
DEPTH-FIRST SEARCH OF A GRAPH

Some Applications:

• Finding a path between two nodes x and y (an xy-path).

• Finding if the graph is connected.

• Finding cut-vertices and bicomponents (maximal subgraph with-
out a cut-vertex).

A B

CD

E

F

(i) A connected graph
on nodes {A, B, ⋅⋅⋅, F}.

A B

CD

E

F

(ii) A disconnected graph
on nodes {A, B, ⋅⋅⋅, F}.

Connected graph:

• There is a path between each pair of nodes x and y (y ≠ x).

Question:

•? What are the simple (acyclic) DE-paths for the graph on left?

•? If there is path from some node z to every other node, then is it
true that there is a path between every pair of nodes x and y ≠ x?

•? Why is this result important?

Cut-vertex x:

• Removal of x and its adjacent edges destroys all paths (≥ 1)
between some pair of nodes y and z; we say x separates y and z.

Question:

•? What are the cut-vertices in the above graphs.

•? What is the minimum number edges that need to be added to the
first graph so that it has no cut-vertex.

2.2

DEPTH-FIRST TREE

Spanning Tree (of a connected graph):

• Tree spanning all vertices (= n of them) of the graph.

• Each spanning tree has n nodes and n − 1 links.

Back-Edges and Cross-Edges (for a rooted spanning tree T):

• A non-tree edge is one of the following:

− back-edge (x, y): joins x to ancestor y ≠ parent(x).

− cross-edge (x, y): other non-tree edges.

A B

CD

E

F

GH

(i) Solid lines show
a spannig tree

A root

B H

C E

F

G

D

(ii) Dashed lines show back-edges; no cross-edges.
Tree edges directed from parent to child.

Depth-First Tree:

• A rooted spanning tree with no cross-edges (as in (ii) above).

Question:

•? Show the back-edges and cross-edges if B is the root. Is this a
depth-first tree (why)? Do the same for root = E and root = F .

•? Show all spanning trees of the graph below (keep the nodes in
the same relative positions).

A B

CD

2.3

VISITING EDGES IN A
DEPTH-FIRST TRAVERSAL

A B

CD

E

F

GH

adjList(A) = 〈B, C, F , H〉
adjList(B) = 〈A, C, E, G, D〉
adjList(C) = 〈A, B〉, adjList(D) = 〈B, G〉
adjList(E) = 〈B, F〉, adjList(F) = 〈A, E〉
adjList(G) = 〈B, D〉, adjList(H) = 〈A〉

A 1, root

B2 H 8

C3 E4

F5

G 6

D 7

(ii) The dfTree, dfLabels,
and back-edges.

Order of Processing Links and Backtracking: StartNode = A.

(A, B) tree-edge (G, B) 2nd visit
(B, A) 2nd visit (G, D) tree-edge
(B, C) tree-edge (D, B) back-edge
(C, A) back-edge (D, G) 2nd visit
(C, B) 2nd visit backtrack D→G
backtrack C→B backtrack G→B
(B, E) tree-edge (B, D) 2nd visit
(E, B) 2nd visit backtrack B→A
(E, F) tree-edge (A, C) 2nd visit
(F , A) back-edge (A, F) 2nd visit
(F , E) 2nd visit (A, H) tree-edge
backtrack F→E (H , A) 2nd visit
bacltrack E→B backtrack H→A
(B, G) tree-edge backtrack A→

Tw o Basic Operations: Move forward and backtrack.

Question:

•? Show the order of processing the links and backtracking if we
reorder adjList(A) = 〈F , B, C, H〉 for the above graph.

2.4

USE OF STACK AND DEPTH-FIRST LABEL
FOR DEPTH-FIRST TRAVERSAL

A B

CD

E

F

GH

adjList(A) = 〈B, C, F , H〉
adjList(B) = 〈A, C, E, G, D〉
adjList(C) = 〈A, B〉, adjList(D) = 〈B, G〉
adjList(E) = 〈B, F〉, adjList(F) = 〈A, E〉
adjList(G) = 〈B, D〉, adjList(H) = 〈A〉

A 1, root

B2 H 8

C3 E4

F5

G 6

D 7

(ii) The dfTree, dfLabels,
and back-edges.

