
BB Karki, LSUCSC 7443: Scientific Information Visualization

Special Topics in OpenGL

BB Karki, LSUCSC 7443: Scientific Information Visualization

Rasterization

BB Karki, LSUCSC 7443: Scientific Information Visualization

What is Rasterization?

• Is a process by which a primitive is converted to
a 2D image
 Determine which squares of an integer grid in window

coordinates are occupied by the primitive
 Assign a color and a depth value to each square

• A grid square along with its assigned color and
depth is called a fragment

• The results of the process are passed to the next
stage of per-fragment operations

BB Karki, LSUCSC 7443: Scientific Information Visualization

Point Rasterization

• Point is rasterized as a single fragment truncating its
(xw,yw) coordinates to integers

• For wide points, fragment
centers are at

• The data associated with each rasterized fragment is the
same as that of the vertex

€

xw +
1
2
, yw +

1
2











xw +
1
2



 


 
, yw +

1
2



 


 










(Odd)

(Even)

BB Karki, LSUCSC 7443: Scientific Information Visualization

Line Segment Rasterization

• Diamond-exit rule to determine the fragments
produced by rasterization

• Specify the data associate with each rasterized
fragment

€

f =
(1− t) fa /wa + tfb /wb

(1− t) /wa + t /wb

Where

€

t =
(p − pa)• (pb − pa)

| pb − pa |
2 pa

pb

p

BB Karki, LSUCSC 7443: Scientific Information Visualization

Polygon Rasterization

• Point sampling
 Rasterized fragment centers lie inside the projected polygon
 If two or more polygons share the same fragment, it is rasterized by

one of them

• Specify the data associated with each rasterized
fragment

€

f =
afa /wa + bfb /wb + cfc /wc

a /wa + b /wb + c /wc

p

pa

pcpb

p = apa + bpb + cpc defines any point
in a triangle with barycentric coordinates
(a, b, and c)

BB Karki, LSUCSC 7443: Scientific Information Visualization

Antialiasing

• Lines (nearly horizontal or vertical) appear zagged

• Reducing this zaggedness is called antialiasing
 Calculates a coverage value for each fragment based on the

fraction of the pixel square on the screen that it would occur
 Multiplies the fragment’s alpha by its coverage
 Use the resulting alpha to blend the fragment with the

corresponding pixel already in the frame buffer

• Antialising points or lines or polygons
Pass GL_POINT_SMOOTH or GL_LINE_SMOOTH or

GL_POLYGON_SMOOTH to glEnable()
Enable blending

Example: Aliased and antialiased lines

BB Karki, LSUCSC 7443: Scientific Information Visualization

Framebuffer

BB Karki, LSUCSC 7443: Scientific Information Visualization

What is Framebuffer

• Each fragment has coordinate data which correspond to a
pixel, as well as color and depth values

• Buffers (storages) to hold the various kinds of information
of pixels

• OpenGL implementation supports the following buffers
 Color buffer
 Depth buffer
 Stencil buffer
 Accumulation buffer

The buffers are used to perform special tasks before pixels are
finally written to the viewable color buffer

• A collection of these buffers is called framebuffer

BB Karki, LSUCSC 7443: Scientific Information Visualization

Color Buffers

• Color buffers are the ones to which you draw
 They contain RGBA data

• Stereoscopic viewing needs left and right color buffers
for the left and right stereo images

• Double-buffered systems have front and back color
buffers

• Non-displayable auxiliary color buffers can be used

• Minimum requirement is a front-left color buffer

BB Karki, LSUCSC 7443: Scientific Information Visualization

Other Buffers

• Depth buffer (z-buffer):
 Stores a depth value for each pixel
 Depth is usually measured in terms of distance to the eye
 Used for a hidden-surface removal

• Stencil buffer:
 Stores the information to restrict drawing to certain portions of

the screen

• Accumulation buffer:
 Holds RGBA color data for accumulating a series of images into

a final, composite image
 When accumulation is finished, the result is copied back into the

color buffer for viewing
 Used for scene antialiasing, motion blur, simulating depth of

field, and calculating soft shadows

BB Karki, LSUCSC 7443: Scientific Information Visualization

Clearing Buffers

• Clearing the screen (or any of the buffers) is expensive
 Hardware can clear more than one buffer at once

