Viewing
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Creating and Viewing a Scene

 How to view the geometric models that you can
now draw with OpenGL

e Two key factors:

» Define the position and orientation of geometric
objects 1in 3D space (creating the scene)

» Specify the location and orientation of the viewpoint
in the 3D space (viewing the scene)

 Try to visualize the scene 1in 3D space that lies
deep inside your computer
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A Series of Operations Needed

 Transformations
» Modeling, viewing and projection operations

 Clipping
» Removing objects (or portions of objects) lying
outside the window

* Viewport Transformation

» Establishing a correspondence between the
transformed coordinates (geometric data) and screen
pixels
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The Camera Analogy

e Position and aim the Camera at the scene

» Viewing transformation: Position the viewing volume in the world

 Arrange the scene to be photograph into the desired
composition

» Modeling transformation: Position the models in the world

e Choose a camera lens or adjust the zoom to adjust field of view

» Projection transformation: Determine the shape of the viewing volume

e Determine the size of the developed (final) photograph

» Viewport transformation
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Transformation Matrix

 Transformation 1s represented by matrix multiplication

e Construct a 4x4 matrix M which 1s then multiplied by the
coordinates of each vertex v in the scene to transform
them to new coordinates v'

v'= My

Homogenous Coordinates:

- 1T e -
X My My My My X v=(x,y,z,w!
/
m m m m
Y — 21 22 23 24 || Y Relation between Cartesian and
Z, My, My, My, Moy ||y homogeneous coordinates:
, x,=xlw, y.=ylw, z.=z/w
(W [Myy My, Myy o My, |W)
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Identity Matrix
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0 0 0

Rotation Matrix (about x-axis)
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Different Matrices
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Translation Matrix
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Scaling Matrix
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Order of Matrix Multiplication

 Each transformation command multiplies a new matrix M by
the current matrix C

» Last command called in the program is the first one applied to the
vertices

gll.oadldentity();
glMultMatrixf(N);
glMultMatrixf(M)
glMultMatrix(L)
glBegin(GL_POINTS);
glVertec3f(v);
glEnd();
The transformed vertex is INMLv
Transformations occur in the opposite order than they applied

 Transformations are first defined and then objects are drawn
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Coordinate Systems

 Grand, fixed coordinate system
» Geometric models are transformed in the fixed coordinate system

» Matrix multiplication occur in the opposite order from how they
appear in the code, e.g.,

glMultMatrixf(T);
glMultMatrixf(R);

The order is T(Rv)

 Local coordinate system
» The system is tied to the object you are drawing
» All operations occur relative to this moving coordinate system
» Matrix multiplications appear in the natural order, e.g,
R(Tv)
» Useful for applications such as robot arms
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General Purpose Transformation Commands

e void glMatrixMode(GLenum mode);

» Specifies which matrix will be modified, using
GL_MODELVIEW or GL_PROJECTION for mode

e  Multiplies the current matrix C by the specified matrix
M and then sets the result to be the current matrix
Final matrix will be CM

» Combines previous transformation matrices with the new one
» But you may not want such combinations in many cases

e void glLoadlIdentity(void);

» Sets the current matrix to the 4x4 identity matrix

» Clears the current matrix so that you avoid compound
transformation for new matrix
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More Commands

 void glLoadMatrix(const TYPE *m);

» Specifies a matrix that is to be loaded as the current matrix
» Sets the sixteen values of the current matrix

to those specified by m

e void giMultMatrix(const TYPE *m);

» Multiplies the matrix specified M by the current matrix and
stores the result as the current matrix
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Modeling Transformations

e Positioning and orienting the geometric model
» MTs appear in display function

e Translate, rotate and/or scale the model

» Combine different transformations to get a single matrix
» Order of matrix multiplication is important

. . /
o Affine transformation vV = AV + b
X -all a, a; b -
y' a, G, ay; b,
4 a;, Ay Ay by
1 0 0 0 Iy
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OpenGL Routines for MTs

e void glTranslate{td}(TYPE x, TYPE y, TYPE 7);

» Moves (translates) an object by given x, y and z values

 void glRotate{td}(TYPE angle, TYPE x, TYPE v,
TYPE ?);

