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Large Scale Data Visualization
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Large Datasets

• Large datasets: D >> 10 MD
 D: Hundreds of gigabytes to terabytes and even petabytes
 MD: 1 to 4 GB of RAM

• Examples:
 Single large data set
 Time-varying data set
 Multiple data sets

• Interactivity is important
 20 – 30 Hz  >> animation playback
 Min 10 Hz >> update rate of hand-eye interaction
 The slowest is processing user request – 10 sec is the target for the

interactive system >> with large datasets it can reach up to minutes
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Techniques for Large Scale Datasets

• Data streaming
 Processing subset of the larger dataset

• Task parallelism
 Independent modules execute in parallel, user needs to identify the

number of independent tasks

• Pipeline parallelism
 Modules execute in parallel but on independent subsets of data

• Data parallelism
 Code within each module of the application execute in parallel

• Hybrid methods:
 Combination of the above techniques can be used
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Data Streaming

• Sometimes this is
the only approach
when data exceeds
the available
computational
resources
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Task Parallelism
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Pipeline Parallelism

• Task A, D and E are all
operating on different
portions of data

• This approach is best
suited for situations
where there are multiple,
heterogeneous tasks

• The advantage of this
approach is that it allows
parallel use of the overall
computing resources
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Solution Techniques
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Desktop Delivery System

• How to enable the visualization of large scale datasets
on the desktop?
 Desktop delivery is one solution (bringing information to the user)

• Issues
 Size of the data
 Desktop capabilities
 Level of interaction desired
 Network issues
 Computing power needed
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Effect of Data Size on DDS
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Visualization for DDS



B. B. Karki, LSUCSC 7443: Scientific Information Visualization

Remote Visualization

• Fixed type of data exchange mechanism
 Fat client or fat server model

• Dynamic client-server paradigm:
 Choose the data types (e.g, geometric primitives, framebuffer or final

images) to be sent to the client.

• A schematic view of visualization pipeline

Data/
Image

Filtering Transform Mapping Rendering Display

                   Server                 Client
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Adaptive Network Mapping

• Optimal visualization pipeline decomposition and adaptive network
mapping

• Network conditions: Bandwidth and node characteristics
• Mapping: Organize pipeline modules into groups and dynamically

assign them to network nodes
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Amira Web-Based Services



B. B. Karki, LSUCSC 7443: Scientific Information Visualization

HTML Interface
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Time Varying Data

• Examples:
 CFD, MD, Neuron excitement, Evolution of a thunderstorm, Seismic

reflection from geological strata

• Generally, multiple values are stored at each data point
 A single dataset can require hundreds of gigabytes to terabytes of

storage space

• Rendering of time-varying data:
 Reading of large files continuously or periodically throughout the

course of the visualization process

• Improvements
 Encoding the data, Hardware decoding of data, Modern GPU,

Parallelization of process, Image compression
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Multiple Datasets Visualization (MDV)
MDV represents simultaneous

visualization and analysis
of multiple sets of data

Scalable adaptive isosurface
extraction (AIM and
OPIM)

64 sets of scalar volume data
   with size of 2563 and 5123
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  MDV Example
Twenty five sets of the scalar

volume data of 2563 size
in a planer clipped mode
using 3D surface texture
mapping

The data represent the
electron density
distributions in liquid
MgO calculated as a
function of the
simulation time

Multi-scale color map:
Blue: density from 0 to 0.05
Blue and green: density from

0.05 to 0.5
Red: density above 0.5



MDV: Component-Based Isosurface Extraction

• Components are disjoint geometric
parts of isosurfaces

• Process a subset of isosurface
components selected based on inter-
dataset coherency
– User-defined thresholds
– Only dissimilar components from

different datasets processed
completely

• Two advantages
– Crack-free isosurfaces
– Effective in identifying interesting

structural differences and
suppressing the noises

Isosurface comprised of many
spatially disjoint components;
Different components
correspond to electron
distributions around different
atomic sites.



Data Coherency Approach

• Data coherency is a measure of similarity between datasets

• Exploit data coherency at the level of individual voxels and
components

• Divide datasets into two categories:

Reference dataset (RDS) and Nonreference dataset (NRDS)
– Considering two datasets: one RDS and NRDS

– RDS isosurface extraction is performed and the polygons are used
subsequently to also represent parts of the NRDS isosurfaces

– For NRDS, isosurface extraction is performed only for those voxels
which significantly differ from the corresponding RDS voxels; the
polygons in other voxels are simply retrieved from RDS



Inter-Dataset Coherency Method

• Compare each data
volume with
reference volume(s)
at some octree level

• Only dissimilar
octree nodes are
processed for
polygon generation
– Polygon data are

stored on per node
basis.

Data 1

Data 2

Data 2



Processing RDS

• Completely process RDS for isosurface extraction

– Polygons are subsequently used to also represent parts
of NRDS isosurfaces

• Find the components and extract the corresponding
polygons

• Construct a map representing the relationship between
voxels and the components: RDS.map[vi]



Processing NRDS

• Compute voxel difference: vox.diff

• Pick up unprocessed significant voxel and find its component:
vox.diff > threshold1

• Extract polygons of the component if it contains sufficiently
many significant voxels (nSV):

nSV > threshold2× nV
where nV is the number of voxels in a given component

• Retrieve the polygons of the component from RDS if no new
polygons are extracted in corresponding regions of NRDS
– Overlap between RDS and NRDS is large (as determined by threshold3)

• Repeat until all significant voxels have been visited



RDS and NRDS Isosurfaces

• NRDS isosurfaces
approximated using
our approach
– Electron density

isosurfaces

• Blue components
belong to RDS

• Red components are
directly extracted from
NRDS and white ones
common to both are
extracted from RDS

• Some disjoint (blue)
components merge to
new (red) component
in NRDS

Exact RDS Exact  NRDS

Isovalue
    0.018

0.020

0.023

Approx NRDS



Performance Results

• As threshold1 with threshold2
and threshold3 fixed at 0.25
decreases, more voxels in NRDS
turn into significant voxels

• If we increase threshold2, some
components are discarded so less
overhead in polygon extraction

• Threshold3 involves only
retrieval of polygon data for
rendering

• Electron density isosurfaces vary
with isovalue



On the Fly Isosurface Extraction

• Do not assume data
coherency

• Use simple shapes
(bounding boxes) to
represent components
from both datasets

• Polygons are extracted
once users select
regions of interest

• Isosurfaces extracted
in large yellow box in
the bottom left of the
top right window