Stack Node LastDf-
or Link Label Processing

〈A〉 A 0 → 1 dfLabel(A) = 1, nextNode = B = adjList(A, 0),
nextToVisit(A) = 1 ← 0

(A, B) tree-edge, parent(B) = A, add B to stack

〈A, B〉 B 1 → 2 dfLabel(B) = 2, nextNode = A = adjList(B, 0),
nextToVisit(B) = 1 ← 0

(B, A) second-visit, nextNode = C = adjList(B, 1),
nextToVisit(B) = 2 ← 1

(B, C) tree-edge, parent(C) = B, add C to stack

〈A, B, C〉 C 2 → 3 dfLabel(C) = 3, nextNode = A = adjList(C, 0),
nextToVisit(C) = 1 ← 0

(C, A) back-edge, nextNode = B = adjList(C, 1),
nextToVisit(C) = 2 ← 1,

(C, B) second-visit, backtrack

〈A, B〉 B nextNode = E = adjList(B, 2),
nextToVisit(B) = 3 ← 2

(B, E) tree-edge, parent(E) = B, add E to stack

〈A, B, E〉 E 3 → 4 dfLabel(E) = 4, nextNode = B = adjList(E, 0),
nextToVisit(E) = 1 ← 0

(E, B) second-visit, nextNnode = F = adjList(E, 1),
nextToVisit(E) = 2 ← 1

(E, F) tree-edge, parent(F) = E = adjList(E, 1),
nextToVisit(E) = 3 ← 2

⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅

2.5

DATA-STRUCTURES IN
DEPTH-FIRST TRAVERSAL ALGORITHM

Array Data-Structures (each array-size = numNodes):

dfLabels[i]: the depth-first label (≥ 1) assigned to node i;
each dfLabels[i] = 0, initially.

nextToVisits[i]: nextToVisits[i] giv es the position of the item
in adjList of node i that is to be visited next
from node i; each nextToVisit[i] = 0, initially;

parents[i]: the parent of node i in depth-first tree; par-
ents[startNode] = startNode, initially.

Additional Data-Structures:

• lastDfLabel = 0, initially;
it is incremented by one before assigning it to a node.

• stack[0..numNodes-1];
it is initialized with the startNode and it contains the path in the
depth-first tree from the root to the current node = top(stack).

Notes:

• You can add parent, dfLabel, and nextToVisit information in the
structure GraphNode as shown below.

typedef struct {
int degree, *adjList, //arraySize = degree

nextToVisit, //0<=nextToVisit<degree
parent, dfLabel;

} GraphNode;

In that case, the next link to visit from node i is link (i, j), where
j = nodes[i].adjList[nodes[i].nextToVisit]; otherwise, j =
nodes[i].adjList[nextToVisit[i]].

2.6

PSEUDOCODE FOR
DEPTH-FIRST TRAVERSAL ALGORITHM

First Version:

1. Try to go down the tree (which is being created) from the current
node x by choosing a link (x, y) in the graph from x to a node y
not yet visited and adding the link (x, y) to the tree.

2. If there is no such node y, then backtrack to the parent of the
current node, and stop when you backtrack from the startNode
(= root of the tree).

A More Detailed Version (with parents[] and nextToVisit[]):

1. Initialize the arrays parents[] and nextToVisit[] as indicated in
the previous page and let currentNode = startNode.

2. Search adjList[currentNode] from the position nextToVisit[cur-
rentNode] onwards for a nextNode which is not yet visited,

3. [Move forward.] If (nextNode is found), then let parents[nextN-
ode] = currentNode, update nextToVisit[currentNode], and cur-
rentNode = nextNode.

4. [Backtrack.] If (no nextNode is found) then do the following:

(i) If (currentNode = startNode) then stop.

(ii) Otherwise backtrack, i.e., let currentNode = parents[cur-
rentNode] and goto step (2).

2.7

DEPTH-FIRST TRAVERSAL ALGORITHM

Algorithm DepthFirstTraverse:

Input: A graph in adj-list form and a start-node.
Output: A depth-first spanning tree for the connected

component containing start-node.

