqn0);
glEnable (GL_CLIP_PLANE0);
glClipPlane (GL_CLIP_PLANE1, eqn1);
glEnable (GL_CLIP_PLANE1);

glutWireSphere(1.0, 20, 16);
glFlush();

}

BB Karki, LSUCSC 7443: Scientific Information Visualization

Viewport Transformation

• Viewport is a rectangular region of window where the
image is drawn
 Measured in window coordinates
 Reflects the position of pixels on the screen relative to lower-left

corner of the window

• void glViewport(GLint x, GLint y, GLsizei width,
GLsizei height);
 Defines a pixel rectangle in the window into which the final

image is mapped
 Aspect ratio of a viewport = aspect ratio of the viewing volume,

so that the projected image is undistorted
 glViewport is called in reshape function

BB Karki, LSUCSC 7443: Scientific Information Visualization

Vertex Transformation Flow

Modelview
Matrix

Projection
Matrix

Viewport
Transformation

Perspective
Division

VERTEX
x
y
z
w

Object
coordinates

Eye (camera) coordinates

Clip coordinates

Normalized device
coordinates

Window coordinates

BB Karki, LSUCSC 7443: Scientific Information Visualization

Matrix Stacks

• OpenGL maintains stacks of transformation matrices
 At the top of the stack is the current matrix
 Initially the topmost matrix is the identity matrix
 Provides an mechanism for successive remembering, translating

and throwing
Get back to a previous coordinate system

• Modelview matrix stack
 Has 32 matrices or more on the stack
 Composite transformations

• Projection matrix stack
 is only two or four levels deep

BB Karki, LSUCSC 7443: Scientific Information Visualization

Pushing and Popping the Matrix Stack

• void glPushMatrix(void);
 Pushes all matrices in the current stack down one level
 Topmost matrix is copied so its contents are duplicated in both the

top and second-from-the-top matrix
 Remember where you are

• void glPopMatrix(void);
 Eliminates (pops off) the top matrix (destroying the

contents of the popped matrix) to expose the second-from-
the-top matrix in the stack

 Go back to where you were

BB Karki, LSUCSC 7443: Scientific Information Visualization

Example 3: Building A Solar System

• How to combine several transformations to achieve a
particular result

• Solar system (with a planet and a sun)
 Setup a viewing and a projection transformation
 Use glRotate to make both grand and local coordinate systems rotate
 Draw the sun which rotates about the grand axes
 glTranslate to move the local coordinate system to a position where

planet will be drawn
 A second glRotate rotates the local coordinate system about the

local axes
 Draw a planet which rotates about its local axes as well as about the

grand axes (i.e., orbiting about the sun)

BB Karki, LSUCSC 7443: Scientific Information Visualization

Commands to Draw the Sun and Planet

glPushMatrix ();

glRotatef (year, 0.0, 1.0, 0.0);
glutWireSphere (1.0, 20, 16);

glTranslatef (2.0, 0.0, 0.0);
glRotatef (day, 0.0, 1.0, 0.0);

glutWireSphere (0.2, 10, 8);

glPopMatrix ();

