
B.B. Karki, LSUCSC 7443: Scientific Information Visualization

Virtual Reality

B.B. Karki, LSUCSC 7443: Scientific Information Visualization

What Is Virtual Reality (VR)

• The term “Virtual Reality” was coined in 1989 by Jaron Lanier, founder of
VPL (virtual programming language) research

• Virtual Reality (VR) can be defined as interactive computer graphics that
provides viewer-centered perspective, large field of view and stereo

• User becomes fully immersed in an artificial, three-dimensional world that
is completely generated by a computer

• Also known as Virtual Environment (VE)

• The Electronic Visualization Laboratory (EVL) of the University of Illinois
at Chicago has specialized in projection-based VR systems. EVL's
projection-based VR display, the CAVE, premiered at the SIGGRAPH '92
conference
 CAVE, ImmersaDesk and InfinityWall

B.B. Karki, LSUCSC 7443: Scientific Information Visualization

CAVE

CAVE: Cave Automatic Virtual Environment:
• Immersive and interactive virtual environment

• Projection-based VR system that surrounds the
viewer with 4 screens (blocking the outside world)

• Screens are arranged in a cube with
three rear-projection screens for walls
and a down-projection screen for the
floor
• Viewer wears stereo shutter glasses
and carries a six-degrees-of-freedom
head-tracking device
• A second sensor and buttons in a
wand to allow interaction with VR
• Correct stereoscopic perspective
projections are calculated for each wall
• Any number of walls can be used

B.B. Karki, LSUCSC 7443: Scientific Information Visualization

Inside DNA Molecule

B.B. Karki, LSUCSC 7443: Scientific Information Visualization

Inside Nanocrystal

B.B. Karki, LSUCSC 7443: Scientific Information Visualization

ImmersaDesk

Is a drafting table format virtual prototyping device
ImmersaDesk R2:
A 75.5 to 82.5 inches diagonal high resolution screen
with adjustable screen angle (43 to 89 degree)
ImmersaDesk M1:
A 44 inches diagonal high resolution screen with
adjustable desktop angle (15 to 60 degree)
LSU has an ImmersaDesk M1

Tilted rear-projected screen
Provides a semi-immersive and interactive virtual
environment
Except for the display device, the same hardware and
software are used as in the CAVE

ImmersaDesk M1

ImmersaDesk R2

B.B. Karki, LSUCSC 7443: Scientific Information Visualization

Infinity Wall

Larger scale system designed
around the same basic resources as
the CAVE

Intended for presentations to large
groups

Comprises a single 9x12 foot (or
larger) screen, four projectors
which tile the display, one or two
SGI Onyxes to drive the display

First demonstrated at the
Supercomputing '95 conference.

B.B. Karki, LSUCSC 7443: Scientific Information Visualization

Useful Websites

• CAVE was developed by University of Illinois at
Chicago

• CAVE programming at Electronic Visualization
Laboratory (EVL) at University of Illinois at
Chicago
www.evl.uic.edu/pape/CAVE/prog

• Fakespace Systems (the vendor of CAVE and
ImmersaDesk)
www.fakespacesystems.com

B.B. Karki, LSUCSC 7443: Scientific Information Visualization

Hardware

• CAVE hardware should be configured by system and video
engineers

• CAVE users are concerned with turning on and off different
components

• Cave equipment includes
 Projectors and Mirrors
 Stereo Glasses
 Stereo Emitters
 Wand
 Tracking Systems
 Audio System
 Workstations

B.B. Karki, LSUCSC 7443: Scientific Information Visualization

Projectors and Mirrors
• Projectors and mirrors for the side wall are located behind each wall. The

projector for the floor is suspended from the ceiling of the cave; and it points
to a mirror which reflects the image onto the floor.

• The projectors are very sensitive to almost everything.

• It takes time to align and calibrate
each projector and mirror to match
the corners of the CAVE, and
achieve the RGB convergence

• Never turn off the projectors;
this can cause them to go out
of alignment (put always them
on standby). Standby mode
also extends the life span of
the projector tubes.