1. Initialize lastDfLabel, the stack, and also the arrays dfLabels,
parents, and nextToVisits as indicated in the previous page.

2. While (stack ≠ empty) do the following:

(a) Let currentNode = top(stack) and if (dfLabels[currentNode]
= 0) then update lastDfLabel and let dfLabels[currentNode]
= lastDfLabel.

(b) If (nextToVisit[currentNode] = degree[currentNode]) then
backtrack by removing top of stack.

(c) Otherwise, let nextNode = the node in position nextTo-
Visit[currentNode] in adjList(currentNode), and update
nextToVisit[currentNode].

Classify the link (currentNode, nextNode) as follows
searching for a tree-edge (if any) from currentNode:

(i) if (dfLabels[nextNode] = 0) then it is a tree-edge; let
parent[nextNode] = currentNode, add nextNode to
stack.

(ii) if (dfLabels[nextNode] < dfLabels[currentNode]) then
if (nextNode ≠ parents[currentNode]) then it is a back-
edge and otherwise it is a second visit of tree-edge.

(iii) Otherwise, it is a second visit to a back-edge.

Note: We merged old (c)-(d), eliminated all goto’s and putting
(c)-(d) in a loop, and split d(ii) into d(ii)-(iii). Also, added
an if-part in (a).

2.8

EXERCISE

1. How many times a link (x, y) is visited and when?

2. What is the total number of back-edges?

3. How many tree-edges and back-edges are there at a node x?

4. How many times does a node x enter the stack and when?

5. How many times do we backtrack to a node x? How many
times do we backtrack from a node x and when?

6. Shown below is a graph and a depth-first tree for startNode =
A.

A B

CD

E

F

GH

(i) A graph.

A root

B H

C E

F

G

D

(ii) A depth-first tree.

(a) Show all possible orderings of the adjacency list of A
which will give this tree when we apply the depth-first tra-
versal algorithm. Do the same for node B, keeping startN-
ode = A.

(b) Give the total number of ways of ordering the various
adjacency lists which will give the above depth-first tree.

(c) Arrange all adjacency-lists in such a way that at each node
x, the tree-edges from x to its children are visited first,
then the back-edges from x (if any, to its ancestors), next
the second-visit of tree-edge connecting x to its parent (if
any), and finally the second-visit of back-edges to x (if
any, from its descendants).

2.9

7. How do you distinguish a second-visit to a tree edge vs. a sec-
ond-visit to a backedge?

8. For each edge processed in the table on page 3, show the asso-
ciated step of the algorithm on page 7 that is used for it.

9. Show the modifications to the delth-first traversal algorithm to
compute maxDfLabel(x) = max {dfLabel(y): y = x or a
descendant of x} for each node x. Use the depth-first tree
above to explain how this works. How can you compute the
size of the subtree at x using maxDfLabel(x)?

10. Is it true that the nodes in the subtree at x of a depth-first tree
consists of all nodes that can be reached from x without using
any of the other nodes on the path from root to x?

2.10

A RECURSIVE VERSION
OF DF-TRAVERSAL

Notes:

• Backtracking corresponds to return from the recursion.

• The lastDfLabel and the dfLabels-array can be static in DF-
TRAVERSAL; the nextToVisit-array is not used.

• The recursive-call at x creates the subtree of df-tree at x as we
build the df-tree via child-pointers, etc.

Algorithm DF-TRAVERSAL(currNode): //first call: currNode = s

Input: A graph in adj-List form and a start-node s.
Output: The df-tree, with root = s.

1. [Create df-tree node.] Create currTreeNode in df-tree for currN-
ode. If (lastDfLabel = 0), then initialize dfLabel(x) = 0 for each
x and let parent(currTreeNode) = currTreeNode. Now, let dfLa-
bel(currNode) = lastDfLabel = lastDfLabel + 1.

2. For (each node x in adjList(currNode)) do the following:
If (dfLabel(x) = 0) then add the root-node (which corre-
sponds to x) of the subtree returned by DF-SEARCH(x) as
the next child of currTreeNode.

3. Return(currTreeNode).

Complexity: O(|V | + |E |) = O(|E |) for a connected G.

• An edge (x, y) is examined at most once in each direction.

