Viewing

CSC 7443: Scientific Information Visualization BB Karki, LSU

Creating and Viewing a Scene

 How to view the geometric models that you can
now draw with OpenGL

e Two key factors:

» Define the position and orientation of geometric
objects 1in 3D space (creating the scene)

» Specify the location and orientation of the viewpoint
in the 3D space (viewing the scene)

 Try to visualize the scene 1in 3D space that lies
deep inside your computer

CSC 7443: Scientific Information Visualization BB Karki, LSU

A Series of Operations Needed

 Transformations
» Modeling, viewing and projection operations

 Clipping
» Removing objects (or portions of objects) lying
outside the window

* Viewport Transformation

» Establishing a correspondence between the
transformed coordinates (geometric data) and screen
pixels

CSC 7443: Scientific Information Visualization BB Karki, LSU

The Camera Analogy

e Position and aim the Camera at the scene

» Viewing transformation: Position the viewing volume in the world

 Arrange the scene to be photograph into the desired
composition

» Modeling transformation: Position the models in the world

e Choose a camera lens or adjust the zoom to adjust field of view

» Projection transformation: Determine the shape of the viewing volume

e Determine the size of the developed (final) photograph

» Viewport transformation

CSC 7443: Scientific Information Visualization BB Karki, LSU

Transformation Matrix

 Transformation 1s represented by matrix multiplication

e Construct a 4x4 matrix M which 1s then multiplied by the
coordinates of each vertex v in the scene to transform
them to new coordinates v'

v'= My

Homogenous Coordinates:

- 1T e -
X My My My My X v=(x,y,z,w!
/
m m m m
Y — 21 22 23 24 || Y Relation between Cartesian and
Z, My, My, My, Moy ||y homogeneous coordinates:
, x,=xlw, y.=ylw, z.=z/w
(W [Myy My, Myy o My, |W)

CSC 7443: Scientific Information Visualization BB Karki, LSU

Identity Matrix
1 0 0
0O 1 0

M, =
0 0 1
0 0 0

Rotation Matrix (about x-axis)

0 0 0
O cosf@ sinf O

1
Me=|
0

Different Matrices

—_ o O O

sinf cosf O

0o 0 1

CSC 7443: Scientific Infor-mation Visualization

Translation Matrix

1 0 0 ¢t]
0O 1 0 ¢
M, = ’
0 0 1 ¢
0 0 0 1]
Scaling Matrix
s. 0 0 0
0 s, 0 O
M, =
0O 0 s O
0O 0 0 1
) BB Karki, LSU

Order of Matrix Multiplication

 Each transformation command multiplies a new matrix M by
the current matrix C

» Last command called in the program is the first one applied to the
vertices

gll.oadldentity();
glMultMatrixf(N);
glMultMatrixf(M)
glMultMatrix(L)
glBegin(GL_POINTS);
glVertec3f(v);
glEnd();
The transformed vertex is INMLv
Transformations occur in the opposite order than they applied

 Transformations are first defined and then objects are drawn

CSC 7443: Scientific Information Visualization BB Karki, LSU

Coordinate Systems

 Grand, fixed coordinate system
» Geometric models are transformed in the fixed coordinate system

» Matrix multiplication occur in the opposite order from how they
appear in the code, e.g.,

glMultMatrixf(T);
glMultMatrixf(R);

The order is T(Rv)

 Local coordinate system
» The system is tied to the object you are drawing
» All operations occur relative to this moving coordinate system
» Matrix multiplications appear in the natural order, e.g,
R(Tv)
» Useful for applications such as robot arms

CSC 7443: Scientific Information Visualization BB Karki, LSU

General Purpose Transformation Commands

e void glMatrixMode(GLenum mode);

» Specifies which matrix will be modified, using
GL_MODELVIEW or GL_PROJECTION for mode

e Multiplies the current matrix C by the specified matrix
M and then sets the result to be the current matrix
Final matrix will be CM

» Combines previous transformation matrices with the new one
» But you may not want such combinations in many cases

e void glLoadlIdentity(void);

» Sets the current matrix to the 4x4 identity matrix

» Clears the current matrix so that you avoid compound
transformation for new matrix

CSC 7443: Scientific Information Visualization BB Karki, LSU

More Commands

 void glLoadMatrix(const TYPE *m);

» Specifies a matrix that is to be loaded as the current matrix
» Sets the sixteen values of the current matrix

to those specified by m

e void giMultMatrix(const TYPE *m);

» Multiplies the matrix specified M by the current matrix and
stores the result as the current matrix

CSC 7443: Scientific Information Visualization BB Karki, LSU

Modeling Transformations

e Positioning and orienting the geometric model
» MTs appear in display function

e Translate, rotate and/or scale the model

» Combine different transformations to get a single matrix
» Order of matrix multiplication is important

. . /
o Affine transformation vV = AV + b
X -all a, a; b -
y' a, G, ay; b,
4 a;, Ay Ay by
1 0 0 0 Iy