»> Rotates an object in a counterclockwise direction by
angle (in degrees) about the rotation axis specified by
vector (x,y,z)

e void glScale{fd}(TYPE x, TYPE y, TYPE ?7);

» Shrinks or stretches or reflects an object by specified
factors in X, y and z directions
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Transformed Cube

void {display}
{
glMatrixMode (GL_MODELVIEW) ; f y
glLoadIdentity();

gluLookAt (0.0,0.0,5.0, 0.0,0.0,0.0,
0.0,1.0,0.0);

glutSolidCube(1);
glTranslatef (3, 0.0, 0.0);
glScalef (1.0, 2.0, 1.0);
glutSolidCube(1);

First cube is centered at (0,0,0)

Second cube is at (3,0,0)

and its y-length is scaled twice
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Viewing Transformations

e Specify the position and orientation of viewpoint

Often called before any modeling transformations so that
the later take effect on the objects first

» Defined in display or reshape functions

e Default: Viewpoint is situated at the origin, pointing
down the negative z-axis, and has an up-vector along the
positive y-axis

* VTs are generally composed of translations and rotations

e Define a custom utility for VTs 1n specialized
applications
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Using GLU Routine for VT

e void gluLookAt(GLdouble eyex, GLdouble eyey, GLdouble
eyez, GLdouble centerx, GLdouble centery, GLdouble
centerz, GLdouble upx, GLdouble upy, GLdouble upz);

» Defines a viewing matrix and multiplies it by the current matrix
eyex,eyz,eyz = position of the viewpoint

centerx,centery,centerz = any point along the desired line of sight

YV V V

upx,upy,upz = up direction from the bottom to the top of vewing
volume

glul.ookAt(0.0,0.0,5.0, 0.0,0.0,-10.0, 0.0,1.0,0.0);

A

y

» X
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Using glTranslate and glRotate for VT

e Use modeling transformation commands to emulate viewing
transformation

 glTranslatef(0.0, 0.0, -5.0)

» Moves the objects in the scene -5 units along the z-axis
» This is equivalent to moving the viewpoint +5 units along the z-axis

glRotatef(45.0, 0.0, 1.0, 0.0);

» Rotates objects (local coordinates) by 45 degrees about y-axis

» To view objects from the side
» This is equivalent to rotating camera in opposite sense

e Total effect is equivalent to
gluLLookAt (3.53,0.0,3.53, 0.0,0.0,0.0, 0.0,1.0,0.0);
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Modelview Matrix

e Modeling and viewing transformations are complimentary
so they are combined to the modelview matrix mode

e To activate the modelview transformation
glMatrixMode(GL_MODELVIEW);
gll.oadIdentity();
glTranslate();
glRotate();

e Default mode 1s set at modelview

» Needs to be specified only if the other mode (projection) is
activated and you want to go back to modelview mode
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Example 1

e Modeling and Viewing Transofrmations
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Projection Transformations

e (Call giMatrixMode(GL_PROJECTION);
gll.oadldentity();

» activate the projection matrix
» PT is defined in reshape function

 To define the field of view or viewing volume
» how an object is projected on the screen

» which objects or portions of objects are clipped out of
the final image
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Two Types of Projection

e Perspective projection
» Foreshortening:

The farther an object is from the camera, the smaller 1t
appears in the final image

»> Gives a realism: How our eyes work
» Viewing volume is frustum of a pyramid

e Orthographic projection
» Size of object is independent of distance

» Viewing volume is a rectangular parallelepiped (a
box)
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glFrustum

e void glFrustum(GLdouble left, GLdouble right, GLdouble
bottom, GLdouble rop, GLdouble near, GLdouble far);

» Creates a matrix for perspective-view frustum

» The frustum’s viewing volume is defined by the coordinates of the
lower-left and upper-right corners of the near clipping plane

< > right
near

< >
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gluPerspective

e void gluPerspective(GLdouble fovy, GLdouble aspect,
GLdouble near, GLdouble far);
» Creates a matrix for a symmetric perspective-view frustum
» Frustum is defined by fovy (angle in yz plane) and aspect ratio
» Near and far clipping planes

aspect = w/h

fovy /Fy\
- &W 0

< >
near

< >
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Orthographic Projection

 Void glOrtho(GLdouble left, GLdouble right,
GLdouble bottom, GLdouble fop, GLdouble
near, GLdouble far);

» Creates an orthographic parallel viewing volume

top

) left
b right

bottor& \
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Viewing Volume Clipping

e Clipping

>
>

Frustum defined by six planes (left, right, bottom, top, near, and far
Clipping is effective after modelview and projection transformations

* Further restricting the viewing volume by specifying
additional clipping planes (up to 6)

e glClipPlane(GLenum plane, const GLdouble *equation)

>
>

>
>

>

Defines a clipping plane.

