
SHORTEST PATHS BY
DIJKSTRA’S AND FLOYD’S ALGORITHM

Dijkstra’s Algorithm:

• Finds shortest path from a given startNode to all other nodes
reachable from it in a digraph.

• Assumes that each link cost c(x, y) ≥ 0.

• Complexity: O(N 2), N = #(nodes in the digraph)

Floyd’s Algorithm:

• Finds a shortest-path for all node-pairs (x, y).

• We can have one or more links of negative cost, c(x, y) < 0, but
no cycle of negative cost. (Assume that c(xi , xi) = 0 for each
node xi , which is the same as not having the links (xi , xi).)

• Complexity: O(N 3), where N = #(nodes in digraph).

Can Dijkstra Be Used in Place of Floyd:

• If all c(x, y) > 0, then we can apply Dijkstra’s algorithm for each
x as a start-node. This takes N . O(N 2) = O(N 3) time.

What Makes Floyd’s Algorithm So Attractive:

• The number of acyclic paths from xi to x j in a complete digraph
on N nodes can be O((N − 2)!).

• Floyd’s algorithm computes the length of only N + 1 paths from
xi to x j , for each node-pair (xi , x j).

Dijkstra’s algorithm computes length of at most N − 1 paths
from the startNode to a node y to obtain a shortest path to y.

3.2

WEIGHTED DIGRAPH AND
SHORTEST PATHS

Weighted Digraph:

Each link (x, y) has a length or cost c(x, y), which may or may
not be positive; also, we may have c(x, y) ≠ c(y, x).

Path Length or Cost:

For a path π = 〈x1, x2, ⋅⋅⋅, xn〉, its length is |π| = c(x1, x2) +
c(x2, x3) + ⋅⋅⋅ + c(xn−1, xn).

A B2

C

13

D

1 12

5

E1

1

3
|〈A, B, E〉|
= 2+1 = 3

A weighted
digraph

→
G:

Shortest Path:

• π m(x, y) = an xy-path which has the smallest length among all
xy-paths; if there is no xy-path, then we let |π m(x, y)| = ∞.

• If an xy-path contains a node which is on a cycle of length < 0,
then π m(x, y) is not well-defined (becomes −∞).

There is no shortest AD-path in
→
G above if we add the link

(C, E) with c(C, E) = −4; it gives a neg ative cycle at nodes on
some AD-paths.

• Henceforth, assume that all links (x, y) hav e x ≠ y.

• If
→
G is acyclic, there are only a finite number of xy-paths for any

x and y, and hence we always have a shortest xy-path if there is
at least one xy-path.

3.3

AN EXAMPLE OF SHORTEST PATHS

A B2

C

13

D

1
1

2

5

E1

1

3A weighted
digraph

→
G:

y = A y = B y = C y = D y = E
x = A 〈A, A〉 〈A, B〉 〈A, E, C〉 〈A, D〉 〈A, E〉

0 2 4=1+3 1 1
x = B 〈B, C, D, A〉 〈B, B〉 〈B, C〉 〈B, C, D〉 〈B, E〉

10=3+5+2 0 3 8=3+5 1
x = C 〈C, D, A〉 〈C, B〉 〈C, C〉 〈C, D〉 〈C, B, E〉

7=5+2 1 0 5 2=1+1

Bellman’s Optimality Principle:

• Each subpath of a shortest path is itself a shortest path. That is,
if π = 〈x1, x2, ⋅⋅⋅, xn〉 is a shortest path, then each subpath π i, j =
〈xi , xi+1, ⋅⋅⋅, x j〉 is a shortest xi x j-path for 1≤i< j≤n.

x1 x2 ⋅⋅⋅ xi

π1,i

xi+1 ⋅⋅⋅ x j

π i, j

x j+1 ⋅⋅⋅ xn

π j,n

⋅⋅⋅ ⋅⋅⋅
Any alternate xi x j-path π ′i, j

|π1,i | + |π i, j | + |π j,n | = |π| ≤ |the alternate x1 xn-path using π ′ij |
= |π1,i | + |π ′i, j | + |π j,n |

i.e., |π i, j | ≤ |π ′i, j |.

