Viewing

Creating and Viewing a Scene

- How to view the geometric models that you can now draw with OpenGL
- Two key factors:
> Define the position and orientation of geometric objects in 3D space (creating the scene)
> Specify the location and orientation of the viewpoint in the 3D space (viewing the scene)
- Try to visualize the scene in 3D space that lies deep inside your computer

A Series of Operations Needed

- Transformations
> Modeling, viewing and projection operations
- Clipping
$>$ Removing objects (or portions of objects) lying outside the window
- Viewport Transformation
> Establishing a correspondence between the transformed coordinates (geometric data) and screen pixels

The Camera Analogy

- Position and aim the Camera at the scene
> Viewing transformation: Position the viewing volume in the world
- Arrange the scene to be photograph into the desired composition
> Modeling transformation: Position the models in the world
- Choose a camera lens or adjust the zoom to adjust field of view
> Projection transformation: Determine the shape of the viewing volume
- Determine the size of the developed (final) photograph
> Viewport transformation

Transformation Matrix

- Transformation is represented by matrix multiplication
- Construct a $4 x 4$ matrix \boldsymbol{M} which is then multiplied by the coordinates of each vertex v in the scene to transform them to new coordinates \boldsymbol{v}^{\prime}
$v^{\prime}=M v$
$\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ w^{\prime}\end{array}\right]=\left[\begin{array}{llll}m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ m_{41} & m_{42} & m_{43} & m_{44}\end{array}\right]\left[\begin{array}{c}x \\ y \\ y \\ w\end{array}\right]$

Homogenous Coordinates: $v=(x, y, z, w)^{T}$

Relation between Cartesian and homogeneous coordinates:

$$
x_{c}=x / w, \quad y_{c}=y / w, \quad z_{c}=z / w
$$

Different Matrices

Identity Matrix

$$
M_{I}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Translation Matrix

$$
M_{T}=\left[\begin{array}{llll}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Scaling Matrix

$$
M_{S}=\left[\begin{array}{cccc}
s_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
0 & 0 & s_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Order of Matrix Multiplication

- Each transformation command multiplies a new matrix M by the current matrix C
$>$ Last command called in the program is the first one applied to the vertices
glLoadIdentity();
glMultMatrixf(N);
glMultMatrixf(M)
glMultMatrix(L)
glBegin(GL_POINTS);
glVertec3f(v);
glEnd();
The transformed vertex is INMLv
Transformations occur in the opposite order than they applied
- Transformations are first defined and then objects are drawn

Coordinate Systems

- Grand, fixed coordinate system
$>$ Geometric models are transformed in the fixed coordinate system
> Matrix multiplication occur in the opposite order from how they appear in the code, e.g.,
glMultMatrixf(T);
glMultMatrixf(R);

The order is $T(R v)$

- Local coordinate system
\Rightarrow The system is tied to the object you are drawing
$>$ All operations occur relative to this moving coordinate system
> Matrix multiplications appear in the natural order, e.g, R(Tv)
> Useful for applications such as robot arms

General Purpose Transformation Commands

- \quad void glMatrixMode(GLenum mode);
> Specifies which matrix will be modified, using
GL_MODELVIEW or GL_PROJECTION for mode
- Multiplies the current matrix \boldsymbol{C} by the specified matrix \boldsymbol{M} and then sets the result to be the current matrix

Final matrix will be $\boldsymbol{C M}$
> Combines previous transformation matrices with the new one
$>$ But you may not want such combinations in many cases

- void glLoadIdentity (void);
$>$ Sets the current matrix to the $4 x 4$ identity matrix
\Rightarrow Clears the current matrix so that you avoid compound transformation for new matrix

More Commands

- void gILoadMatrix(const TYPE *m);
$>$ Specifies a matrix that is to be loaded as the current matrix
$>$ Sets the sixteen values of the current matrix to those specified by m

$$
M=\left[\begin{array}{llll}
m_{11} & m_{12} & m_{13} & m_{14} \\
m_{21} & m_{22} & m_{23} & m_{24} \\
m_{31} & m_{32} & m_{33} & m_{34} \\
m_{41} & m_{42} & m_{43} & m_{44}
\end{array}\right]
$$

- void glMultMatrix(const TYPE *m);
$>$ Multiplies the matrix specified M by the current matrix and stores the result as the current matrix

Modeling Transformations

- Positioning and orienting the geometric model
> MTs appear in display function
- Translate, rotate and/or scale the model
$>$ Combine different transformations to get a single matrix
$>$ Order of matrix multiplication is important
- Affine transformation $v^{\prime}=A v+b$