B.B. Karki, LSUCSC 7443: Scientific Information Visualization

Stereo Glasses
• Stereographics' CrystalEyes liquid crystal

shutter glasses:
 To see the VE in stereoscopic 3D
 Glasses are very fragile
 Turn on glasses by pressing a small

button located on the right side of frame
 They will not work if the user is facing

away from the emitters.
• Stereographics:

 The projector interleaves images for left
and right eyes at a rate of 120 frames/sec

 Glass is synchronized via an infrared
emitter with the projector so that the left
eye sees only one set of images (60 times
a second) and the right eye sees the other
set (60 times a second)

 3D perception is created by showing the
two eyes slightly rotated objects

Screen

Left-eye
image

Right-eye
image

LCD Shutter Glass

www.phys.ufl.edu/fermisurface/

B.B. Karki, LSUCSC 7443: Scientific Information Visualization

Stereo Emitters

• Devices that synchronize the stereo glasses to
the screen update rate of 120Hz

• Little white boxes placed around the edges of
the CAVE or on either side of the projector of
ImmersaDesk

• They are always on

• You should not have to do anything with them

B.B. Karki, LSUCSC 7443: Scientific Information Visualization

Wand

• A 3D mouse with buttons for the interactive input

• The wand has three buttons and a pressure-sensitive
joystick. It is connected to the CAVE or ImmersaDesk
through a PC which is attached to one of the graphics
engine's serial ports

• A server program on the PC reads data from the buttons
and joystick and passes them to the graphics engine

• Sensor is located at wand

B.B. Karki, LSUCSC 7443: Scientific Information Visualization

Tracking System

• A user interacts with a CAVE application using tracker and controller

• Tracker reports the position and orientation of its sensors
 Up to 8 sensors can be supported
 The first sensor is always for tracking the user’s head, the second for

the wand, and others for whatever other objects are being tracked

• Controller (wand) consists of a set of buttons which can be on or off, and
joystick

• The CAVE supports several different tracking systems:
 Electromagnetic system

Ascension Technologies Flock of Birds
Ascension Spacepad

 Acoustic system
Logitech sonic tracker

B.B. Karki, LSUCSC 7443: Scientific Information Visualization

Audio System

• The audio system components are

 Indy workstation

It functions as sound server

 Speakers

 MIDI (Musical instrument digital interface)

 Synthesizer

B.B. Karki, LSUCSC 7443: Scientific Information Visualization

Workstation

• The CAVE runs using a Silicon Graphics Onyx with three
Reality Engine. Each Reality Engine is attached to a CAVE
wall.

• 16 processors Onyx 3400 with InfinityReality3 graphics
engine

• A Silicon Graphics Cluster runs ImmersaDesk M1 at LSU
 A single master node (1 GHz Pentium III processor with

1 GB RAM)
 Two visual channel nodes
 Linux 7.1 operating system

B.B. Karki, LSUCSC 7443: Scientific Information Visualization

CAVE Library

• A library of C functions and macros to control the operation of the
CAVE (all files normally located in /usr/local/CAVE)

• It takes care of all the tasks that have to be performed to correctly
operate the CAVE

• CAVE functions to
 Perform any window or projection commands
 Set in RGB mode, double buffered and z-buffering
 Keep all the devices synchronized
 Produce the correct perspective for each wall
 Keep track of which walls are in use

• NOTE: The names of all CAVE functions, macros, and global
variables start with the word CAVE (CAVEDisplay, for example)

B.B. Karki, LSUCSC 7443: Scientific Information Visualization

Multiprocessing

• The CAVE library splits an application up into
several processes to handle different tasks

• The different child processes are all forked
by CAVEInit. Only the parent application
process will return from CAVEInit; the
others all start internal library functions

• There is one display process
per active wall, one process
for tracking and one process
for networking (if networking
is enabled)

• To maintain acceptable frame rates, display processes perform only rendering
while all computations are done in parallel in the main application process

Application
Initialization

CAVEInit

Tracking
Loop

Network
Loop

Application
Computations

Display
Loop

Program Flow

B.B. Karki, LSUCSC 7443: Scientific Information Visualization

Display Callbacks

• Graphics in a CAVE program are handled using callback
functions which are called by the CAVE library’s display
loop for each view that must be rendered

• Each process will call the application’s display function
twice per frame in a stereo mode or once in monoscopic
 By passing a function pointer to CAVEDisplay

• A frame function callback is called exactly once per frame
in each rendering process, before the display callback
 By defining with CAVEFrameFunction

• Initialization callback is called once at the beginning of the
next frame after it is defined (for material properties)
 By using CAVEInitApplication

B.B. Karki, LSUCSC 7443: Scientific Information Visualization

CAVE Coordinate System

The standard CAVE is a 10 foot cube.