Conclusion: Any method for finding a shortest xy-path is likely to
find a shortest path between many other node-pairs.

3.4

Question:

•? What does the following shortest path π m(x3, x9) in some
weighted digraph

→
G say about some other shortest paths and

their lengths?

x3 x5
15 x2

8 x4
18 x9

7

•? Assume that c(x, y) > 0 for each link (x, y) and let d(x, y) =
|π m(x, y)|, with d(x, x) = 0 for all x. Which of the following are
true?

(i) d(x, y) ≥ 0 for all x and y, and = 0 if and only if x = y.
(ii) d(x, y) = d(y, x) for all x, y.

(iii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, and z.

If c(x, y) = 0 for one or more links (x, y), x ≠ y, then which of
the properties (i)-(iii) might cease to hold?

•? Under what condition can we delete a link (x p, xq) in
→
G without

affecting any |π m(xi , x j)|, 1 ≤ i, j ≤ N? Verify your solution
using the digraph

→
G on page 3.3. Can the deletions be per-

formed in any order?

•? Assume that
→
G = (V ,

→
E) contains no extraneous link (see the pre-

vious problem) and that each c(xi , x j) > 0. If you are given all
|π m(xi , x j)|, 1 ≤ i ≠ j ≤ N , how will you determine the links in
→
G and the weights? Verify your solution using the digraph

→
G on

page 3.3. Does you solution work if one or more c(xi , x j) ≤ 0
but there is no negative cost cycle?

3.5

TREE OF SHORTEST-PATHS IN DIGRAPHS

A B2

C

13

D

12

5

E1

1

5
A digraph

→
G with

each c(x, y) ≥ 0.
Start-node s = A.

•

•

A

B2

C5

D10

E 3

C 8

D 13

D 1 E 1

C 6

B7 D 11

The tree of acyclic paths from A; shown next to
each node is the length of the path from root = A.

• Bold links show the
tree of shortest-paths
to various nodes.

Some Important Observations:

• Any subpath of a shortest path is a shortest path.

• The shortest paths from a startNode to other nodes can be chosen
so that they form a tree.

Question:

•? What are some minimum changes to the link-costs that will
make 〈A, B, E, C〉 the shortest AC-path?

•? Show the new tree of acyclic paths and the shortest paths from
startNode = A after adding the link (D, B) with cost 1.

•? Also show the tree of acyclic paths and the shortest paths from
the startNode = D.

3.6

ILLUSTRATION OF
DIJKSTRA’S SHORTEST-PATH ALGORITHM

A B2

C

13

D

1
1

2

5

E1

1

5

d(x) = length of best path known to x
from the startNode = A.
A node is closed if shortest
path to it known.
A node is OPEN if a path to it known,
but no shortest path is known.

•

•

•

"?,?" indicates unknown values, "⋅⋅⋅" indicates no changes, and
"−" indicates path-length not computed (would not have changed any way).

Open Node Links d(x) and parent(x) = node previous to x
Nodes Closed processed A B C D E
{A} ∅ 0, A ?, ? ?, ? ?, ? ?, ?

{B} A (A, B) 2, A
{B, D} (A, D) 1, A
{B, D, E} (A, E) 1, A

{B, E} D (D, A) −
(D, B) ⋅⋅⋅

{B, C} E (E, C) 6, E

{C} B (B, C) 5, B
(B, E) −

∅ C (C, B) −
(C, D) −

Question:

•? List all paths from A that are looked at (length computed) above.

•? When do we look at a link (x, y)? How many times do we look
at a link (x, y)?

•? What might happen if some c(x, y) < 0?

3.7

MORE ON BUILDING SHORTEST-PATHS

A B2

C

13

D

1
1

2

5

E1

1

5

(i) A slightly modified form
of

→
G page 3.4; c(E, C) = 5.

A

B

2

E

1

C

3

D

1

(ii) Tree T (A) of
shortest paths from A.

Method

• Exploits input-property "each c(x, y) ≥ 0" and the output-
property "tree-structure of shortest-paths from start-node s".

