
BB Karki, LSUCSC 7443: Scientific Information Visualization

Viewing

BB Karki, LSUCSC 7443: Scientific Information Visualization

Creating and Viewing a Scene

• How to view the geometric models that you can
now draw with OpenGL

• Two key factors:
 Define the position and orientation of geometric

objects in 3D space (creating the scene)
 Specify the location and orientation of the viewpoint

in the 3D space (viewing the scene)

• Try to visualize the scene in 3D space that lies
deep inside your computer

BB Karki, LSUCSC 7443: Scientific Information Visualization

A Series of Operations Needed

• Transformations
 Modeling, viewing and projection operations

• Clipping
 Removing objects (or portions of objects) lying

outside the window

• Viewport Transformation
 Establishing a correspondence between the

transformed coordinates (geometric data) and screen
pixels

BB Karki, LSUCSC 7443: Scientific Information Visualization

The Camera Analogy

• Position and aim the Camera at the scene
 Viewing transformation: Position the viewing volume in the world

• Arrange the scene to be photograph into the desired
composition
 Modeling transformation: Position the models in the world

• Choose a camera lens or adjust the zoom to adjust field of view
 Projection transformation: Determine the shape of the viewing volume

• Determine the size of the developed (final) photograph
 Viewport transformation

BB Karki, LSUCSC 7443: Scientific Information Visualization

Transformation Matrix

• Transformation is represented by matrix multiplication

• Construct a 4x4 matrix M which is then multiplied by the
coordinates of each vertex v in the scene to transform
them to new coordinates v'

€

′ v = Mv

€

′ x
′ y
′ z
′ w



















=

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44



















x
y
y
w



















Homogenous Coordinates:
v = (x, y, z, w)T

Relation between Cartesian and
homogeneous coordinates:
xc = x/w, yc = y/w, zc = z/w

BB Karki, LSUCSC 7443: Scientific Information Visualization

Different Matrices

€

MT =

1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1



















€

MS =

sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1



















€

MI =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



















€

MR =

1 0 0 0
0 cosθ sinθ 0
0 sinθ cosθ 0
0 0 0 1



















Identity Matrix Translation Matrix

Rotation Matrix (about x-axis) Scaling Matrix

BB Karki, LSUCSC 7443: Scientific Information Visualization

Order of Matrix Multiplication

• Each transformation command multiplies a new matrix M by
the current matrix C
 Last command called in the program is the first one applied to the

vertices
glLoadIdentity();
glMultMatrixf(N);
glMultMatrixf(M)
glMultMatrix(L)
glBegin(GL_POINTS);

glVertec3f(v);
glEnd();
The transformed vertex is INMLv
Transformations occur in the opposite order than they applied

• Transformations are first defined and then objects are drawn

BB Karki, LSUCSC 7443: Scientific Information Visualization

Coordinate Systems

• Grand, fixed coordinate system
 Geometric models are transformed in the fixed coordinate system
 Matrix multiplication occur in the opposite order from how they

appear in the code, e.g.,
glMultMatrixf(T);
glMultMatrixf(R);

The order is T(Rv)

• Local coordinate system
 The system is tied to the object you are drawing
 All operations occur relative to this moving coordinate system
 Matrix multiplications appear in the natural order, e.g,

R(Tv)
 Useful for applications such as robot arms

BB Karki, LSUCSC 7443: Scientific Information Visualization

General Purpose Transformation Commands

• void glMatrixMode(GLenum mode);
 Specifies which matrix will be modified, using

GL_MODELVIEW or GL_PROJECTION for mode

• Multiplies the current matrix C by the specified matrix
M and then sets the result to be the current matrix

Final matrix will be CM
 Combines previous transformation matrices with the new one
 But you may not want such combinations in many cases

• void glLoadIdentity(void);
 Sets the current matrix to the 4x4 identity matrix
 Clears the current matrix so that you avoid compound

transformation for new matrix

BB Karki, LSUCSC 7443: Scientific Information Visualization

More Commands

• void glLoadMatrix(const TYPE *m);
 Specifies a matrix that is to be loaded as the current matrix
 Sets the sixteen values of the current matrix

to those specified by m

• void glMultMatrix(const TYPE *m);
 Multiplies the matrix specified M by the current matrix and

stores the result as the current matrix
€

M =

m11 m12 m13 m14
m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44



















BB Karki, LSUCSC 7443: Scientific Information Visualization

Modeling Transformations

• Positioning and orienting the geometric model
 MTs appear in display function

• Translate, rotate and/or scale the model
 Combine different transformations to get a single matrix
 Order of matrix multiplication is important