• First, specify the current clearing values for each buffer
void glClearColor(GLclampf red, GLclampf green, GLclampf blue,

GLclampf alpha);
void glClearDepth(GLclampf depth);
void glClearStencil(GLuint s);
void glClearAccum(GLclampf red, GLclampf green, GLclampf blue,

GLclampf alpha);

• Then issue a single clear command
void glClear(GLbitfield mask);
mask is the bitwise logical OR of some combination of

GL_COLOR_BUFFER_BIT, GL_DEPTH_BUFFER_BIT,
GL_STECIL_BUFFER_BIT, and GL_ACCUM_BUFFER_BIT

BB Karki, LSUCSC 7443: Scientific Information Visualization

Color Buffers for Writing and Reading

• void glDrawBuffer(GLenum mode);
 Selects the color buffers enabled for writing or clearing
 mode can be GL_FRONT, GL_BACK, GL_LEFT,

GL_RIGHT, GL_FRONT_LEFT, etc.
 Default mode is GL_FRONT for single-buffered contexts

and GL_BACK for double-buffered contexts

• void glReadBuffer(GLenum mode);
 Selects the color buffer enabled as the source for reading

pixels

BB Karki, LSUCSC 7443: Scientific Information Visualization

Masking Buffers

• Sets the masks used to control writing into the indicated buffers

• void glColorMask(GLboolean red, GLboolean green,
GLboolean blue, GLboolean alpha);
 The red, green, blue and alpha values control whether corresponding

component is written

• void glDepthMask(Glboolean flag);
 flag is GL_TRUE for writing in depth buffer

• void glStencilMask(Gluint mask);
 mask = 1 for writing the bit

BB Karki, LSUCSC 7443: Scientific Information Visualization

Testing and Operating on Fragments

• After fragments are generated, several processing stages
occur determining how and whether a given fragment is
drawn as pixel into the framebuffer

• Set of tests:
 Scissor test
 Alpha test
 Depth test
 Stencil test
 Blending
 Dithering
 Logical operation

BB Karki, LSUCSC 7443: Scientific Information Visualization

Scissor Test

• void glScissor(Glint x, Glint y, GLsizei width,
GLsizei height);
 Sets the location and size of the scissor rectangle or box
 By default, the rectangle matches the window
 Drawing occurs only inside the rectangle: pixels lying

inside the rectangle pass the scissor test

 Needs enabling
glEnable(GL_SCISSOR_TEST);

BB Karki, LSUCSC 7443: Scientific Information Visualization

Alpha Test

• void glAlphaFunc(GLenum func, GLclampf ref);
 Sets the reference value and comparison function for

the alpha test
 In RGBA mode, a fragment is accepted or rejected by

the alpha test on its alpha value
 By default, ref is zero, and func is GL_ALWAYS
 func can be GL_ALWAYS, GL_NEVER, GL_LESS,

GL_EQUAL, GL_LEQUAL, GL_GEQUAL,
GL_GREATER or GL_NOTEQUAL

 Needs enabling
glEnable(GL_ALPHA_TEST);

BB Karki, LSUCSC 7443: Scientific Information Visualization

Depth Test

• glDepthFunc(GLenum func);
 Sets the comparison function for the depth test
 An incoming fragment passes the depth test if its z value has

specified relation to the value already stored in the depth buffer
 By default, func is GL_LESS

Pixels with larger depth-buffer values are overwritten by pixels
with smaller values

 func can be GL_ALWAYS, GL_EQUAL, GL_GREATER, etc.

 Needs enabling
glEnable(GL_DEPTH_TEST);

BB Karki, LSUCSC 7443: Scientific Information Visualization

Stencil Test

• The stencil test takes place only if there is a stencil buffer
 It compares a reference value with the value stored at a pixel in the buffer
 Depending on the test result, the value in the stencil buffer is modified

• void glStencilFunc(GLenum func, GLint ref, GLuint mask);
 Sets the comparison func, reference ref and mask for the test

Comparison applies to those bits for which bits of the mask are 1
 func can be GL_ALWAYS, GL_LESS, etc.
 Needs enabling: glEnable(GL_STENCIL);

• glStencilOp(GLenum fail, GLenum zfail, GLenum zpass);
 Specifies how the data in the stencil buffer is modified when a fragment

passes or fails the stencil test
 fail, zfail, zpass can be GL_KEEP, GL_ZERO, GL_REPLACE, GL_INCR,