• Maintains a tree of currently best known paths π (s, x) from s
for various x; d(x) = |π (s, x)|.

• Extends π (s, x) by adding links (x, y) from x only if π (s, x)
= π m(s, x), i.e., x = a terminal node and d(x) is minimum
among terminal nodes. This step is called closing of x.

Successive States of the Tree of Current π (s, x)’s:

• The tree links are shown in bold.

• The closing of B gives the final tree T (A).

A B
2

C

3 1

D

2 1 1

5

E
1

1

5

(i) Closing s = A.

A B
2

C

3 1

D

2 1 1

5

E
1

1

5

(ii) Closing D.

A B
2

C

3 1

D

2 1 1

5

E
1

1

5

(iii) Closing E.

A B
2

C

3 1

D

2 1 1

5

E
1

1

5

(iv) Closing B;
parent(C) changed.

3.8

DIJKSTRA’S ALGORITHM

Terminology (OPEN∩CLOSED = ∅):

π m(s, x) = A shortest length sx-path (from s to x).
CLOSED = {x: π m(s, x) is known}.

OPEN = {x: some π (s, x) is known but x ∉ CLOSED}.

Algorithm DIJKSTRA (shortest paths from s):

Input: AdjList(x) for each node x in
→
G, each c(x, y) ≥ 0, a

start-node s, and possibly a goal-node g.
Output: A shortest sg-path (or sx-path for each x reachable

from s).

1. [Initialize.] d(s) = 0, mark s OPEN, parent(s) = s (or NULL),
and all other nodes are unmarked.

2. [Choose a new closing-node.] If (no OPEN nodes), then there is
no sg-path and stop. Otherwise, choose an OPEN node x with
the smallest d(⋅), with preference for x = g. If x = g or all but
one node are closed, then stop.

3. [Close x and Expand π m(s, x).] Mark x CLOSED and for (each
y ∈ adjList(x) and y not marked CLOSED) do:

if (y not marked OPEN or d(x)+c(x, y) < d(y)) then let par-
ent(y) = x, d(y) = d(x) + c(x, y), and mark y OPEN.

4. Go to step (2).

Complexity: O(N 2).

• A node x is marked CLOSED at most once and hence a link
(x, y) is processed at most once.

• Each iteration of steps (2) and (3) takes O(N) time.

3.9

FLOYD’S METHOD FOR
SHORTEST-PATHS FOR ALL NODE-PAIRS

x1

x2

x3x4

x5

If (xi , x j) ∉
→
G, then let c(xi , x j) = ∞

(i.e., a large number L, say, L = 1 +
Σ|c(x p, xq)| (summed over all links in

→
G)

Assume momentarily that each c(xi , x j)
≥ 0 and each c(xi , xi) = 0.

•

•

Floyd’s Equations:

• Let F k(i, j) = The shortest length of an xi x j-path which uses
zero or more intermediate node from {x1, x2, ⋅⋅⋅, xk}.

• For all 1 ≤ i, j ≤ N and k ≥ 1,
(1) F0(i, j) = c(xi , x j) if i ≠ j and F0(i, i) = 0 for each i.

(2) F k(i, j) = min

F k−1(i, j) (if xk is not used)

F k−1(i, k) + F k−1(k, j) (if xk is used)
(3) F N (i, j) = |π m(xi , x j)|, where N = #(nodes)

xi ⋅⋅⋅ xk ⋅⋅⋅ x j

length =
F k−1(i, k)

length =
F k−1(k, j)

The case when xk is
used for F k(i, j).

Remarks:

• The equations (1)-(3) hold even if one or more c(xi , x j) < 0 as
long as there is no cycle whose total cost is < 0. A neg ative cost
cycle is detected if F k(i, i) < 0 for some k and i.

• F k(i, j) ≤ F k−1(i, j), i.e., F k(i, j) gradually decreases to the
final value |π m(xi , x j)| as k increases from 0 to N .

3.10

FLOYD’S SHORTEST PATH ALGORITHM
FOR ALL NODE-PAIRS

Observation:

• For k ≥ 1, F k(i, k) = F k−1(i, k) and F k(k, j) = F k−1(k, j) if no
negative cycle is detected at the iteration for (k − 1).

