Isosurface Rendering

What is Isosurfacing?

- An isosurface is the 3D surface representing the locations of a constant scalar value within a volume
 A surface with the same scalar field value
- Isosurfaces form the 3D analogy to the isolines that form a contour display on the surface
- Isosurfaces have the root in medical imaging where surfaces of constant density are often generated
 > Bone skeletons, organ boundaries

Marching Cubes Algorithm

- To approximate an isosurface of a 3D scalar field or function
 - > Input:
 - Cubic grid data (voxels)
 - Isovalue
 - > Output:

Set of triangles approximating surface for a given isovalue

- March through each of the cubes (voxels) replacing the cube with appropriate set of triangles
 - Determine if and how an isosurface would pass through it
 - Generate polygonal isosurface on a voxel-by-voxel basis
- References:
 - Lorensen and Cline, "Marching Cubes: A High-resolution 3D surface construction algorithm" *Computer Graphics*, 21(3), 163, July 1987
 - Neilson and Hamann, "The Asymptotic Decider: Resolving the ambiguity in Marching Cubes" Proc. Vis. 1991, San Deigo, CA, Oct. 22-25.
 - Sharman, "The Marching Cubes Algorithm," 1998 www.exaflop.org/docs/marchcubes

Basic MC Algorithm

- Select a cell
 - Process each cell, one at a time
- Classify the inside/outside state of each vertex
- Create an index
 - Find equivalent basic configuration by switching marked points or rotation
- Get edge list from the table
 - Produce a set of triangles
- Interpolate the edge location
 - Mid-edge (default)
 - Linear interpolation along edge
- Go to the next cell

Step 1: Select a Cell

CSC 7443: Scientific Information Visualization

Step 2: Classify States of Vertices

 Determine the inside/outside state of each vertex of the cell: Inside isosurface (value >= iso-value) • = inside
 Outside isosurface (value < iso-value) unmarked = outside

CSC 7443: Scientific Information Visualization

Step 3: Create Index

Forms the bits of a binary number between 0 and 255 for an 8-vertex cube CSC 7443: Scientific Information Visualization

B. B. Karki, LSU

Step 4: Get Edge List

- An index corresponds to a list of edges the isosurface cuts through
 Given an index, get edge list from table which is pre-created
- 2D cell index: 4 bits, 2⁴ (16) cases
 3D cell index: 8 bits, 2⁸ (256) cases

CSC 7443: Scientific Information Visualization

15 Basic Cases of 3D Cells

Symmetries: Complementary and rotations

Pre-defined look-up table enumerates

- a) how many triangles will make up the isosurface segment passing through the cube
- b) which edges of the cubes contain vertices of triangles, and in what order

CSC 7443: Scientific Information Visualization

Step 5: Interpolation of Triangle Vertices

• For each triangle, find an vertex location along the edge using linear interpolation of the values at the edge's two end points

$$x = x(i) + fac * \delta x$$
$$y = y(i) + fac * \delta y$$
$$z = z(i) + fac * \delta z$$

where
$$fac = \left(\frac{S(i+1) - S_{iso}}{S(i+1) - S(i)}\right)$$

• Vertices of triangle t3 = (x(i) + a/2, y(i), z(i)) t4 = (x(i), y(i) + a/4, z(i))t8 = (x(i), y(i), z(i) + a/4)

B. B. Karki, LSU

Surface Normals

- Smooth shading of isosurface segments requires the normal to the surface
 - Calculate a unit normal at each cube vertex using central differences.
 - ➢ Interpolate the normal to each triangle vertex.

$$\left[\frac{dS(x,y,z)}{dx},\frac{dS(x,y,z)}{dy},\frac{dS(x,y,z)}{dz}\right]$$

Where *dx*, *dy*, *dz* are the lengths of the cube; and *dS*'s are the central differences.