GL_DECR, GL_INVERT
fail = failed stencil test; zfail = failed z test; zpass = passed z test

BB Karki, LSUCSC 7443: Scientific Information Visualization

Other Operations

• Blending
 Combines the incoming fragment’s R, G, B and A values with

those of the pixel already stored at the location

• Dithering
 Dither the values of red, green and blue on neighboring pixels for

the perception of a wide range of colors
Needs enabling with GL_DITHER

• Logical Operations
 Are applied between the incoming fragment’s color and the color

stored at the corresponding location in the framebuffer
 The result replaces the value in the framebuffer for that fragment

void glLogicOp(GLenum opcode);
opcode can be GL_CLEAR, GL_COPY, GL_AND, etc
Needs enabling with GL_COLOR_LOGIC

BB Karki, LSUCSC 7443: Scientific Information Visualization

Blending

BB Karki, LSUCSC 7443: Scientific Information Visualization

What Blending?

• Combining colors from a source (incoming fragment)
and destination (the corresponding pixel) to achieve such
effects as making objects appear translucent

• The source and destination factors are RGBA quadruplets:
 (Sr, Sg, Sb, Sa) and (Dr, Dg, Db, Da)

• Blended RGBA values are
 (RsSr + RdDr, GsSg + GdDg, BsSb+BdDb, AsSa+AdDa)

Where (Rs,Gs,Bs,As) and (Rd,Gd,Bd,Ad) are the RGBA values
of source and destination

BB Karki, LSUCSC 7443: Scientific Information Visualization

How to Specify?

• void glBlendFunc(GLenum sfactor, GLenum dfactor);
 Controls how color values in the fragment being processed (the

source) are combined with those already stored in the
framebuffer (the destination)

 sfactor (dfactor) indicates how to compute a source (destination)
blending factor
GL_ONE: (1,1,1,1)
GL_SRC_ALPHA: (As,As,As,As)
GL_ONE_MINUS_SRC_ALPHA: (1,1,1,1)-(As,As,As,As)

 Needs enabling
glEinable(GL_BEND);

BB Karki, LSUCSC 7443: Scientific Information Visualization

3D Blending with the Depth Buffer

• For 3D objects, the appearance depends on whether you draw
the polygons from back to front or from front to back
 drawing order

• Consider the effect of the depth buffer in determining the order
 If an opaque object hides other objects, eliminate the more distant

objects

• If the translucent object is closer, blend it with the opaque
object

• Example: Sphere inside a Cube

BB Karki, LSUCSC 7443: Scientific Information Visualization

Animation

BB Karki, LSUCSC 7443: Scientific Information Visualization

Pictures That Move

• Animation is an important part of computer
graphics

• Seeing all sides of a mechanical part designed

• Learning to fly an airplane using a simulation

• Viewing molecular dynamics

• Viewing vector data

BB Karki, LSUCSC 7443: Scientific Information Visualization

Motion = Redraw + Swap

• OpenGL provides double buffering (two color buffers)
 One is displayed while the other is being drawn
 When drawing of a frame is complete, the two buffers are

swapped
 Like a movie projector with only two frames in a loop

• void glutSwapBuffers(void);
 Swap the viewable and drawable buffers
 Waits until one frame is completely drawn and other is

completely displayed
 For a system with display refresh rate of 60 times per second, the

fastest frame rate can be 60 frames per second

• void glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);
 Set double buffered window mode

BB Karki, LSUCSC 7443: Scientific Information Visualization

Example: Solar System
void display (void) {
 glClear (GL_COLOR_BUFFER_BIT |GL_DEPTH_BUFFER_BIT);
 glColor3f (1.0, 1.0, 1.0);
 glPushMatrix ();
 glRotatef (year, 0.0, 1.0, 0.0);
 glutSolidSphere (1.0, 80, 64);
 glTranslatef (2.0, 0.0, 0.0);
 glRotatef (day, 0.0, 1.0, 0.0);
 glutSolidSphere (0.2, 80, 64);
 glPopMatrix ();
 glutSwapBuffers ();
}
glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB);

• Sun is rotating about its own axis; planet is orbiting around the sun as well as
rotating about its own axis
The graphics remain idle between the frames

BB Karki, LSUCSC 7443: Scientific Information Visualization

Hidden-Surface Removal

BB Karki, LSUCSC 7443: Scientific Information Visualization

Hidden Surface?

