Scientific Visualization

Scientific Datasets

- Gaining insight into scientific data by representing the data by computer graphics
- Scientific data sources
> Computation
Real material simulation/modeling (e.g., molecular dynamics simulation, electronic calculations)
Solving differential equations (e.g., fluid dynamics, electro-magnetic field)
Climate modeling

Experiment
Medical and biological: magnetic resonance imaging, computer tomography, confocal microscopy,
Other data: 3D laser scanner, atomic force microscopy, seismic tomography

Data Challenges

- Scale
$>$ MRI dataset: $256^{3}=16 \mathrm{MB}$ per slice (each slice is 3 micron thick)
How many slices to cover a particular organ
- A million-atom simulation: 7 GB per step (each step is 1 femtosecond)

How many steps to simulate a particular physical/chemical/biological phenomenon

- Dimensionality
> 3D volume data
$>4 \mathrm{D}$ space-time data
- Scalar, vector and tensor data
$>$ Density or temperature distribution
> Data from flow dynamics
> Stress-strain data

Scalar Visualization Techniques

Scalar Dataset

- A single quantity that can be expressed as a function of position in space

$$
S=S(x, y, z)
$$

Array S represents data at discrete locations in space

- Describe the value at any continuous location by defining an interpolation function $\boldsymbol{F}(\boldsymbol{x}, \mathbf{y}, \boldsymbol{z})$
- Volume data (MRI, confocal, finite element modeling)
- Represented through regular grids If irregular grids, preprocessing of data to regular grid
- Each data element (cube or cell) often called voxel

Different Rendering Techniques

- Simple approaches
> Symbols, Color mapping, Contour display
- Isosurface rendering
> Marching cubes algorithm, Fast extraction approaches
- Implicit surfaces
> Particle sampling, Dividing cubes algorithm, Shape function interpolation
- Volume slicing
> Clipping, Sampling planes, Interactive clipping, Clip objects
- Volume rendering
> Object-oriented, Image-oriented, Hybrid techniques

Simple Approaches

Symbols or Off-Path Displays

- Useful for displaying one or two dimensional scalar data
$>$ Temperature distribution along a rod or on sheet
- Off-path displays

Color Mapping: Lookup Table

- Useful for scalar visualization in 1D, 2D or 3D
- Map scalar data to colors to display on the screen
- Lookup table:
$>$ Holds an array of colors (RGB components)
> Scalar values serve as indices
For each s_{i}, there is index i

$$
i=n\left(\frac{s_{i}-\min }{\max -\min }\right)
$$

rgb0
rgb1
rgb2
.
-
rgbn-1

Color Mapping: Transfer Function

- Transfer function
> An expression that maps the scalar value into a color specification
> Mapping to separate intensity values of R, G and B

scalar value
- A lookup table is a discrete sampling of a transfer function

Examples of Color Mapping

Multiscale Color Mapping

Two-level mapping:

Fine-level scale uses the red and blue colors to represent the positive and negative differences with magnitude up to 0.002 (in units of \AA^{-3})

Coarse-level scale adds green color component to red and blue colors to map the positive and negative differences with magnitudes higher than 0.002 .

Contour Display

- Common method for displaying scalar data across a surface
- Contour lines: represent a constant value across the surface (isovalue lines)

Topographic Map

Weather Map

2D Contour Lines

Edge Tracking Algorithm

- Select an element or cell

Consider a 4 -vertex quadrilateral element with scalar values S_{1}, S_{2}, S_{3} and S_{4}

- If all $S_{i}{ }^{\text {'s }}>S_{\text {iso }}$ or all $S_{i}{ }^{\prime} \mathrm{s}<S_{i s o}$, no contour line passes through the element

- Otherwise, start at the first pair of vertices, determine if the isovalue exists along the edge

If one vertex value $>S_{\text {iso }}$ while the other vertex value $<S_{i s o}$, isovalue exists, in either order
If not, proceed in either clockwise or anticlockwise order until an edge containing the isovalue is found

Edge

- Once an edge with $S_{i s o}$ is found between vertices i and j, compute isovalue location along the edge by linear interpolation

$$
\begin{aligned}
& x=x(i)+f a c *(x(j)-x(i)) \\
& y=y(i)+f a c *(y(j)-y(i))
\end{aligned} \quad \text { Where } \quad f a c=\left(\frac{S(j)-S_{i s o}}{S(j)-S(i)}\right)
$$

$>$ This isovalue location will be the first point of the contour line Default location: mid point

- Examine each subsequent edge until the next edge containing an isovalue is found and repeat previous step
$>$ Connect these two points to form the contour segment
$>$ Use shape function to give isolines some curvature.

Marching Squares Algorithm

- \quad Select a square element or cell
> Values at four corners
- Below isovalue (marked)
- Above isovalue (unmarked)
- Calculate inside or outside state of each vertex of the cell
- Determine the topology state of the cell by referring to a case table that has a list of all possible configurations
> Each square is either inside, outside or intersected
> 2D cell index: 4-bit, $2^{4}(16)$ cases

- Calculate the contour location (via interpolation) for each edge in the case table $>$ No or one intersection per edge

Cases of 2D Cells (Squares)

By complementary and rotational symmetries (equivalence), the number of the basic cases is reduced to 4

2D Ambiguous Cases

- Ambiguous cases:

$$
>5,10
$$

- Contour ambiguity arises when adjacent vertices in different states but diagonal vertices in the same state
- Break contour Join contour
- Both are valid

Break contour
CSC 7443: Scientific Information Visualization (two loops)

Join contour
(single loops). B. Karki, $L S U$

Contour Lines of MRI Data

Contour display of MRI data of a human head (single image and a stack of four images)

2D contour

3D contour