• Affine transformation

€

′ v = Av + b

€

′ x
′ y
′ z
1



















=

a11 a12 a13 b1
a21 a22 a23 b2
a31 a32 a33 b3
0 0 0 1



















x
y
z
1



















BB Karki, LSUCSC 7443: Scientific Information Visualization

OpenGL Routines for MTs

• void glTranslate{fd}(TYPE x, TYPE y, TYPE z);
 Moves (translates) an object by given x, y and z values

• void glRotate{fd}(TYPE angle, TYPE x, TYPE y,
TYPE z);
 Rotates an object in a counterclockwise direction by

angle (in degrees) about the rotation axis specified by
vector (x,y,z)

• void glScale{fd}(TYPE x, TYPE y, TYPE z);
 Shrinks or stretches or reflects an object by specified

factors in x, y and z directions

BB Karki, LSUCSC 7443: Scientific Information Visualization

Transformed Cube

void {display}
{

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(0.0,0.0,5.0, 0.0,0.0,0.0,
0.0,1.0,0.0);
glutSolidCube(1);
glTranslatef(3, 0.0, 0.0);
glScalef(1.0, 2.0, 1.0);
glutSolidCube(1);

}

First cube is centered at (0,0,0)

Second cube is at (3,0,0)
and its y-length is scaled twice

x

y

z

BB Karki, LSUCSC 7443: Scientific Information Visualization

Viewing Transformations

• Specify the position and orientation of viewpoint

• Often called before any modeling transformations so that
the later take effect on the objects first
 Defined in display or reshape functions

• Default: Viewpoint is situated at the origin, pointing
down the negative z-axis, and has an up-vector along the
positive y-axis

• VTs are generally composed of translations and rotations

• Define a custom utility for VTs in specialized
applications

BB Karki, LSUCSC 7443: Scientific Information Visualization

Using GLU Routine for VT

• void gluLookAt(GLdouble eyex, GLdouble eyey, GLdouble
eyez, GLdouble centerx, GLdouble centery, GLdouble
centerz, GLdouble upx, GLdouble upy, GLdouble upz);
 Defines a viewing matrix and multiplies it by the current matrix
 eyex,eyz,eyz = position of the viewpoint
 centerx,centery,centerz = any point along the desired line of sight
 upx,upy,upz = up direction from the bottom to the top of vewing

volume
gluLookAt(0.0,0.0,5.0, 0.0,0.0,-10.0, 0.0,1.0,0.0);

x

y

z

BB Karki, LSUCSC 7443: Scientific Information Visualization

Using glTranslate and glRotate for VT

• Use modeling transformation commands to emulate viewing
transformation

• glTranslatef(0.0, 0.0, -5.0)
 Moves the objects in the scene -5 units along the z-axis
 This is equivalent to moving the viewpoint +5 units along the z-axis

• glRotatef(45.0, 0.0, 1.0, 0.0);
 Rotates objects (local coordinates) by 45 degrees about y-axis
 To view objects from the side
 This is equivalent to rotating camera in opposite sense

• Total effect is equivalent to
gluLookAt (3.53,0.0,3.53, 0.0,0.0,0.0, 0.0,1.0,0.0);

BB Karki, LSUCSC 7443: Scientific Information Visualization

Modelview Matrix

• Modeling and viewing transformations are complimentary
so they are combined to the modelview matrix mode

• To activate the modelview transformation
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslate();
glRotate();

• Default mode is set at modelview
 Needs to be specified only if the other mode (projection) is

activated and you want to go back to modelview mode

BB Karki, LSUCSC 7443: Scientific Information Visualization

Example 1

• Modeling and Viewing Transofrmations

BB Karki, LSUCSC 7443: Scientific Information Visualization

Projection Transformations

• Call glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 activate the projection matrix
 PT is defined in reshape function

• To define the field of view or viewing volume
 how an object is projected on the screen
 which objects or portions of objects are clipped out of

the final image

BB Karki, LSUCSC 7443: Scientific Information Visualization

Two Types of Projection

• Perspective projection
 Foreshortening:

The farther an object is from the camera, the smaller it
appears in the final image

 Gives a realism: How our eyes work
 Viewing volume is frustum of a pyramid

• Orthographic projection
 Size of object is independent of distance
 Viewing volume is a rectangular parallelepiped (a

box)