• A normal vector: a perpendicular distance to the triangle from the marked vertex pointing away

CSC 7443: Scientific Information Visualization

B. B. Karki, LSU

A Spherical Isosurface

Scalar function: $f = \sqrt{(x^2 + y^2 + z^2)}$

Shown are the cells where the field is being evaluated

Triangles are randomly colored.

www.cs.ubc.ca

Images Produced by Marching Cubes

WWW.erc.msstate.edu CSC 7443: Scientific Information Visualization

MC's Performance

- Benefits:
 - High quality images:
 Original data and structure is preserved
 Gradient data reflected in normal vectors
 - Divide and conquer:
 good for parallel implementation

• Problems:

- Inefficient:
 - Slow in computation and large in memory requirement
 - large number of triangles generated
 - 100³ dataset requires several megabytes memory
- Missing voxelsHow to fill up the data
- Ambiguities

Isosurface polygons may be discontinuous across two adjacent cells Triangles smaller than a single pixel

Ambiguity in Marching Cubes

- Ambiguous cases:
 3, 6, 7, 10, 12, 13
- Adjacent vertices in different states, but diagonal vertices in the same state

• Ambiguous cases may cause holes

Isosurface polygons are disjoint across the common element surfaceCSC 7443: Scientific Information VisualizationB. B. Karki, LSU

- Using different triangulations, leading to consistency
 - > Asymptotic deciders
 - Improved Marching Cubes
 - Marching tetrahedra

The Asymptotic Decider

- Techniques for choosing which vertices to connect on ambiguous face (Nielson and Hamann, 1991)
- Uses bilinear interpolation over ambiguous face
- Consider:
 - Face is unit square
 - \succ B_{ij} values of four corners

$$B(s,t) = \begin{pmatrix} 1-s & s \end{pmatrix} \begin{pmatrix} B_{00} & B_{01} \\ B_{10} & B_{11} \end{pmatrix} \begin{pmatrix} 1-t \\ t \end{pmatrix}$$

B. B. Karki, LSU

CSC 7443: Scientific Information Visualization

AD (Contd.)

• Contour curves of B are hyperbolas

 $\{(s,t): B(s,t) = a\},\$ where *a* is isovalue

- Ambiguous case: both components of hyperbolas intersect the domain
- Criteria for connecting vertices based on whether they are joined by a component of hyperbola

AD (Contd.)

- Selection determined by comparing values *a* and $B(S_a, T_a)$
 - \blacktriangleright *a* = contour value
 - ► $B(S_a, T_a)$ = value of bilinear interpolant at intersection point of the asymptotes
- If $a > B(S_a, T_a)$

 $\succ \text{ connect } (S_1, 1) \text{ to } (1, T_1) \\ \text{ and } (S_0, 0) \text{ to } (0, T_0) \end{cases}$

else

- $\succ \text{ connect } (S_1, 1) \text{ to } (0, T_0)$ and $(S_0, 0) \text{ to } (1, T_0)$
- Possible triangulations
 Two or more.

CSC 7443: Scientific Information Visualization

Improved Marching Cubes

- 8 extra cases to consider (Shoeb, 1998)
 - > They do not assume the complimentary cases to be equivalent
- Choose cases so that shared sides have same connections between vertices

Marching Tetrahedra

- Tessellates the cube with tetrahedron
 - Every tetrahedron has four nodes and six edges
 - 5 tetrahderons
 - Requires more triangles
- No ambiguous cases exist
- May result in artificial bumps in the isosurface
 - Interpolation along the face diagonals

Trilinear Interpolant within the Cell

- Improve the representation of the surface in the interior of each grid cell
 - Model the topology of trilinear interplolant within the cell

S(x, y, z) = a + bx + cy + ez + gxy + fxy + dyz + hyxz

Where $a = S_{000}$, $b = S_{001}$ - S_{000} , $c = S_{010}$ - S_{000} , and so on

- Represent different topologies including the possibility of tunnels
 - > To deal with interior ambiguity
- Make surface visually continuous as the data and threshold change in value.