F k(i, k) = min

F k−1(i, k),

F k−1(i, k) + F k−1(k, k)

= F k−1(i, k)

Similarly, F k(k, j) = F k−1(k, j).

Algorithm FLOYD:

Input: The link-costs c(xi , x j) of a digraph on N nodes;
c(xi , xi) = 0 for each 1 ≤ i ≤ N .

Output: The costs F[i, j] of an optimal xi x j-path for all 1
≤ i, j ≤ N if there is no negative cycle.

1. [Initialize.] For (1 ≤ i, j ≤ N), let F[i, j] = c(xi , x j).

2. For (k = 1, 2, ⋅⋅⋅, N) do the following:

- For (1 ≤ i, j ≤ N and k ≠ i, j), let F[i, j] = min{F[i, j],
F[i, k] + F[k, j]}.

- If (some F[i, i] < 0) stop.

Complexity: = Θ(N 3):

• Step (1) takes Θ(N 2) time.

• Each iteration for k in step (2) takes Θ(N 2) time.

3.11

KEEPING TRACK OF SHORTEST PATHS

Path π k
i, j: An xi x j-path corresponding to F k(i, j), i.e., has length

F k(i, j) and uses only the nodes {x1, x2, ⋅⋅⋅, xk} as pos-
sible intermediate nodes.

• Let Nextk(i, j) = the node next to xi on π k
i, j .

• Compute Nextk(i, j) along with F k(i, j) as follows.
(1) Next0(i, j) = j

(2) Nextk(i, j) =

Nextk−1(i, j), if F k(i, j) = F k−1(i, j)

Nextk−1(i, k), if F k(i, j) < F k−1(i, j)

• The final xi x j-path is given by 〈xi , xi1
, xi2

, ⋅⋅⋅, x j〉, where i1 =
Next N (i, j), i2 = Next N (i1, j), and so on.

Example. Consider a slightly different digraph shown below.

A B5

C

13

D

1 32

1
5

E1

1

1/2
F3(A, B) = 5, Next3(A, B) = B
F3(D, B) = 2, Next3(D, B) = C

F4(A, B) = 3, π 4
A,B = 〈A, D, C, B〉, Next4(A, B) = D.

F4(D, B) = 2, π 4
D,B = 〈D, C, B〉, Next4(D, B) = C.

F4(C, B) = 1, π 4
C,B = 〈C, B〉, Next4(C, B) = B.

Question:

•? Show the successive values of Next5(⋅, ⋅) in relation to F5(A, B)
and π 5

A,B.

3.12

ALTERNATE METHOD FOR
KEEPING TRACK OF SHORTEST PATHS

• Let Bestk(i, j) = min { p: F p(i, j) = F k(i, j)}.

• Compute Bestk(i, j) along with F k(i, j) as follows:

(1) Best0(i, j) = 0 (initialization).
(2) Bestk(i, j) = k if F k(i, j) < F k−1(i, j) for k ≥ 1;

otherwise, Bestk(i, j) = Bestk−1(i, j).

Example. Consider the digraph shown below.

A B5

C

13

D

1 32

1
5

E1

1

1/2
F3(A, B) = 5, Best3(A, B) = 0
F3(D, B) = 2, Best3(D, B) = 3

F4(A, B) = 3, π 4
A,B = 〈A, D, C, B〉, Best4(A, B) = 4.

F3(A, D) = 1, π 3
A,D = 〈A, D〉, Best3(A, D) = 0.

F3(D, B) = 2, π 3
D,B = 〈D, C, B〉, Best3(D, B) = 3.

F2(D, C) = 1, π 2
D,C = 〈D, C〉, Best2(D, C) = 0.

F2(C, B) = 1, π 2
C,B = 〈C, B〉, Best2(C, B) = 0.

Question:

•? Show the successive values of Bestk(⋅, ⋅) in relation to F5(A, B)
and π 5

A,B.

•? Give a pseudocode for constructing a shortest xi x j-path
π m(xi , x j) from Best N (i, j)’s.