CSC 7443: Scientific Information Visualization) - BB Karki, LSU

»—t(\l'\<ﬁ><:

OpenGL Routines for MTs

e void glTranslate{td}(TYPE x, TYPE y, TYPE 7);

» Moves (translates) an object by given x, y and z values

 void glRotate{td}(TYPE angle, TYPE x, TYPE v,
TYPE ?);

»> Rotates an object in a counterclockwise direction by
angle (in degrees) about the rotation axis specified by
vector (x,y,z)

e void glScale{fd}(TYPE x, TYPE y, TYPE ?7);

» Shrinks or stretches or reflects an object by specified
factors in X, y and z directions

CSC 7443: Scientific Information Visualization BB Karki, LSU

Transformed Cube

void {display}
{
glMatrixMode (GL_MODELVIEW) ; f y
glLoadIdentity();

gluLookAt (0.0,0.0,5.0, 0.0,0.0,0.0,
0.0,1.0,0.0);

glutSolidCube(1);
glTranslatef (3, 0.0, 0.0);
glScalef (1.0, 2.0, 1.0);
glutSolidCube(1);

First cube is centered at (0,0,0)

Second cube is at (3,0,0)

and its y-length is scaled twice
CSC 7443: Scientific Information Visualization BB Karki, LSU

Viewing Transformations

e Specify the position and orientation of viewpoint

Often called before any modeling transformations so that
the later take effect on the objects first

» Defined in display or reshape functions

e Default: Viewpoint is situated at the origin, pointing
down the negative z-axis, and has an up-vector along the
positive y-axis

* VTs are generally composed of translations and rotations

e Define a custom utility for VTs 1n specialized
applications
CSC 7443: Scientific Information Visualization BB Karki, LSU

Using GLU Routine for VT

e void gluLookAt(GLdouble eyex, GLdouble eyey, GLdouble
eyez, GLdouble centerx, GLdouble centery, GLdouble
centerz, GLdouble upx, GLdouble upy, GLdouble upz);

» Defines a viewing matrix and multiplies it by the current matrix
eyex,eyz,eyz = position of the viewpoint

centerx,centery,centerz = any point along the desired line of sight

YV V V

upx,upy,upz = up direction from the bottom to the top of vewing
volume

glul.ookAt(0.0,0.0,5.0, 0.0,0.0,-10.0, 0.0,1.0,0.0);

A

y

» X

CSC 7443: Scientific Information Vistallation BB Karki, LSU

Using glTranslate and glRotate for VT

e Use modeling transformation commands to emulate viewing
transformation

 glTranslatef(0.0, 0.0, -5.0)

» Moves the objects in the scene -5 units along the z-axis
» This is equivalent to moving the viewpoint +5 units along the z-axis

glRotatef(45.0, 0.0, 1.0, 0.0);

» Rotates objects (local coordinates) by 45 degrees about y-axis

» To view objects from the side
» This is equivalent to rotating camera in opposite sense

e Total effect is equivalent to
gluLLookAt (3.53,0.0,3.53, 0.0,0.0,0.0, 0.0,1.0,0.0);

CSC 7443: Scientific Information Visualization BB Karki, LSU

Modelview Matrix

e Modeling and viewing transformations are complimentary
so they are combined to the modelview matrix mode

e To activate the modelview transformation
glMatrixMode(GL_MODELVIEW);
gll.oadIdentity();
glTranslate();
glRotate();

e Default mode 1s set at modelview

» Needs to be specified only if the other mode (projection) is
activated and you want to go back to modelview mode

CSC 7443: Scientific Information Visualization BB Karki, LSU

Example 1

e Modeling and Viewing Transofrmations

CSC 7443: Scientific Information Visualization BB Karki, LSU

Projection Transformations

e (Call giMatrixMode(GL_PROJECTION);
gll.oadldentity();

» activate the projection matrix
» PT is defined in reshape function

 To define the field of view or viewing volume
» how an object is projected on the screen

» which objects or portions of objects are clipped out of
the final image

CSC 7443: Scientific Information Visualization BB Karki, LSU

Two Types of Projection

e Perspective projection
» Foreshortening:

The farther an object is from the camera, the smaller 1t
appears in the final image

»> Gives a realism: How our eyes work
» Viewing volume is frustum of a pyramid

e Orthographic projection
» Size of object is independent of distance

» Viewing volume is a rectangular parallelepiped (a
box)

CSC 7443: Scientific Information Visualization BB Karki, LSU

glFrustum

e void glFrustum(GLdouble left, GLdouble right, GLdouble
bottom, GLdouble rop, GLdouble near, GLdouble far);

» Creates a matrix for perspective-view frustum

» The frustum’s viewing volume is defined by the coordinates of the
lower-left and upper-right corners of the near clipping plane