• In a scene composed of 3D objects, some of them might
obscure all or parts of others

• The obscuring relationship changes with viewpoint and
needs to be properly maintained

• Hidden-surface removal is elimination of parts of solid
objects that are obscured by others

• Otherwise, the objects are drawn in the order the drawing
commands appear in the code

• Hidden-surface removal increases performance

BB Karki, LSUCSC 7443: Scientific Information Visualization

Use of Depth Buffer

• Use of depth buffer (z-buffer) to achieve hidden surface removal

• Graphical calculations convert each surface (before drawing) to
a set of corresponding pixels on the window and also compute
depth value for each pixel

• A comparison is done with the depth value already stored at that
pixel to accept the pixel only if it has a smaller depth

• Color and depth information of the incoming pixel with greater
depth is discarded

BB Karki, LSUCSC 7443: Scientific Information Visualization

How to Specify?

• In void glDepthFunc(Glenum func);
Defualt value of func is used: GL_LESS used
glEnable(GL_DEPTH_TEST);

• glutInitDisplayMode (GLUT_RGB | GLUT_DEPTH);

• Before drawing, each time you need to clear the depth
buffer and draw objects in any order

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glClear() clears both color and depth buffers

• Planet hides behind the sun in solar system example

BB Karki, LSUCSC 7443: Scientific Information Visualization

Drawing Pixel Data

BB Karki, LSUCSC 7443: Scientific Information Visualization

Geometric Versus Pixel Data

• Rendering of geometric data (arrays of vertices)
 points, lines, polygons

• Rendering of pixel data (arrays of pixels)
 Bitmaps

Characters in fonts
Array of 0s and 1s(1 = the pixel is affected)
Serves as drawing mask for overlying another image

 Image data
A photograph that is scanned or an image calculated by some

program in memory by pixels or an image first drawn and
then read back pixel by pixel

Several pieces of data per pixel (R,G,B,A values)
Simply overwrites in the framebuffer

BB Karki, LSUCSC 7443: Scientific Information Visualization

Current Raster Position

• void glRasterPos{234}{sifd}(TYPE x, TYPE y, TYPE z,
TYPE w);
 Sets the current raster position where the next bitmap (or image)

is to be drawn
 The raster position coordinates are subject to the modelview and

projection transformations in the same way as the vertex
coordinates

• To specify the raster position directly in the screen
coordinates, only 2D version of transformations need to
be specified

BB Karki, LSUCSC 7443: Scientific Information Visualization

Drawing Bitmaps

• void glBitmap(GLsizei width, GLsizei height,
GLfloat xbo, GLfloat ybo, GLfloat xbi, GLfloat ybi,
const Glubyte *bitmap);
 Draws the bitmap specified by bitmap
 Width and height define size of the bitmap
 Subscript bo means the origin of the bitmap
 Subscript bi means increment to the current raster

position after the bitmap is rasterized

BB Karki, LSUCSC 7443: Scientific Information Visualization

Manipulating Images

• void glReadPixels(GLint x, GLint y, GLsizei width, GLsizei
height, GLenum format, GLenum type, GLvoid *pixels)
 Reads pixel data from the specified framebuffer rectangle and stores data in

the array pointed by pixels
 format can be GL_RGBA, GL_RED, GL_ALPHA, GL_DEPTH_COMPONENT
 type can be s, u, i, f, etc.

• void glDrawPixels(GLsizei width, GLsizei height, GLenum
format, GLenum type, GLvoid *pixels)
 Draws a rectangle of pixel data with dimensions width and height
 Pixel rectangle has its lower-left corner at the current raster position

• void glCopyPixels(GLint x, GLint y, GLsizei width, GLsizei
height, GLenum buffer)
 Copies pixel data from the specified framebuffer rectangle
 Buffer can be GL_COLOR, GL_DEPTH, GL_STENCIL

BB Karki, LSUCSC 7443: Scientific Information Visualization

Example: Drawing Image

• Make a checkerboard image

• Define raster position

• Draw an pixel rectangle of the image

BB Karki, LSUCSC 7443: Scientific Information Visualization

Texture Mapping

BB Karki, LSUCSC 7443: Scientific Information Visualization

What is Texture Mapping?

