Interaction and Exploration

CSC 7443: Scientific Information Visualization

Interaction

- Interaction -- allow for direct manipulation of graphical representation of the data
- Response times
 - \succ .1 sec animation, visual continuity
 - \geq 1 sec conversation break
 - ➤ 10 sec cognitive response
- 3 Transformations:
 - > Data
 - Selecting cases to show
 - ➤ Visual

Selecting a different representation, UI controls for chart/graph/vis

➤ View

Selecting the perspective, zoom, pan, ...

CSC 7443: Scientific Information Visualization

Interaction Forms

- Selecting what you want to see
- Direct walk
 - Linkages between cases; Exploring one may lead to another
 - Example: Following hyperlinks on web pages
- Brushing
 - Selecting a case in one view generates highlighting the case in the other views
 - Selected data subsets may be highlighted, deleted, or masked
 - > Applies when you have multiple views of the same data (scatteplots)
- Details-on-demand
 - ➤ May not be showing all the data due to scale problem
 - > Expand set of data to show more details, perhaps individual cases
- Dynamic query
 - Gaining some qualitative idea of the database while moving towards a final solution

Database Query

- Conventional DB query language in house hunting:
 - Select house-address
 From BR-real-db
 Where price <= \$200,000 and bathrooms = 2 and garage == 2 and bedrooms >= 3
- Query response:
 - ➤ 52 hits

1040 Perkins Road, \$150,000, 3 bedrooms, ...

- Disadvantages:
 - Must learn language
 - Only shows exact matches
 - > Too few and too many hits may occur
 - Reformulating a new query can be slow
 - ➢ No helpful context is shown

Dynamic Query

- Concept was proposed by Williamson and Shneiderman (1992)
- Dynamic exploration
 - ➤ What if?
 - > Formulating a problem concurrently with solving it
 - > You may learn more about your problem as you explore
 - ➤ Want to understand a set of tradeoffs and choose some best compromise
- Specifying a query brings immediate display of results
 - \succ Responsive interaction (< .1 sec) with data
- Constituents:
 - Visual representation of world of action including both the objects and actions
 - ➢ Rapid, incremental and reversible actions
 - Selection by pointing
 - Immediate and continuous display of results

Dynamic Homefinder

- Scales with adjustable sliding limits
- Adjustment of limits defines selection to be made from all houses from DB
- Result of selection immediately displayed by dots on the map

Dynamic HomeFinder

Williamson, et al., 1992 [www.cs.umd.edu/hcil/pubs/products.html]

Dynamic FilmFinder

- To find a film
 - Each colored spot identifies a film
 - Color represents type (comedy, horror, etc)
 - Horizontal positions indicate year and duration
- Additional features
 - Sliders on right to specify attributes (title, actor, director)
 - A click on spot produces a pop-up box with details and a picture of actor/actress

www.cs.umd.edu/hcil/pubs]

Attribute Explorer

- Show all the data, use different displays for different variables
- Use brushing so that interaction with one view highlights selections in others

Alphaslider

- First proposed by Osada et al., 1993
- You scan rapidly through, and select items from, lists of alphabetic data
- A mouse click on slider causes thumb to move and the selected text item to appear

Rangeslider

- Adjustment of low and/or high thumbs defines two limits on selection t

Selective Display Manipulation (SDM)

Geographic location of a supply distribution network for a relief Effort in a large crisis from SMD [Chuah et al., 1995]

CSC 7443: Scientific Information Visualization

Limitation of Static Visualization

- Unable to focus on different object sets with context
 Too much information to be displayed in detail at once
- Clutter and object occlusion (too many data)
- Objects are dwarfed in the scale for the entire dataset
- Classify sets of objects
 - Original versus updated objects
- Difficult to compare quantities which are not spatially contiguous
 - Objects are at different distances from the user

SDM Features and Components

- Selective:
 - > User control in selecting an object set, selecting interactive techniques
- Dynamic:
 - Interactions occur in real-time and interactive animation is used in response to an user's action
- Manipulation:
 - Users can move objects and transform their appearance to perform different tasks
- SDM Components
 - Object-centered selection
 - Clicking on objects
 - Dynamic and flexible operations
 - Manipulate object set parameters through object handles (no menus)
 - Object constraints and feedback techniques Context persistence, set-wide operations

SDM Handles

Part a controls the radius of cylindrical object, part b controls the height of the object, and the part c controls the width of the bar. Arrows enable users to shift the objects in 3D space. CSC 7443: Scientific Information Visualization B. B. Karki, LSU

- For indicating which objects have been altered, how they have been altered, how they can be returned to their home positions
- Identifies the selected set Paint differently
- Maintain scene context
 Each data object has two representations: body and shell
 Object shells are left behind when the object bodies are moved
- Maintain temporal continuity Interactive animation
- Maintain the relationship between the selected set and the environment Ratio axes technique: scale difference between selected set and rest
- Home mechanism

To return objects back to their home positions

Maintain context: Body and Shell

Objects on focus are moved to the front Context is still maintained because object shells (shown in white) are left behind

CSC 7443: Scientific Information Visualization

View Occluded Object

• Raising reference for one class (green bars) of item allows that class to be examined more easily

Scaling Objects

• Objects other than selected are scaled to have zero height or to be very thin

CSC 7443: Scientific Information Visualization

Interactively Augmenting

Interactively classify subset of objects as new information is discovered about them

e.g., increase widths of some shelters and color them yellow

Comparisons

Comparing the patterns, widths, and heights of objects by drawing a line of reference in the scene plane e.g, two sets of objects made for height comparisons in Figure below.

CSC 7443: Scientific