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Clipping
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Clipping to See Inside

• Obscuring critical information contained in a volume data
 Contour displays show only exterior visible surfaces
 Isosurfaces can hide other isosurfaces
 Other displays can become crowded and complicated

• Clipping: remove a part of a volume to observe the rest of its
contents
 cut away part of a volume to see what is behind it
 intersection between a slicing plane and a volume dataset
 also intersection of any surface with a volume dataset

• Different approaches:
 Planar clipping
 Interactive clipping
 Volume clipping
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Planar Clipping

• A 3D model is cut by a clip or slicing plane

• It is performed by evaluating each volume
element against the boundary of the half-space
 If inside the half-space, display the element
 If outside the half-space, discard the element
 If partially contained in the half-space, check and

display the face of the element

• If a face is partially contained in the half-space,
test for subpolygons
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Clipping with Caping

• Clip the model with a display of the scalar result on the
clip surface

• The caped surfaces are produced by generating additional
display polygons for each volume element in the cutting
region

• Clipping alone can be performed in graphics hardware
 Polygon clipping on a polygon-by-polygon basis in hardware

• Capping must be performed in the software
 Requires  knowledge of the entire volume element to interpolate

vertex values to form the capping polygon and its scalar values
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Sampling Planes

• Combining two or more volume slicing operations with
a wire-frame outline of the model

• Allows a simultaneous display of scalar results at
multiple locations within the volume

Variation along y-axis
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Interactive Clipping

• A planar clipping used in an interactive manner
 Once the clip plane is defined, it’s position and orientation can

be changed in real time in order to cut away the given volume
at any orientation and any position.

• Clip plane equation = Ax + By + Cz + D = 0
 All points with eye coordinates (xe, ye, ze, we) that satisfy

(A B C D)M-1(xe, ye, ze, we)T >= 0 lie in the half-space defined
by the plane, where M is the current model-view matrix. All
points not in this half-space are clipped away.

• Initial plane is parallel to the z-axis:
A = y2- y1; B = -(x2 – x1); C = 0; D = 0

• Coefficients A, B and C control rotation of the clip plane in a 3D
space whereas the coefficient D controls translation.
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Best-View Mode

• Dynamic manipulation of the clip plane
 Small effective visible area of the clipped surface
 Done in low-resolution mode for interactivity

• Bringing to the best-view mode
 Clipped surface at its maximum exposure
 Rendering at high resolution

• Automated option for best-view mode
 Tracking all transformations the clip plane has gone through
 Simple case of initial xy plane setting:

First rotation about z-axis
Second rotation about the vector which is defined by the intersection of the clip

and xy planes.
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Rendering

• Texture-based volume rendering
 A stack of 2D textures (generated form the input data or images)

• Multi-resolution rendering
 High-resolution (HR) mode

The original fine grid of the input data or the original resolution of the input
images

 Low-resolution (LR) mode
The re-sample data at a lower resolution than the original resolution

• Rendering speed
 LR gives a much better frame rate but HR retains complete information

contained in the data.

• Interactivity
 Navigate through the volume data in LR and switch to HR for quality
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Flow Diagram
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Charge Density

• Quantum mechanical simulations
 MgO system
 64 atoms and 864 electrons
 Data defined on 5123 regular grid

• HR rendering (bottom)
 512 textures each with 512x512

pixel;
 4 frames per seconds

• LR rendering (top)
 128 textures at 128x128 resolution
 35 frames per second

Electrons are depleted from blue regions
whereas electrons are deposited in red
regions due to a vacancy defect located at
the center of the system.

clipped surface
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Confocal Data

• Confocal data:
 Tissues of a plant stem
 A series of tiff images

• HR rendering (bottom)
 200 textures each with 512x512

pixel;
 0.6 frames per seconds

• LR rendering (top)
 50 textures at 128x128 resolution
 28 frames per second

Twenty-five images (each with 512 x 512
pixels) were replicated to generate 200
images used in HR.

clipped surface
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Volume Clipping

• Using complex geometries for volume clipping
 Cutting a cube-shaped opening into a volume
 Segmentation information used for defining curved clip geometries
 Isosurface as clip object
 Surface of a body in fluid dynamics

• Clipping tailored to texture-based rendering on graphics
hardware
 Use per-fragment operations
 Give interactivity (high frame rates)

• Two clipping techniques
 Depth-based clipping
 Voxelized clip object
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Depth-Based Clipping

• Depth structure of a clip object
 Clip geometry represented as a tessellated boundary surface

in the form of triangular meshes

• Graphics hardware allows manipulation of depth values
 To clip away unwanted parts of the volume

• Produces high-quality images
 Uses 2D textures with texels having a one-to-one correspondence

to pixels
 Clipping is performed with per-pixel accuracy
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Building Depth Structure

• Define depth structure (1 D representation) of a clip object for a
single pixel in the frame buffer
 Consider a single ray from eye point to the scene

Apply operations on those fragments that
correspond to the respective position of the
pixel in the frame buffer