• Gluing an image (such as scanned photograph) to a polygon
 Bricks on wall
 Ground in flight simulation
 Vegetation

• Textures are rectangular arrays of data (colors, luminace)
 Individual values are called texels

• Textures can be manipulated with transformations
 Repeat textures in different directions to cover the surface
 Apply textures in different shapes and sizes

BB Karki, LSUCSC 7443: Scientific Information Visualization

Steps in Texturing

• Create a texture object and specify a texture for
the object

• Indicate how the texture is to be applied to each
pixel

• Enable texture mapping

• Draw the scene by supplying both texture and
geometric coordinates

BB Karki, LSUCSC 7443: Scientific Information Visualization

Sample Example

• Checkboard texture is generated
makeCheckImage()

• All texture mapping initialization occurs in init()
glGenTextures(1, &texName);
glBindTexture(GL_TEXTURE_2D, texName);

• Single, full resolution texture map is specified
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, checkImageWidth,

checkImageHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE, checkImage);

• Specify how the texture to be wrapped and how the colors are to
be filtered if there is not an exact match between texels and pixels

glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S,GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_NEAREST);

BB Karki, LSUCSC 7443: Scientific Information Visualization

More on Example

• In display(void), texture is turned on
glEnable(GL_TEXTURE_2D);

• Drawing mode is set so as to draw the textured polygons
using the colors from the texture map

glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);

• Two polygons are drawn by specifying texture coordinates
along with vertex coordinates

glTexCoord2f(0.0,0.0); glVertex3f(-2.0,-1.0,0.0);
…..

• Texture is finally turned off
glDisable(GL_TEXTURE_2D);

BB Karki, LSUCSC 7443: Scientific Information Visualization

3D Textures

• 3D textures are used in scientific visualization
 e.g. volume rendering

• Defining a 3D texture:
 glTexImage3D(GL_TEXTURE_3D, 0, GL_RGB, iWidth, iHeight, iDepth,

0, GL_RGB, GL_UNSIGNED_BYTE, image);

• Replace all or some of the texels of a 3D texture

• Using compressed texture images

• Mipmaps: Multiple levels of detail

• Filtering

• Texture objects

• Texturing functions

BB Karki, LSUCSC 7443: Scientific Information Visualization

Display Lists

BB Karki, LSUCSC 7443: Scientific Information Visualization

What and Why Display List?

• In many cases, you may need to execute the same set of OpenGL
commands multiple times

• Drawing a tricycle:
 Two wheels on the back are the same size but are offset from each other.

The front wheel is larger and in a different location

 An efficient way to render the wheels on the tricycle is store the
geometry for one wheel in a list and then execute the list three times by
setting the appropriate modelview matrix each time before executing the
list

• Several other examples: Solar system, molecular dynamics

BB Karki, LSUCSC 7443: Scientific Information Visualization

What and Why Display List?

• A display list is a group of OpenGL commands that have
been stored for later execution

• You can define the geometry and/or state changes once
and execute them multiple times by providing a number
that uniquely specifies the display list

• Display lists improve performance by caching commands
which are reused many times

BB Karki, LSUCSC 7443: Scientific Information Visualization

Naming and Creating a Display List

• Each display list is identified as a unique, system-generated integer index or ID

• GLuint glGenLists (GLsizei range);
 Allocates range number of contiguous, previously unallocated display list indices
 The integer returned is the index that marks the beginning of a contiguous block of

empty display list indices
If returned integer is n, then indices n, n+1, ……, n + range -1 are available
listIndex = glGenLists(1);
Generates one new display list ID and store it in variable listIndex

glIsList(Gluint list) to check whether a specific index is in use. It returns
GL_TRUE if the list is already used

glDeleteLists(Gluint list, GLsizei range) to delete range display lists starting
at the index specified by list

BB Karki, LSUCSC 7443: Scientific Information Visualization

Naming and Creating a Display List

• void glNewList(GLuint list, GLenum mode);
 Specifies the start of a display list.
 The argument list is a nonzero positive integer that uniquely identifies

the display list
 The possible values for mode are GL_COMPILE and

COMPILE_EXECUTE

• void glEndList(void);
 Marks the end of a display list

glNewList (listIndex, GL_COMPILE);
…….

glEndList();

BB Karki, LSUCSC 7443: Scientific Information Visualization

Executing a Display List

• Void glCallList(GLint list);
 Executes the display list specified by list which is the index for

the display list
 Commands in the display list are executed, just as if they were

issued

• You can execute the same display list many times

• You can mix display lists and immediate-mode graphics

BB Karki, LSUCSC 7443: Scientific Information Visualization

Example

• The display list contains OpenGL commands to
draw a triangle

• The display list is executed multiple times

• A rectangle is drawn in immediate mode.