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & b_{1} \\
a_{21} & a_{22} & a_{23} & b_{2} \\
a_{31} & a_{32} & a_{33} & b_{3} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

OpenGL Routines for MTs

- void glTranslate\{fd\}(TYPE x, TYPE y, TYPE z); $>$ Moves (translates) an object by given x, y and z values
- void glRotate $\{\mathrm{fd}\}($ TYPE angle, TYPE x, TYPE y, TYPE z);
$>$ Rotates an object in a counterclockwise direction by angle (in degrees) about the rotation axis specified by vector (x, y, z)
- void glScale $\{\mathrm{fd}\}($ TYPE x, TYPE y, TYPE z);
$>$ Shrinks or stretches or reflects an object by specified factors in x, y and z directions

Transformed Cube

```
void {display}
{
    glMatrixMode(GL_MODELVIEW);
    glLoadIdentity();
    gluLookAt(0.0,0.0,5.0, 0.0,0.0,0.0,
    0.0,1.0,0.0);
    glutSolidCube(1);
    glTranslatef(3, 0.0, 0.0);
    glScalef(1.0, 2.0, 1.0);
    glutSolidCube(1);
}
First cube is centered at \((0,0,0)\)
```



```
Second cube is at \((3,0,0)\) and its y-length is scaled twice

\section*{Viewing Transformations}
- Specify the position and orientation of viewpoint
- Often called before any modeling transformations so that the later take effect on the objects first
> Defined in display or reshape functions
- Default: Viewpoint is situated at the origin, pointing down the negative \(z\)-axis, and has an up-vector along the positive \(y\)-axis
- VTs are generally composed of translations and rotations
- Define a custom utility for VTs in specialized applications

\section*{Using GLU Routine for VT}
- void gluLookAt(GLdouble eyex, GLdouble eyey, GLdouble eyez, GLdouble centerx, GLdouble centery, GLdouble centerz, GLdouble upx, GLdouble upy, GLdouble upz);
\(>\) Defines a viewing matrix and multiplies it by the current matrix
\(>\) eyex,eyz,eyz \(=\) position of the viewpoint
\(>\) centerx, centery,centerz \(=\) any point along the desired line of sight
\(>u p x, u p y, u p z=\) up direction from the bottom to the top of vewing volume
gluLookAt(0.0,0.0,5.0, 0.0,0.0,-10.0, 0.0, 1.0,0.0);


\section*{Using gITranslate and glRotate for VT}
- Use modeling transformation commands to emulate viewing transformation
- glTranslatef( \(0.0,0.0,-5.0\) )
> Moves the objects in the scene -5 units along the \(z\)-axis
\(>\) This is equivalent to moving the viewpoint +5 units along the \(z\)-axis
- \(\quad \operatorname{glRotatef}(45.0,0.0,1.0,0.0)\);
> Rotates objects (local coordinates) by 45 degrees about \(y\)-axis
\(>\) To view objects from the side
\(>\) This is equivalent to rotating camera in opposite sense
- Total effect is equivalent to gluLookAt (3.53,0.0,3.53, 0.0,0.0,0.0, 0.0, 1.0,0.0);

\section*{Modelview Matrix}
- Modeling and viewing transformations are complimentary so they are combined to the modelview matrix mode
- To activate the modelview transformation glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gITranslate();
gIRotate();
- Default mode is set at modelview
\(>\) Needs to be specified only if the other mode (projection) is activated and you want to go back to modelview mode

\section*{Example 1}

\section*{- Modeling and Viewing Transofrmations}

\section*{Projection Transformations}
- Call gIMatrixMode(GL_PROJECTION); gILoadIdentity();
\(>\) activate the projection matrix
\(\Rightarrow\) PT is defined in reshape function
- To define the field of view or viewing volume
\(>\) how an object is projected on the screen
\(>\) which objects or portions of objects are clipped out of the final image

\section*{Two Types of Projection}
- Perspective projection
\(>\) Foreshortening:
The farther an object is from the camera, the smaller it appears in the final image
> Gives a realism: How our eyes work
\(>\) Viewing volume is frustum of a pyramid
- Orthographic projection
> Size of object is independent of distance
\(>\) Viewing volume is a rectangular parallelepiped (a box)

\section*{gIFrustum}
- void gIFrustum(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble near, GLdouble far);
\(>\) Creates a matrix for perspective-view frustum
> The frustum's viewing volume is defined by the coordinates of the lower-left and upper-right corners of the near clipping plane


\section*{gluPerspective}
- void gluPerspective(GLdouble fovy, GLdouble aspect, GLdouble near, GLdouble far);
\(>\) Creates a matrix for a symmetric perspective-view frustum
\(>\) Frustum is defined by fovy (angle in \(y z\) plane) and aspect ratio
> Near and far clipping planes


\section*{Orthographic Projection}
- Void glOrtho(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble near, GLdouble far);
> Creates an orthographic parallel viewing volume


\section*{Viewing Volume Clipping}
- Clipping
> Frustum defined by six planes (left, right, bottom, top, near, and far
> Clipping is effective after modelview and projection transformations
- Further restricting the viewing volume by specifying additional clipping planes (up to 6)
- glClipPlane(GLenum plane, const GLdouble *equation)
> Defines a clipping plane.
\(\Rightarrow\) The equation argument points to the coefficients of the plane equation \(A c+B y+C z+D=0\)
> Only points that satisfy \((A B C D) M^{-1}\left(x_{e} y_{e} z_{e} w_{e}\right)^{T}>=0\) are kept.
> The plane argument is GL_CLIP_PLANEi, where is labels the clipping plane
\(>\) Needs to be enabled and disabled

\section*{Example2: Clipping}
```