• Build the depth structure per pixel basis
 Stores the depth values for each boundary between object and

background space
Classify intervals as inside or as outside of the clip object and
specify them as visible or invisible

 Rendering of each fragment of a volume slice has to check to which
class of interval the fragment belongs

Based on visibility property, the fragment is blended into the frame
buffer or clipped away.
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Implementation Issues

• Depth structure stored on a per-pixel basis
 Exploits the depth buffer to store interval boundaries
 Only a single boundary can be implemented because only one depth

value can be stored per pixel
 Depth test to decide the visibility property of a fragment

 less - clip away the volume behind the geometry
greater - clip away the volume in front of the clip geometry

• Implementation with OpenGL

• How to handle multiple depth values corresponding to a pixel
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Volume Probing

• Depth structure with two boundaries (for convex clip geometry)
 Depth tests, depth clipping, and depth computations in the fragment-operations unit
 Volume probing: Leaves visible only the

volume inside the clip object

• Basic algorithm
 Determine zfront by rendering the front faces of

the clip geometry into the depth buffer
 The contents of the depth buffer are stored in

a texture and are later used to shift the depth
values of all fragments in the following
rendering passes by - zfront

 The depth buffer is cleared and the backside of the clip geometry is rendered into
the depth buffer (with depth shift enabled) to build the secondary boundary.

 Slices through the volume data set are rendered and blended into the frame buffer.
Depth shift and depth testing are enabled, but the depth buffer is not modified.
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Probe Depth Function

• How the depth of a fragment determines its visibility

• Define a boolean function to determine whether a fragment f (with
depth value zf) passes depth clipping and depth testing:

df(zf) = dclip(zf)∧(zf op zb)

Where dclip(zf) = (zf ≥0) ∧(zf ≤1) defines depth clipping against the bounds 0
and 1 of the view frustum. zb is the current entry in the depth buffer.

• With shift of -zfront applied to all subsequent depth values

df(zf) = dprobe(zf)∧(zf ≤1+ zfront)

where dprobe(zf) = (zf ≥ zfront) ∧(zf ≤ zback) represents the logical operation for
displaying the volume only in the interval [zfront, zback]
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Shader Program

• Render frontfaces of the clip geometry to get zfront depth values

• Transform the contents of the depth buffer to main memory as 32 bit
unsigned integers per depth value  zfront

• Define HILO texture object (a 2D texture consisting of two 16 bit unsigned
integers per pixel)

• Enable a texture shader program to replace z value of a fragment by z-zfront
 DotProductDepthReplace fragment operation

Perform a texture look up in HILO texture
Compute dot products, Z and W, between respective texture coordinates
and previously fetched values from HILO
Replace the current fragment’s depth by Z/W
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Volume Cutting

• Only the volume outside the clip object remains visible

• Invert the role of visibility property
 Logical operation for volume cutting:

dcutting(zf) = (zf ≤ zfront ) ∨ (zf ≥ zback)

 Inverse depth function:
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 Clipping Based on Volumetric Textures

• Clip object is voxelized and represented by an additional volume data
 Uses a second volumetric texture to specify clipping voxels of the real volume

any arbitrary objects (convex or concave)
 Store voxelized clip geometry as a binary volume

Voxel inside (1) or outside (0) the clip geometry

• Rendering maps a texture slice of the data set and a slice of the clip texture
onto the same slice polygon
 Two textures are combined using a per-component multiplication

All voxels to be clipped are multiplied by zero and completely discarded

• The clip object can be rotated or translated by applying any affine
transformation to texture coordinates.

• A change in volume probing and volume cutting by applying a per-fragment
invert mapping to the clipping textures.
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 Clipped Volume Images (size = 1283)

a, e: NN sampling
b,f: trilinear interpolation
c,g: depth-based

Frame rates: 24.1 (no clipping), 15.8 (voxelized clip) and 8.2 (depth-based clip) foe window display size of 5122.



CSC 7443: Scientific Information Visualization B. B. Karki, LSU

References

• G. Khanduja and B.B. Karki, Visualization of 3D scientific datasets
based on interactive clipping, The 13th Int’l. Conf. on Central Europe
in Computer Graphics, Visualization and Computer Vision (WSCG’05),
ISBN 80-903100-9-5, pp. 34 – 37, 2005.

• M. Weiler, R. Westermann, C. Hansen, K. Zimmerman, and T.Erl.
Level-of-detail volume rendering via 3D textures. In Proceedings of
IEEE Volume Visualization 2000, pp. 7-13, 2000.

• D. Weiskopf, K. Engel and T. Ertl. Volume clipping via per-fragment
operations in texture-based volume visualization, IEEE Visualization
2002 Proceedings, pp. 93-100, ACM Press, 2002

• D. Weiskopf, K. Engel, and T. Ertl Interactive clipping techniques for
texture-based volume visualization and volume shading. IEEE Trans.
on Visualization and Computer Graphics, 9, 298-312 2003.