The origin of the coordinate system for
the CAVE is normally located at the
center of the floor, that is, 5 feet away
from any wall.

This means that you have from +5 to -
5 feet horizontally and 0 to 10 feet
vertically to define objects inside the
CAVE.

By default, the near and far clipping
planes are located at 0.1 and 100.0 feet

B.B. Karki, LSUCSC 7443: Scientific Information Visualization

Navigation

• The CAVE structure and tracking hardware generally limit a
user’s movement to a 10 foot square area or smaller

• Needs a navigation coordinate transformation that can move the
CAVE’s physical coordinate system around in the virtual space

• The CAVE library maintains a navigation transformation matrix
and provides conversions between the tracker (physical) and
world (navigated) coordinate systems

• The basic functions for navigation are CAVENavTranslate,
CAVENavRot, and CAVENavScale

• These are equivalent to the corresponding OpenGL functions

B.B. Karki, LSUCSC 7443: Scientific Information Visualization

Basic CAVE Functions

• CAVEConfigure(int *argc,char *argv,char*appdefaults);
 Initializes the CAVE configuration
 Internal shared memory arena is created
 Various global variables are initialized
 Configuration files are read
 Any user-specified configuration options given in appdefaults or

argc/argv are set

• CAVEInit(void);
 Initializes the CAVE environment.
 Starts rendering processes, and initializes the trackers and graphics
 After this function is called, the rendering processes are separated

from the main computation process

B.B. Karki, LSUCSC 7443: Scientific Information Visualization

Basic CAVE Functions

• CAVEInitApplication(CAVECALLBACK function,int num_args, ….);
 Passes the CAVE library a pointer to your graphics initialization routine

function
 This routine does any GL initialization that is required for display
 The rendering processes will call this only once, at the beginning of the

next frame
 CAVEInitApplication blocks until the next swap-buffers call by the

rendering processes
 CAVEInitApplication should be called after CAVEInit, and before

CAVEDisplay
First argument is a pointer to the GL initialization routine
Second argument is the number of arguments that your routine receives
Remainders are the arguments to be passed to your routine. The

information is passed to the rendering processes.

B.B. Karki, LSUCSC 7443: Scientific Information Visualization

Basic CAVE Functions

• CAVEDisplay(CAVECALLBACK function, int num_args,…);
 Passes the CAVE library a pointer to your drawing routine
 Rendering processes will call your routine twice per frame for stereoscopic

mode or once for monoscopic mode
 All rendering should be done from this routine
 CAVEDisplay blocks until the next swap-buffers call by the rendering processes
 CAVEDisplay can only be called after CAVEInit

• CAVEFrameFunction(CAVECALLBACK function, int num_args,…);
 Gives the library a pointer to a routine which should be called once per frame
 This routine will be called exactly once per frame (for both mono and stereo

modes)
 It is called before initialization and display routines but after CAVEInit

• CAVEExit(void);
 Exits the CAVE and restores the machine to its normal state

B.B. Karki, LSUCSC 7443: Scientific Information Visualization

CAVE Macros and Variables

• Macros
 Sensor micros

CAVESENSOR(i) A pointer to ith sensor
CAVEGetSensorPosition, CAVEGetSensorOrientation

 Controller micros
CAVEBUTTONn=[0|1] 1 means the button is pressed
CAVE_JOYSTICK_X Give the x and y coordinate values
CAVE_JOYSTICK_Y of joystick

• Global Variables
Int CAVENear, CAVEFar Near and far clipping plane distances
Int CAVEEye Eye view currently drawn (Left or right)
Int CAVEWall Wall currently being drawn (Front, Left,..)

B.B. Karki, LSUCSC 7443: Scientific Information Visualization

Form of a Basic CAVE Program

#include <cave.h>

void app_shared_init(), app_compute_init(),
app_init_gl(), app_draw(), app_compute();

main(int argc,char **argv)
{
CAVEConfigure(&argc,argv,NULL);
app_shared_init(argc,argv);
CAVEInit();
CAVEInitApplication(app_init_gl,0);
CAVEDisplay(app_draw,0);
app_compute_init(argc,argv);
while (!getbutton(ESCKEY))
 app_compute();
CAVEExit();
}

B.B. Karki, LSUCSC 7443: Scientific Information Visualization

Meaning of Different Terms
• CAVEConfigure(): This routine reads the CAVE configuration file, and parses argc/argv for any

user-specified configuration options.