BB Karki, LSUCSC 7443: Scientific Information Visualization

glFrustum

• void glFrustum(GLdouble left, GLdouble right, GLdouble
bottom, GLdouble top, GLdouble near, GLdouble far);
 Creates a matrix for perspective-view frustum
 The frustum’s viewing volume is defined by the coordinates of the

lower-left and upper-right corners of the near clipping plane

left

right

top

bottom
near

far

BB Karki, LSUCSC 7443: Scientific Information Visualization

gluPerspective

• void gluPerspective(GLdouble fovy, GLdouble aspect,
GLdouble near, GLdouble far);
 Creates a matrix for a symmetric perspective-view frustum
 Frustum is defined by fovy (angle in yz plane) and aspect ratio
 Near and far clipping planes

fovy

h

aspect = w/h

w

near

far

BB Karki, LSUCSC 7443: Scientific Information Visualization

Orthographic Projection

• Void glOrtho(GLdouble left, GLdouble right,
GLdouble bottom, GLdouble top, GLdouble
near, GLdouble far);
 Creates an orthographic parallel viewing volume

farnear
bottom

left
right

top

BB Karki, LSUCSC 7443: Scientific Information Visualization

Viewing Volume Clipping

• Clipping
 Frustum defined by six planes (left, right, bottom, top, near, and far
 Clipping is effective after modelview and projection transformations

• Further restricting the viewing volume by specifying
additional clipping planes (up to 6)

• glClipPlane(GLenum plane, const GLdouble *equation)
 Defines a clipping plane.
 The equation argument points to the coefficients of the plane

equation Ac+By+Cz+D=0
 Only points that satisfy (A B C D)M-1(xe ye ze we)T >=0 are kept.
 The plane argument is GL_CLIP_PLANEi, where is labels the

clipping plane
 Needs to be enabled and disabled

BB Karki, LSUCSC 7443: Scientific Information Visualization

Example2: Clipping

void display (void)
{

GLdouble eqn0[4] = {0.0, 1.0, 0.0, 0.0);
GLdouble eqn1[4] = {1.0, 0.0, 0.0, 0.0);

glClearColor (0.0, 0.0, 0.0, 0.0);
glClear (GL_COLOR_BUFFER_BIT);
glColor3f (1.0, 0.0, 0.0);

glClipPlane (GL_CLIP_PLANE0, eqn0);
glEnable (GL_CLIP_PLANE0);
glClipPlane (GL_CLIP_PLANE1, eqn1);
glEnable (GL_CLIP_PLANE1);

glutWireSphere(1.0, 20, 16);
glFlush();

}

BB Karki, LSUCSC 7443: Scientific Information Visualization

Viewport Transformation

• Viewport is a rectangular region of window where the
image is drawn
 Measured in window coordinates
 Reflects the position of pixels on the screen relative to lower-left

corner of the window

• void glViewport(GLint x, GLint y, GLsizei width,
GLsizei height);
 Defines a pixel rectangle in the window into which the final

image is mapped
 Aspect ratio of a viewport = aspect ratio of the viewing volume,

so that the projected image is undistorted
 glViewport is called in reshape function

BB Karki, LSUCSC 7443: Scientific Information Visualization

Vertex Transformation Flow

Modelview
Matrix

Projection
Matrix

Viewport
Transformation

Perspective
Division

VERTEX
x
y
z
w

Object
coordinates

Eye (camera) coordinates

Clip coordinates

Normalized device
coordinates

Window coordinates

BB Karki, LSUCSC 7443: Scientific Information Visualization

Matrix Stacks

• OpenGL maintains stacks of transformation matrices
 At the top of the stack is the current matrix
 Initially the topmost matrix is the identity matrix
 Provides an mechanism for successive remembering, translating

and throwing
Get back to a previous coordinate system

• Modelview matrix stack
 Has 32 matrices or more on the stack
 Composite transformations

• Projection matrix stack
 is only two or four levels deep

BB Karki, LSUCSC 7443: Scientific Information Visualization

Pushing and Popping the Matrix Stack

• void glPushMatrix(void);
 Pushes all matrices in the current stack down one level
 Topmost matrix is copied so its contents are duplicated in both the

top and second-from-the-top matrix
 Remember where you are

• void glPopMatrix(void);
 Eliminates (pops off) the top matrix (destroying the

contents of the popped matrix) to expose the second-from-
the-top matrix in the stack

 Go back to where you were

BB Karki, LSUCSC 7443: Scientific Information Visualization

Example 3: Building A Solar System

• How to combine several transformations to achieve a
particular result

• Solar system (with a planet and a sun)
 Setup a viewing and a projection transformation
 Use glRotate to make both grand and local coordinate systems rotate
 Draw the sun which rotates about the grand axes
 glTranslate to move the local coordinate system to a position where

planet will be drawn
 A second glRotate rotates the local coordinate system about the

local axes
 Draw a planet which rotates about its local axes as well as about the

grand axes (i.e., orbiting about the sun)

BB Karki, LSUCSC 7443: Scientific Information Visualization

Commands to Draw the Sun and Planet

glPushMatrix ();

glRotatef (year, 0.0, 1.0, 0.0);
glutWireSphere (1.0, 20, 16);

glTranslatef (2.0, 0.0, 0.0);
glRotatef (day, 0.0, 1.0, 0.0);

glutWireSphere (0.2, 10, 8);

glPopMatrix ();