BB Karki, LSUCSC 7443: Scientific Information Visualization

Hierarchical Display Lists

• A hierarchical display list executes another display list in
it by calling glCallList() between a glNewList() and
glEndList() pair
 A display list to render a tricycle:

glNewList(listIndex, GL_COMPLIE);
glCallList(handlebars);
glCallList(frame);
glTranslatef(1.0,0.0,0.0);
glCallList(wheel);
glTranslatef(3.0,0.0,0.0);
glCallList(wheel);
glTranslatef(3.0,0.0,0.0);
glScalef(1.5,1.5,1.5);
glCallList(wheel);

glEndList();

BB Karki, LSUCSC 7443: Scientific Information Visualization

Multiple Display Lists

• void glListBase(GLuint base);
 Specifies the offset that’s added to the display-list

indices in glCallLists() to obtain the final display-list
indices

• void glCallLists(GLsizei n, GLenum type, const
GLvoid *lists);
 Executes n display lists
 *lists is a pointer that points to an array of offsets
 Nesting level of display lists is at least 64

BB Karki, LSUCSC 7443: Scientific Information Visualization

Managing State Variables

• A display list can contain calls that change the value of OpenGL state
variables

• The changes persist after execution of the display list is completed

• Use glPushAttrib() to save a group of state variables and glPopAttrib()
to restore the values later

• Use glPushMatrix() and glPopMatrix() to save and restore the current
matrix

BB Karki, LSUCSC 7443: Scientific Information Visualization

Selection

BB Karki, LSUCSC 7443: Scientific Information Visualization

Interactive Applications

• Allows user to select a region of the scene or pick an object drawn
on the screen

• Selection mode
 First draw scene, then use selection mode, and redraw the scene
 Screen remains frozen while OpenGL is in selection mode
 On exiting from selection mode, OpenGL returns a list of primitives that

intersect the viewing volume
 Each primitive within the viewing volume causes a selection hit

BB Karki, LSUCSC 7443: Scientific Information Visualization

Basic Steps

• Specify the array to be used for the returned hit records with
glSelectBuffer()

• Enter selection mode by specifying GL_SELECT with
glRenderMode()

• Initialize the name stack using glInitNames()

• Define viewing volume to be used for selection

• Exit selection mode and process the hit records

BB Karki, LSUCSC 7443: Scientific Information Visualization

Commands

• void glSelectBuffer(GLsizei size, GLuint *buffer);
 Specifies the array to be used for the returned selection

data
 buffer is a pointer to the array of the given size

• void glRenderMode(GLenum mode);
 Controls whether the application is in rendering,

selection, or feedback mode
 mode is GL_RENDER, GL_SELECT or

GL_FEEDBACK
 mode remains unchanged until glRenderMode() is called

again with different argument

BB Karki, LSUCSC 7443: Scientific Information Visualization

Creating the Name Stack

• void glInitNames(void);
 Clears the name stack so that it’s empty

• void glPushName(Gluint mode);
 Pushes name onto the name stack
 The stack contain at least 64 names

• void glPopName(void);
 Pops one name off the top of the name stack

• void glLoadName(GLuint name);
 Replaces the value on the top of the name stack with name

BB Karki, LSUCSC 7443: Scientific Information Visualization

Hit Record

• A primitive that intersects the viewing volume causes a selection hit

• OpenGL writes a hit record into the selection array if there is a hit

• Each hit record consists of the following items
 Number of names on the name stack when the hit is occurred
 Minimum and maximum window coordinate depth (z) values of all

selected primitives
 Contents of the name stack at the time of the hit

BB Karki, LSUCSC 7443: Scientific Information Visualization

Picking

• Use selection mode to determine if the object are picked

• Picking is triggered by an input device (mouse click)

• Use a special picking matrix in conjunction with the projection
matrix
void glPickMatrix(GLdouble x, GLdouble y, GLdouble width,
GLdouble height, GLint viewport[4]);
 Creats a projection matrix that restricts drawing to a small region of the

viewport and multiplies that matrix onto current matrix stack
 x,y define the center of picking region (or cursor location)
 width and height define the size of the picking region
 viewport[] indicates the current viewport boundaries.