• app_shared_init(): This initializes anything that will be shared by the computation and rendering
processes (allocating shared memory, etc.).

• CAVEInit(): This routine initializes the CAVE. It forks several processes. One process (the
"computation process") returns from CAVEInit and runs the rest of main(). The other processes
handle the tracking and rendering.

• CAVEInitApplication(), app_init_gl(): A pointer to the application's graphics initialization
function is passed to the rendering process. Since the rendering is not done by the computation
process, but by a separate rendering process, any GL initialization needed for the rendering
cannot be done directly by the computation process. Instead, this function sets a pointer in shared
memory to tell the rendering process what function to call.

• CAVEDisplay(), app_draw(): A pointer to the application's drawing function is passed to the
rendering process. As in the CAVEInitApplication routine, this sets a pointer in shared memory
to the function. The rendering process then sees this pointer and calls the function itself.

• app_compute_init(): This initializes any non-shared data that will be used by the computation
process.

• app_compute(): This performs the application's computations. Any results that are used by the
drawing function should be stored in shared memory.

• CAVEExit(): This causes all CAVE processes to exit and restores the machine to its normal state.

B.B. Karki, LSUCSC 7443: Scientific Information Visualization

CAVE Sample Program
/* ball.c :: It demonstrates the most basic CAVE library functions.
This program just draws a red ball in the front of the CAVE. No
interaction (outside of moving around), and nothing changes.*/

#include <cave_ogl.h>
#include <GL/glu.h>

void int_gl(void), draw_ball(void);

static GLUquadricObj *sphereobj

main(int argc,char **argv)
{
 CAVEConfigure(&argc,argv,NULL); /* Initialize the CAVE */
 CAVEInit();
 CAVEInitApplication(init_gl,0); /* a pointer to GL initialization */

 /* function */
 CAVEDisplay(draw_ball,0); /* a pointer to drawing function */
 while (!CAVEgetbutton(CAVE_ESCKEY))/* Main loop continues until */
 sginap(10); /* until the escape key is hit */
 CAVEExit(); /* Clean up & exit */
}

B.B. Karki, LSUCSC 7443: Scientific Information Visualization

init_gl()

/* init_gl - GL initialization function. This is called exactly once
by each of the drawing processes, at the beginning of the next frame
after the pointer to it is passed to CAVEInitApplication.
It defines the lighting and material data for the rendering and
creates a quadric object to use when drawing the sphere */

void init_gl(void)
{
 float redMaterial[] = {1,0,0,1];

/* Enable one light source */
 glEnable(GL_LIGHT0);

/* Set material to color both faces to a diffuse red */
 glMaterialfv(GL_FRONT_AND_BACK,GL_DIFFUSE,redMaterial);

/* Create a glu quadratic object */
 sphereObj = gluNewQuadric();
}

B.B. Karki, LSUCSC 7443: Scientific Information Visualization

draw_ball()
/* draw_ball - display function. This is called by the CAVE library
in the rendering processes’ display loop. It draws a ball 1 foot in
radius, 4 feet off the floor, and 1 foot in front of the front wall
(assuming a 10’ CAVE). */

void draw_ball(void)
{
/* Set clear color to black and clear both screen and z-
buffer */
 glClearColor(0,0,0,0);
 glClear(GL_DEPTH_BUFFER_BIT|GL_COLOR_BUFFER_BIT);
/* Turn lighting on */
 glEnable(GL_LIGHTING);
/* Draw a sphere of radius=1 foot, slices=8, and stacks=8 */
 glPushMatrix();
 glTranslatef(0.0,2.0,-3.0);
 gluSphere(sphereObj, 1.0, 8,8);
 glPopMatrix();

 glDisable(GL_LIGHTING);
}

B.B. Karki, LSUCSC 7443: Scientific Information Visualization

Compiling a CAVE Program

• A CAVE program should include the appropriate CAVE
header file - cave_ogl.h for OpenGL programs.

• OpenGL programs will need to be linked with the OpenGL
CAVE library, the OpenGL library, the math library, and the
X libraries (-lcave_ogl -lGL -lX11 -lXi -lm).