The equation argument points to the coefficients of the plane
equation Ac+By+Cz+D=0

Only points that satisfy (A B C D)M-(x,y, z, w,)T >=0 are kept.
The plane argument is GL_CLIP_PLANEIi, where is labels the
clipping plane

Needs to be enabled and disabled

CSC 7443: Scientific Information Visualization BB Karki, LSU



Example2: Clipping

void display (void)

{
GLdouble egn0O[4] = {0.0, 1.0, 0.0, 0.0);
GLdouble egnl[4] = {1.0, 0.0, 0.0, 0.0);
glClearColor (0.0, 0.0, 0.0, 0.0);
glClear (GL_COLOR BUFFER BIT);
glColor3f (1.0, 0.0, 0.0);
glClipPlane (GL_CLIP PLANEO, eqgnO);
glEnable (GL_CLIP PLANEO);
glClipPlane (GL_CLIP PLANEl, eqgnl);
glEnable (GL_CLIP PLANE1l);
glutWireSphere(1.0, 20, 16);
glFlush();

}
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Viewport Transformation

e Viewport is a rectangular region of window where the
image 1s drawn
» Measured in window coordinates

» Reflects the position of pixels on the screen relative to lower-left
corner of the window

 void glViewport(GLint x, GLint y, GLsizei width,
GLsize1 height);
» Defines a pixel rectangle in the window into which the final
image is mapped
» Aspect ratio of a viewport = aspect ratio of the viewing volume,
so that the projected image 1s undistorted

» glViewport is called in reshape function
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Vertex Transformation Flow

Eye (camera) coordinates

) 3

y [ Projection } Clip coordinates

VERTEX -[ Modelv.lew }
FoN Matrix

Z Matrix 1
\VY Normalized device
\ o .
| Pers pe ctive coordinates
Object Divis;
; 1V1S101
coordinates

Viewport
Transformation

]

Window coordinates
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Matrix Stacks

e  OpenGL maintains stacks of transformation matrices
» At the top of the stack is the current matrix
» Initially the topmost matrix is the identity matrix

» Provides an mechanism for successive remembering, translating
and throwing

Get back to a previous coordinate system

e Modelview matrix stack
> Has 32 matrices or more on the stack
» Composite transformations

 Projection matrix stack
» is only two or four levels deep
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Pushing and Popping the Matrix Stack

e void glPushMatrix(void);
» Pushes all matrices in the current stack down one level
» Topmost matrix is copied so its contents are duplicated in both the

top and second-from-the-top matrix

e void glPopMatrix(void);

» Remember where you are

» Eliminates (pops off) the top matrix (destroying the
contents of the popped matrix) to expose the second-from-
the-top matrix in the stack

» Go back to where you were
CSC 7443: Scientific Information Visualization BB Karki, LSU



Example 3: Building A Solar System

e How to combine several transformations to achieve a
particular result

e Solar system (with a planet and a sun)

>

YV V V

A\

Setup a viewing and a projection transformation
Use glRotate to make both grand and local coordinate systems rotate
Draw the sun which rotates about the grand axes

glTranslate to move the local coordinate system to a position where
planet will be drawn

A second glRotate rotates the local coordinate system about the
local axes

Draw a planet which rotates about its local axes as well as about the
grand axes (i.e., orbiting about the sun)
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Commands to Draw the Sun and Planet

glPushMatrix ();

glRotatef (year, 0.0, 1.0, 0.0);
glutWireSphere (1.0, 20, 16);

glTranslatef (2.0, 0.0, 0.0);
glRotatef (day, 0.0, 1.0, 0.0);

glutWireSphere (0.2, 10, 8);

glPopMatrix ();
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