void display (void)
{
GLdouble eqn0[4] = {0.0, 1.0, 0.0, 0.0);
GLdouble eqn1[4] = {1.0, 0.0, 0.0, 0.0);
glClearColor (0.0, 0.0, 0.0, 0.0);
glClear (GL_COLOR_BUFFER_BIT);
glColor3f (1.0, 0.0, 0.0);
glClipPlane (GL_CLIP_PLANEO, eqn0);
glEnable (GL_CLIP_PLANEO);
glClipPlane (GL_CLIP_PLANE1, eqn1);
glEnable (GL_CLIP_PLANE1);
glutWireSphere(1.0, 20, 16);
glFlush();
}

```

\section*{Viewport Transformation}
- Viewport is a rectangular region of window where the image is drawn
> Measured in window coordinates
\(>\) Reflects the position of pixels on the screen relative to lower-left corner of the window
- void glViewport(GLint \(x\), GLint \(y\), GLsizei width, GLsizei height);
\(>\) Defines a pixel rectangle in the window into which the final image is mapped
\(>\) Aspect ratio of a viewport \(=\) aspect ratio of the viewing volume, so that the projected image is undistorted
\(>\) glViewport is called in reshape function

\section*{Vertex Transformation Flow}


\section*{Matrix Stacks}
- OpenGL maintains stacks of transformation matrices
\(>\) At the top of the stack is the current matrix
\(>\) Initially the topmost matrix is the identity matrix
> Provides an mechanism for successive remembering, translating and throwing
Get back to a previous coordinate system
- Modelview matrix stack
\(>\) Has 32 matrices or more on the stack
> Composite transformations
- Projection matrix stack
> is only two or four levels deep

\section*{Pushing and Popping the Matrix Stack}
- void glPushMatrix(void);
\(>\) Pushes all matrices in the current stack down one level
\(>\) Topmost matrix is copied so its contents are duplicated in both the top and second-from-the-top matrix
> Remember where you are

- void glPopMatrix(void);
> Eliminates (pops off) the top matrix (destroying the contents of the popped matrix) to expose the second-from-the-top matrix in the stack
\(>\) Go back to where you were

\section*{Example 3: Building A Solar System}
- How to combine several transformations to achieve a particular result
- Solar system (with a planet and a sun)
\(>\) Setup a viewing and a projection transformation
> Use glRotate to make both grand and local coordinate systems rotate
\(>\) Draw the sun which rotates about the grand axes
> glTranslate to move the local coordinate system to a position where planet will be drawn
\(>\) A second glRotate rotates the local coordinate system about the local axes
\(>\) Draw a planet which rotates about its local axes as well as about the grand axes (i.e., orbiting about the sun)

\section*{Commands to Draw the Sun and Planet}
glPushMatrix ();
glRotatef (year, 0.0, 1.0, 0.0);
glutWireSphere (1.0, 20, 16);
gITranslatef (2.0, 0.0, 0.0);
glRotatef (day, 0.0, 1.0, 0.0);
glutWireSphere ( \(0.2,10,8\) );
glPopMatrix ();```