• A constant amount of work per node x (assigning dfLabel(x),
adding x to the df-tree, and backtracking from x).

2.11

ILLUSTRATION OF THE RECURSIVE
DF-TRAVERSAL

A

B J

KL A/1

B/2 J /3

K /4

L/5

parent(A) = A
dfLabel(A) = 1
= lastDfLabel

DF-TRAVERSAL(A)

dfLabel(B) = 2
= lastDfLabel

DF-TRAVERSAL(B)

parent(B) = A

dfLabel(J) = 3
= lastDfLabel

DF-TRAVERSAL(J)

parent(J) = A

dfLabel(K) = 4
= lastDfLabel

DF-TRAVERSAL(K)

parent(K) = J

dfLabel(L) = 5
= lastDfLabel

DF-TRAVERSAL(L)

parent(L) = A

• #(calls to DF-TRAVERSAL) = #(nodes in df-tree) = #(nodes in
graph), if G is connected.

• #(direct calls from DF-TRAVERSAL(x)) = #(children x).

2.12

A SAMPLE OUTPUT OF
DF-TRAVERSAL PROGRAM

0A

1B 2 J

3 K4L

Input Graph:
numNodes = 5
0 (4): 1 2 3 4
1 (1): 0
2 (2): 0 3
3 (2): 0 2
4 (1): 0

startNode = 0, dflabel(0) = 1
processing (0,1): tree-edge, dfLabel(1) = 2
processing (1,0): tree-edge 2nd-visit
backtracking 1 -> 0
processing (0,2): tree-edge, dfLabel(2) = 3
processing (2,0): tree-edge 2nd-visit
processing (2,3): tree-edge, dfLabel(3) = 4
processing (3,0): back-edge
processing (3,2): tree-edge 2nd-visit
backtracking 3 -> 2
backtracking 2 -> 0
processing (0,3): back-edge 2nd-visit
processing (0,4): tree-edge, dfLabel(4) = 5
processing (4,0): tree-edge 2nd-visit
backtracking 4 -> 0

PROGRAMMING EXERCISE

1. Create a function depthFirstTraverse(int startNode). It should
produce output as indicated above. Use an auxiliary function
readGraph (input file should be in the same form as for a digraph
using adjacency-lists), which should output the graph read. keep
the adjacency lists sorted in increasing order. Show the output
for the 8 node graph on page 2.2 with startNode B (= 1).

2.13

NODE-STRUCTURE FOR
AN ORDERED-TREE

• The parent-links alone do not allow us to traverse the df-tree
from the root (= startNode of depth-first traversal).

• Since the number of children of a node is known ahead of time,
the children are kept in a linked-list.

• The lastChild pointer helps addition of a child and firstChild
pointer accessing the children.

typedef struct TreeNode {
int node, numChildren;
struct TreeNode *parent,

*leftBroth, *rightBroth,
*firstChild, *lastChild;

} TreeNode;

x

parent(x)

leftBroth(x) rightBroth(x)

firstChild(x) lastChild(x)

Example. Null-pointers not shown; firstChild(J) = lastChild(J).
The nodes are numbered 0, 1, ⋅⋅⋅ in alpabetical order.

A/0; 3

B/1; 0 J /2; 1 L/4; 0

K /3; 0

firstChild
lastChild
parent
rightBroth
leftBroth

2.14

ALL ACYCLIC PATHS IN A GRAPH
FROM A START-NODE

Example. Shown below is a graph and the tree of all acyclic paths
from a.

a b

cd
e

(i) A graph G.

a

b

c

d

e

d

c e

d

b

c

c

b

e

e

d

b

c

c

b

(ii) The tree of acyclic paths from a in G.

Some Properties of this Tree (startNode = s):

• A node x appears in the tree as many times as the number of
acyclic paths to x from s.

• We can find all cycles (without repetition of nodes) at a node s
from these paths:

- Combine an sx-path with the edge (s, x), if exists.

- Each cycle is obtained twice in this process, once in each
direction.

• We can find if there is a Hamiltonian cycle (cycle containing all
nodes exactly once).

Note:

• To deremine all acyclic paths from startNode, use the depth-first
traversal with the change: reset nextToVisit[i] = 0 = dfLabel[i] in
backtrack from node i.