< > right
near

< >
CSC 7443: Scientific Information Visualization BB Karki, LSU

gluPerspective

e void gluPerspective(GLdouble fovy, GLdouble aspect,
GLdouble near, GLdouble far);
» Creates a matrix for a symmetric perspective-view frustum
» Frustum is defined by fovy (angle in yz plane) and aspect ratio
» Near and far clipping planes

aspect = w/h

fovy /Fy\
- &W 0

< >
near

< >

CSC 7443: Scientific Information Visualization far BB Karki, LSU

Orthographic Projection

 Void glOrtho(GLdouble left, GLdouble right,
GLdouble bottom, GLdouble fop, GLdouble
near, GLdouble far);

» Creates an orthographic parallel viewing volume

top

) left
b right

bottor& \

CSC 7443: Scientific Information Visualization near far BB Karki, LSU

Viewing Volume Clipping

e Clipping

>
>

Frustum defined by six planes (left, right, bottom, top, near, and far
Clipping is effective after modelview and projection transformations

* Further restricting the viewing volume by specifying
additional clipping planes (up to 6)

e glClipPlane(GLenum plane, const GLdouble *equation)

>
>

>
>

>

Defines a clipping plane.

The equation argument points to the coefficients of the plane
equation Ac+By+Cz+D=0

Only points that satisfy (A B C D)M-(x,y, z, w,)T >=0 are kept.
The plane argument is GL_CLIP_PLANEIi, where is labels the
clipping plane

Needs to be enabled and disabled

CSC 7443: Scientific Information Visualization BB Karki, LSU

Example2: Clipping

void display (void)

{
GLdouble egn0O[4] = {0.0, 1.0, 0.0, 0.0);
GLdouble egnl[4] = {1.0, 0.0, 0.0, 0.0);
glClearColor (0.0, 0.0, 0.0, 0.0);
glClear (GL_COLOR BUFFER BIT);
glColor3f (1.0, 0.0, 0.0);
glClipPlane (GL_CLIP PLANEO, eqgnO);
glEnable (GL_CLIP PLANEO);
glClipPlane (GL_CLIP PLANEl, eqgnl);
glEnable (GL_CLIP PLANE1l);
glutWireSphere(1.0, 20, 16);
glFlush();

}

CSC 7443: Scientific Information Visualization BB Karki, LSU

Viewport Transformation

e Viewport is a rectangular region of window where the
image 1s drawn
» Measured in window coordinates

» Reflects the position of pixels on the screen relative to lower-left
corner of the window

 void glViewport(GLint x, GLint y, GLsizei width,
GLsize1 height);
» Defines a pixel rectangle in the window into which the final
image is mapped
» Aspect ratio of a viewport = aspect ratio of the viewing volume,
so that the projected image 1s undistorted

» glViewport is called in reshape function

CSC 7443: Scientific Information Visualization BB Karki, LSU

Vertex Transformation Flow

Eye (camera) coordinates

) 3

y [Projection } Clip coordinates

VERTEX -[Modelv.lew }
FoN Matrix

Z Matrix 1
\VY Normalized device
\ o .
| Pers pe ctive coordinates
Object Divis;
; 1V1S101
coordinates

Viewport
Transformation

]

Window coordinates

CSC 7443: Scientific Information Visualization BB Karki, LSU

Matrix Stacks

e OpenGL maintains stacks of transformation matrices
» At the top of the stack is the current matrix
» Initially the topmost matrix is the identity matrix

» Provides an mechanism for successive remembering, translating
and throwing

Get back to a previous coordinate system

e Modelview matrix stack
> Has 32 matrices or more on the stack
» Composite transformations

 Projection matrix stack
» is only two or four levels deep

CSC 7443: Scientific Information Visualization BB Karki, LSU

Pushing and Popping the Matrix Stack

e void glPushMatrix(void);
» Pushes all matrices in the current stack down one level
» Topmost matrix is copied so its contents are duplicated in both the

top and second-from-the-top matrix

e void glPopMatrix(void);

» Remember where you are

» Eliminates (pops off) the top matrix (destroying the
contents of the popped matrix) to expose the second-from-
the-top matrix in the stack

» Go back to where you were
CSC 7443: Scientific Information Visualization BB Karki, LSU

Example 3: Building A Solar System

e How to combine several transformations to achieve a
particular result

e Solar system (with a planet and a sun)

>

YV V V

A\

Setup a viewing and a projection transformation
Use glRotate to make both grand and local coordinate systems rotate
Draw the sun which rotates about the grand axes

glTranslate to move the local coordinate system to a position where
planet will be drawn

A second glRotate rotates the local coordinate system about the
local axes

Draw a planet which rotates about its local axes as well as about the
grand axes (i.e., orbiting about the sun)

CSC 7443: Scientific Information Visualization BB Karki, LSU

Commands to Draw the Sun and Planet

glPushMatrix ();

glRotatef (year, 0.0, 1.0, 0.0);
glutWireSphere (1.0, 20, 16);

glTranslatef (2.0, 0.0, 0.0);
glRotatef (day, 0.0, 1.0, 0.0);

glutWireSphere (0.2, 10, 8);

glPopMatrix ();

CSC 7443: Scientific Information Visualization BB Karki, LSU