• The following Makefile is used to compile a CAVE
application, sample.c:
LIBS = -L/usr/local/CAVE/lib32 -

lcave_ogl -lGLU -lGL -lXi -lX11 -lm
sample: sample.o

 cc -O -o sample sample.o $(LIBS)

B.B. Karki, LSUCSC 7443: Scientific Information Visualization

Virtual Reality Modeling Language:
VRML

B.B. Karki, LSUCSC 7443: Scientific Information Visualization

What is VRML

• VRML is a format to describe 3D objects
 Virtual reality modeling langauge
 Generating a VRML file is simple than GL programming, since a

mapping from 3D model to the 2D screen is not necessary

• With VRML browser such as SGI Cosmo Player, a VRML becomes
immersive allowing a user to walk through the 3D scene

• VRML provides 3D worlds with integrated hyperlinks on web
 Users can afford viewing 3D scenes without having to access expensive

graphic workstations

• The VRML has become international standard under name VRML97

• www.web3d.org/vrml/vrml.htm

B.B. Karki, LSUCSC 7443: Scientific Information Visualization

Rendering Penrose Staircase

www-vrl.umich.edu/intro

CosmoPlayer plug-in for Netscape
or Explorer Web browsers is used
Download from http://ca.com/cosmo

B.B. Karki, LSUCSC 7443: Scientific Information Visualization

VRML Basics

• Header: Every VRML file should start with a header
#VRML V1.0 ascii

• Pen position: A state variable specifying the current position of a virtual
pen. A geometric node (such as a sphere and cylinder) lets the virtual
pen down and draws the corresponding object centered at the current
virtual pen position

• Translation node: Translate the virtual pen position, keeping the pen up.
The translation field consists of three numbers specifying the x, y and z
components of the translation vector

Translation {translation 5.0 0.0 5.0}
• Sphere node: Sphere node draws a sphere with a specified radius

around the current pen position
Sphere {radius 0.2}

• Material node: Defines material properties
Material {diffuseColor 1 0 0}

B.B. Karki, LSUCSC 7443: Scientific Information Visualization

VRML Visualization of MD Data

• Visualizing MD atomic configurations using a ball model

• Save atomic positions from MD to a file, conf.d

• Write a program to translate the file into a VRML file,
bmd.wrl, which can be visualized by a standard VRML
viewer such SGI Cosmo Player

• A VRML file is a description of a 3D model. It contains a
sequence of primitive geometrical objects and state-
variable specifications

B.B. Karki, LSUCSC 7443: Scientific Information Visualization

Input Atomic Configuration File

conf.d

108 Number of atoms
5.0 0.0 5.0 x, y and z coordinates of 1st atom
5.0 5.0 0.0

 ……

B.B. Karki, LSUCSC 7443: Scientific Information Visualization

Output VRML File

bmd.wrl

#VRML V1.0 ascii

Material {diffuseColor 1 0 0}
Translation {translation 5.0 0.0 5.0}
Sphere {radius 0.2}
Material {diffuseColor 0 1 0}
Translation {translation 5.0 5.0 0.0}
Sphere {radius 0.2}
……

B.B. Karki, LSUCSC 7443: Scientific Information Visualization

Creating VRML File
ball_vrml.c

ofstream fvr(“bmd.wrl”);
fvr << “#VRML V1.0 ascii\n”; // VRML header
xp=yp=zp=0.0; // Initialize the pen position
for (i=0; i<n; i++){ // Loop over atoms

setcolor(i % 4); // Choose a color over atom ID
fvr << “Translation {“ // Move the pen

 << “translation” << “ ”
 << x[i][0]-xp << “” <<x[i][1]-yp<<“”<<x[i][2]-zp;

fvr <<“}\n”;
fvr << “Sphere{radius “<< radius <<“}\n”; // Draw a

 // sphere
xp=x[i][0]; yp=x[i][1]; z[=[i][2]; // Prepare for

} // the next pen shift

B.B. Karki, LSUCSC 7443: Scientific Information Visualization

Creating VRML File (Contd.)
void setcolor(int ic){

float r, g, b;
Switch (ic) {

case 0:
r=1.0, g=0.0; b=0.0; break;

case 1:
r=0.0; g=1.0; b=0.0; break;

case 2:
r=0.0; g=0.0; b=1.0; break;

default;
r=1.0; g=1.0; b=0.0;

}
fvr << “material{diffuseColor”

 << r << “ ” << g << “ “ << b << “}\n”;
}