2.15

OBJECT-REGION IN A BINARY-IMAGE

Binary-image:

• An m×n array, where a pixel pij = 1 (shown below as a shaded
square) represents a part of an object in the image; a pixel pij = 0
represents a part of the background.

A 6×6 binary image.

Adjacent Pixels:

• Two 1-pixels are adjacent if they share an edge.

• Two 0-pixels are adjacent if they share a corner or an edge.

pi+1, j

pi, j−1 pi, j pi, j+1

pi−1, j

At most 4 neighbors of
an 1-pixel pij .

pi+1, j

pi, j−1 pi, j pi, j+1

pi−1, j

At most 8 neighbors of
a 0-pixel pij .

Image-object: A maximal set of connected 1-pixels pij .

Example. The above image has 2 objects of sizes 7 and 4 and two
background regions of sizes 1 and 24.

Question: Give a 5×5 image with maximum number of objects.

2.16

OBJECT DETERMINATION
BY DF-TRAVERSAL

Order of Visit of Neighbors of 1-pixel pij (if present):

(1) pi, j+1 (E-neighbor) (3) pi, j−1 (W -neighbor)
(2) pi−1, j (N -neighbor) (4) pi+1, j (S-neighbor)

Additional Backtracking Rule:

• If we reach a 0-pixel, we immediately backtrack.

Example. Shown below is the depth-first labeling of the pixels vis-
ited starting at the position labeled 1.

All neighboring 0-pixels of the region R containing the
start-pixel are also visited. The total number of visits to
those 0-pixels is at most 2(|R| + 1) - why?

14
1 2
3 49
5 6
7

8
10

1112
13 15

16 1718

start-pixel

1

2
E

3
N

4
E
5

N

6
E

7
N

8
W

9
W

8
N

10
W

11
S

E

W

12
W

13
S

14

S

15
E

13
W

16
S

17
E

18
W

The dashed lines indicate
neighbor that are visited
but are not in the current
region. These nodes appear
as many times as they are
visited, each time causing
an immediate backtracking;
both nodes 8 and 13 appear
here twice.

2.17

INTERNAL AND EXTERNAL BOUNDARIES
OF AN OBJECT

Non-Boundary (internal) Pixel p of An Object:

• Completely surrounded by 8-neighbor object pixels.

p

Tw o Types of Background Pixels:

• 0-regions are based on 8-neighbors.

• External regions: 0-regions which contain at least one pixel in
the first or last row or first or last column.

• Holes: other 0-regions completely surrrounded by object pixels;
does not contain pixels from first (last) row or column.

× × × ×
× ×
× ×
× × × ×

Tw o holes of
sizes 2 and 3.

Tw o external
regions of

sizes 3 and 15.

Internal pixel of the object

Only external boundary pixels

Only internal boundary pixels

× Both internal and external
boundary pixels

Tw o Types of Boundary (non-internal) Pixels:

• Internal boundary: Objects pixels adjacent to holes (based on
8-neighbors).

• External boundary: Object pixels adjacent (based on 8-neigh-
bors) to external regions or in the first (last) row or column.

Question: Show the boundary and internal pixels if the pixel p5,4
above were a 0-pixel (merging two holes into one),

2.18

VISITING A MAZE OR
EXTERNAL BOUNDARY OF AN OBJECT

Strategy:

• Keep to the right, starting at a southmost pixel of maze or object.

• Assume that we arrived at the start-position with a north-move
(thus, attempt to go east first at start-position).

Start-point

Part of the move sequence visiting a maze.
The trail of "return visits" parts are shown in bold.

The move sequence visiting the external boundary of an object.

Question: Show the move sequence if we start at pixel p3,3.

2.19

OBJECT SIMPLIFICATION
BY FILLING UP HOLES IN THE OBJECT

An image with three objects.
The largest object contains
two holes and one of the objects
is placed in one of those holes.
The non-boundary pixels of this
object are shown in light shade.

•
•

•

External Regions:

• The 0-regions which contain at least one 0-pixel from any of
top/bottom rows and leftmost/rightmost columns.

Holes: These are 0-regions other than the external regions.

After filling-in the two holes
in the largest object.
This swallows the third object
in one of those holes.