Implicit Isosurfaces

CSC 7443: Scientific Information Visualization

Particle Sampling

- Volume data is sampled at regular points, and the results of the sampling are displayed as dots
- Using point primitives for display
 - Display consists of a dense group of points which imply the surface
 - Rendering points faster than rendering polygons
 - Geometric operations such clipping and merging data are simple with points
- Color and density of points can vary with the magnitude of the scalar value within the specified range
- Display the points of constant scalar value within the entire 3D volume as an implicit isosurface

Shape Function Interpolation

- Shape functions are used to interpolate the element data values
- Generate a continuum of points at any desired density by using a small increment in the parametric *u*, *v* and *w* values
- A linear 8 vertex shape function $S(u,v,w) = \sum_{i=1}^{8} \frac{1}{8} S(i) [(1 + uu(i))(1 + vv(i))(1 + ww(i))]$

Dividing Cubes Algorithm

- Generates isosurface using dense cloud points
- Use point primitives unlike triangles in Marching Cubes
- Conditions
 - Large number of points
 - Density of points >= screen resolution
 - Lighting and shading calculations
 - H. Cline, W. Lorensen, S. Ludke, C. Crawford, and B. Teeter, "Two algorithms for the three-dimensional reconstruction of tomographs" *Medical Physics*, vol. 15, no. 3, May 1988

Find Intersecting Voxel

- Select a voxel (cell) and determine whether the isosurface passes through it
 - Whether there are scalar values at vertices both above and below the iso-value

Subdivide Voxel

- The voxel is subdivided into a regular grid of $n_1 \times n_2 \times n_3$ subvoxels
- $n_i = w_i/R$ where **R** is screen resolution and w_i is width of the voxel

Generate Points

- Scalar values at the subpoints are generated using the interpolation function
- Find whether the isosurface passes through each sub-voxel
- If it does, generate a point at the center of the subvoxel and compute its normal
- Collection of all such points compose the Dividing Cubes' isosurface

Recursive Implementation

- Recursively divide the voxel as in octree decomposition
- Scalar values at the new points are interpolated
- Process repeats for each sub-voxel if the isosurface passes through it
- This process continues until the size of the subvoxel =< R
 A point is generated at the center of the sub-voxel

Hierarchy of spatial subdivisions to form an octree

Dividing Squares' Contour

Dividing Cubes' Image

Image of human head Image with voxel subdivision into 4x4x4 cubes *www.cs.umbc.edu*

CSC 7443: Scientific Information Visualization

Fast Isosurface Extractions

- View dependent isosurface extraction
 - Very large and complex isosurfaces
 Multiple non-overlapping polygons may project onto individual pixels
 Some sections may be occluded by the other sections of the isosurface
 - Extract only the visible portions of the isosurface.
- Interactive ray tracing of isosurfaces
 - Generate a single image of isosurface from a given viewpoint
 No geometry generated but an analytical isosurface intersection computation done
 - Use ray-tracing in which one or more rays are sent from viewpoint through each pixel of the screen and into the scene Parallel processing.
- Near optimal isosurface extraction (NOISE)
 - Maps the search phase onto a two-dimension space (the span space)
 Time complexity: O(\sqrt{n+k}) or O(log n = k), where k is the size of the isosurface and n is the size of the data set.

CSC 7443: Scientific Information Visualization

Octree-Based Isosurface Extraction

• Octree with Marching Cubes Algorithm

Wilhelms and van Gilder ACMTG 1992

- Construct an octree (min and max values)
- Skip nodes (cells within) if they do not contribute to the isosurface
- Perform local triangulation in each contributing cell

Isosurfacing in Higher Dimensions

- Marhcing Cubes like algorithm for hypercubes of any dimension
 - ➤ 4-dimensional isosurfaces (space + time)
 - ➢ 216 possible vertex labels
 - ➤ 222 basic cases (after the symmetry)
- Isosurfacing in R^d
 - \succ 2^{2^d} possible cases
 - Locate the d-cubes which are intersected by the isosurface
- 4D isosurfacing provides
 - Smooth animation
 - Slicing through oblique hyper-planes to study time-evolving features