BB Karki, LSUCSC 7443: Scientific Information Visualization

Evaluators

BB Karki, LSUCSC 7443: Scientific Information Visualization

What is Evaluators?

• Provide way to describe curves and surfaces by
using few parameters or control points

• Use a polynomial mapping to produce vertex,
normal, and texture coordinates, and colors

• Precision and storage efficient

BB Karki, LSUCSC 7443: Scientific Information Visualization

One-Dimensional Evaluators

A vector-valued function (called Bezier curve) of one variable is

€

C(u) = [X(u),Y (u),Z(u)]= Bi
n (u)Pi

i= 0

n

∑
Where Pi represent a set of n control points (3D) for vertices,
colors or normals, and

€

Bi
n (u) =

n
i







 ui(1− u)n− i

is ith Bernstein polynomial of degree n

Domain for variable u is [0.0,1.0].
But if it is [u1, u2], the function at u is evaluated as

€

C u − u1
u2 − u1











Example:
distance traveled
by a body as a
function of time

BB Karki, LSUCSC 7443: Scientific Information Visualization

Defining

• void glMap1{fd}(GLenum target, TYPE u1, TYPE u2, GLint
stride, GLint order, const TYPE *points);
 Defines 1D evaluator
 target: what control point represent and how many values need to be

supplied in points
GL_MAP1_VERTEX_3,GL_MAP1_COLOR_4,GL_MAP1_NORMAL

 u1 and u2: range for variable u
 stride: an offset value between the beginning of one control point and

the beginning of the next
 order: degree + 1

glMap1f(GL_MAP1_VERTEX_3, 0.0, 1.0, 3, 4, &cntrlpoints[0][0]);
glEnable(GL_MAP1_VERTEX_3);

BB Karki, LSUCSC 7443: Scientific Information Visualization

Evaluating

• void glEvalCoord1{fd}(TYPE u);
 Causes evaluation of the enabled 1D maps
 u is the domain coordinate
 Call does not affect the current values for color and normal vectors
 Call appears between glBegin() and glEnd() pair

• More than one evaluator can be evaluated at a time
 Define and enable both GL_MAP1_VERTEX_3 and

GL_MAP1_COLOR_4
so that a single call to glEvalCoord1() generate both position and color

along the curve

BB Karki, LSUCSC 7443: Scientific Information Visualization

Defining Evenly Spaced u Values

• Use a 1D grid of u values for evaluation of function

• void MapGrid1{fd}(GLint n, TYPE u1, TYPE u2);
 Define a grid that goes from u1 and u2 in n steps, which are evenly spaced

• void glEvalMesh1(GLenum mode, GLint p1, GLint p2);
 Applies currently defined map grid to all enabled evaluators
 Mode: GL_POINT or GL_LINE
 p1 and p2 defines the range of steps

BB Karki, LSUCSC 7443: Scientific Information Visualization

Two-Dimensional Evaluators

A vector-valued function (called Bezier surface) of two variables (u and v) is

€

C(u,v) = [X(u,v),Y (u,v),Z(u,v)]= Bi
n (u)B j

m (v)Pij
j= 0

m

∑
i= 0

n

∑
Where Pij represents a set of m*n control points (3D),
and B’s are Bernstein polynomials

Procedure to use 2D evaluators:
1. Define evaluator with glMap2()
2. Enable them by passing appropriate value to glEnable()
3. Invoke them either by glEvalCoord2() between glBegin()

and glEnd() pair or
By specifying and applying a mesh with glMapGrid2() and

glEvalMesh2()

BB Karki, LSUCSC 7443: Scientific Information Visualization

2D Evaluators Command

• Void glMap2{fd}(GLenum target, TYPE u1, TYPE u2, GLint ustride,
GLint uorder, TYPE v1, TYPE v2, GLint vstride, GLint vorder, const
TYPE *points);