•

•

Questions:

1? Show df-labels of pixels in the 0-region in the top image starting
at p1,1 (top-left pixel); do not label 1-pixels that may be visited.

2? Give a psuedocode to detect the pixels in the holes of an object.
What is the computational complexity?

3? Mark successively as 1, 2, ⋅⋅⋅ for the first visit to the 1-pixels
starting at the southmost pixel p11,10 (p1,1 = the top-left pixel) of
the largest object in the top figure and using the rule "keep to the
right". The next pixel visited would be p10,10. (Note: there is no
backtracking here, and some pixel may be visited more than
once. As usual, assume we arrived at p11,10 by going north.)

2.20

TREE OF SHORTEST-PATHS IN DIGRAPHS

A B2

C

13

D

12

5

E1

1

5
A digraph

→
G with

each c(x, y) ≥ 0.
Start-node s = A.

•

•

A

B2

C5

D10

E 3

C 8

D 13

D 1 E 1

C 6

B7 D 11

The tree of acyclic paths from A; shown next to
each node is the length of the path from root = A.

• Bold links show the
tree of shortest-paths
to various nodes.

Some Important Observations:

• Any subpath of a shortest path is a shortest path.

• The shortest paths from a startNode to other nodes can be chosen
so that they form a tree.

Question:

•? What are some minimum changes to the link-costs that will
make 〈A, B, E, C〉 the shortest AC-path?

•? Show the new tree of acyclic paths ad the shortest paths from
startNode = A after adding the link (D, B) with cost 1.

•? Also show the tree of acyclic paths and the shortest paths from
the startNode = D.

2.21

ILLUSTRATION OF
DIJKSTRA’S SHORTEST-PATH ALGORITHM

A B2

C

13

D

1
1

2

5

E1

1

5

d(x) = length of best path known to x
from the startNode = A.
A node is closed if shortest
path to it known.
A node is OPEN if a path to it known,
but no shortest path is known.

•

•

•

"?,?" indicates unknown values, "⋅⋅⋅" indicates no changes, and
"−" indicates path-length not computed (would not have changed any way).

Open Node Links d(x) and parent(x)
Nodes Closed processed A B C D E
{A} ∅ 0, A ?, ? ?, ? ?, ? ?, ?

{B} A (A, B) 2, A
{B, D} (A, D) 1, A
{B, D, E} (A, E) 1, A

{B, E} D (D, A) −
(D, B) ⋅⋅⋅

{B, C} E (E, C) 6, E

{C} B (B, C) 5, B
(B, E) −

∅ C (C, B) −
(C, D) −

Question:

•? List all paths from A that are looked at (length computed) above.

•? When do we look at a link (x, y)? How many times do we look
at a link (x, y)?

•? What might happen if some c(x, y) < 0?

2.22

DIJKSTRA’S ALGORITHM

Terminology (OPEN∩CLOSED = ∅):

CLOSED = {x: π m(s, x) is known}.
OPEN = {x: some π (s, x) is known but x ∉ CLOSED}.

Algorithm DIJKSTRA (shortest paths from s):

Input: AdjList(x) for each node x in
→
G, each c(x, y) ≥ 0, a

start-node s, and possibly a goal-node g.
Output: A shortest sg-path (or sx-path for each x reachable

from s).

1. [Initialize.] d(s) = 0, mark s OPEN, parent(s) = s (or NULL),
and all other nodes are unmarked.

2. [Choose a new closing-node.] If (no OPEN nodes), then there is
no sg-path and stop. Otherwise, choose an OPEN node x with
the smallest d(⋅), with preference for x = g. If x = g or all but
one node are closed, then stop.

3. [Close x and Expand π m(s, x).] Mark x CLOSED and for (each
y ∈ adjList(x) and y not marked CLOSED) do:

if (y not marked OPEN or d(x)+c(x, y) < d(y)) then let par-
ent(y) = x, d(y) = d(x) + c(x, y), and mark y OPEN.

4. Go to step (2).

Complexity: O(N 2).

• A node x is marked CLOSED at most once and hence a link
(x, y) is processed at most once.

• Each iteration of steps (2) and (3) takes O(N) time.