• void glEvalCoord2{fd}(TYPE u, TYPE v);

• void glMapGrid2{fd}(GLint nu, TYPE u1, TYPE u2, GLint nv, TYPE v1,
TYPE v2);
void glEvalMesh2(GLenum mode, GLint i1, GLint i2, GLint j1, GLint j2);
mode can be GL_POINT, GL_LINE, GL_FILL

• Normal to the surface can be computed with
glEnable(GL_AUTO_NORMAL)

BB Karki, LSUCSC 7443: Scientific Information Visualization

Tessellators, Quadrics, NURBs

BB Karki, LSUCSC 7443: Scientific Information Visualization

Polygon Tessellation

• Process of subdividing non-simple polygons (such as concave
polygons, polygons with holes, polygons with intersecting edges)
into simple convex polygons

• Steps in polygon tessellation:
 Create a new tessellation object with gluNewTess()
 Use gluTessCallback() to register callback functions to perform

operations during the tessellation
 Specify tessellation properties by calling gluTessProperty()
 Create and render tessellated polygons by the contours
 Delete tessellation object with gluDeleteTess()

BB Karki, LSUCSC 7443: Scientific Information Visualization

Quadrics

• Rendering spheres, cylinders, and disks:
 Quadric surfaces are defined by

• Steps in using quadrics object
 Use gluNewQuadric() to create a quadrics object
 Specifying rendering attributes with gluQuadricOrientation(),

gluQuadricDrawstyle(), gluQuadricNormals()
 Invoke the rendering routines for different quadric objects: gluSphere(),

gluCylinder(), gluDisk()
 Delete the quadric object with gluDeleteQuadric()

€

a1x
2 + a2y

2 + a3z
2 + a4xy + a5yz + a6xz + a7x + a8y + a9z + a10 = 0

BB Karki, LSUCSC 7443: Scientific Information Visualization

NURBS Interface

• GLU provides a NURBS (Non-Uniform-Rational-B-Spline) interfaces

• Steps to draw NURBS curves or surfaces
 Use gluNewNurbsRender() to create a NURBS object
 Start your curve or surface by calling gluBeginCurve() or

gluBeginSurface()
 Generate and render curve or surface with call to gluNurbsCurve() or

gluNurbsSurface()
 Call gluNurbsProperty() to choose rendering values such as number of

polygons used
 Call gluNurbsCallback() for different functions
 Use lighting with glEnable(GL_AUTO_NORMAL)
 Complete drawing with gluEndCurve() or gluEndSurface()

BB Karki, LSUCSC 7443: Scientific Information Visualization

Summary

BB Karki, LSUCSC 7443: Scientific Information Visualization

OpenGL Rendering Pipeline

Per-Vertex Operations
& Primitive Assembly

Rasterization

Framebuffer

Per-Fragment
Operations

Vertex
data

Pixel OperationsPixel
data

Display
List

Evaluators

BB Karki, LSUCSC 7443: Scientific Information Visualization

Programmable Pipeline

• Graphics processors (GPUs) are programmable
 Functionality of some of major units in the graphics pipeline can

be altered by user programs which are executed in GPU

• Vertex shader
 User programs to manipulate vertex properties

• Fragment shader
 User programs to alter the processing of fragments

• Shading languages
 The OpenGL Shading Language based on C
 C for graphics: Cg

BB Karki, LSUCSC 7443: Scientific Information Visualization

Programmable Pipeline: A Simple View

• All data (vertex, interpolated values and fragments) pass
through a non-programmable part of the hardware
 GPU registers store and transfer the data.

Application Vertex
Shader

Fragment
Shader

Frame Buffer

Vertex data Interpolated
values

Fragments

BB Karki, LSUCSC 7443: Scientific Information Visualization

What Have We Covered?

• OpenGL Basics
 openGL and related libraries, window management

• Drawing
 Geometric primitive objects, veretx arrays, normal vectors, polygonal

models of surfaces
• Viewing

 Modelview transformations, projection transformations, viewport
transformation, clipping, matrix stacks

• Color
 Color perception, color functions, shading

• Lighting
 Light sources, ligthing models, material properties

• Special topics
 Rasterization, framebuffer, animation, hidden-surface removal, blending,

drawing pixel data, texture mapping, display lists, evaluators, selection
 GPU programming