3.13

THE NEW PATH 〈A, B, C, B, E〉
EXAMINED IN COMPUTING F3(A, E)

A B2

C

13

D

E1

1

3
The part of

→
G used for computing

F3(A, E) = 1, with nodes A and E
specially marked; π 2

A,E = 〈A, E〉.

A B2

C

13

D

E

The part of
→
G used for computing

F2(A, C) = 5, with nodes A and C
specially marked; π 2

A,C = 〈A, B, C〉.

A B2

C

13

D

E1

1

3
The part of

→
G used for computing

F2(C, E) = 2, with nodes C and E
specially marked; π 2

C,E = 〈C, B, E〉.

F3(A, E) = 1 = min

F2(A, E) = 1,

F2(A, C) + F2(C, E) = 5 + 2 = 7

A B2

CD

E1

1

The part of
→
G used for computing

F2(A, E) = 1, with nodes A and E
specially marked; π 2

A,E = 〈A, E〉.

Question: Do we examine the path 〈C, D, A, E〉 in
→
G shown on

previous page − explain your answer.

3.14

MOST ACYCLIC PATHS ARE
NOT EXAMINED IN FLOYD’S ALGORITHM

One Additional xi x j-path is Examined per Iteration:

• In computing F k−1(i, k)+F k−1(k, j) we implicitly consider the
path π k−1

i,k . π k−1
k, j for k ≥ 1 and k ≠ i, j.

Total Number of xi x j-Paths Considered:

• At most N + 1, which may include some cyclic paths.

• Most of Θ((N − 2)!) acyclic xi x j-paths are not examined.

Total Number of Paths Considered: Θ(N 3).

A B2

C

13

D

1 12

5

E1

1

3
All links not shown have cost 20.
x1 = A, x2 = B, ⋅⋅⋅, x5 = E.

•
•

Path 〈A, B, C, E〉 Not Examined:

• If this path were examined in computing F k(A, E), i.e.,
F k(1, 5), then k = 3 (why?). However, the new path examined in
computing F3(A, E) is π 2

A,C . π 2
C,E = 〈A, B, C, B, E〉.

Question: What is the smallest k such that F k(i, i) < 0 for some i
for the digraph below? What is that i?

A B1 C1 D1

1

−3

3.15

EXERCISE

1. Suppose the following path is a shortest x3 x9-path in some
digraph G with non-negative link-costs. For each shortest sub-
path π m(xi , x j) of π m(x3, x9), indicate the smallest k (which
may depend on i and j) such that we will definitely have F k(i, j)
= |π m(xi , x j)| no matter what the costs of other links in G are.
Give an example to show that we may have F n(i, j) =
|π m(xi, x j)| for some n < k in some cases, though this may not
be guaranteed for all costs.

x3 x5
15 x2

8 x4
18 x9

7

2. Show the matrices F4[i, j] and Next4[i, j], 1 ≤ i, j ≤ 5, for the
digraph below. Also, show all AE-paths and EA-paths whose
lengths are computed by Floyd’s algorithm.

A B2

C

13

D

1 12

5

E1

1

3
All links not shown have cost 20.
x1 = A, x2 = B, ⋅⋅⋅, x5 = E.

•
•

3. Suppose 0 ≤ c(x, y) ≤ 1 for each link (x, y) and a∧b = min(a,
b). We define the cost of a path π (x1, xn) = 〈x1, x2, ⋅⋅⋅, xn〉 by
Cmin(π) = c(x1, x2) ∧ c(x2, x3) ∧ ⋅⋅⋅ ∧ c(xn−1, xn) and let
Mmin(x, y) = max{Cmin(π): for all paths π = π (x, y)}. If we
think of c(x, y) as the traffic flow from x to y, then Cmin(π) is
the traffic flow along the path π.

(a) Show Mmin(A, B), Mmin(B, C), and Mmin(A, C) and a cor-
responding path for each case for the digraph below.

3.16

A

B
0.8

C
0.2

D

0.6

0.3

0.1

E
0.2

0.4
F0.8

0.6

• c(x, y) = c(y, x) for all (x, y).
• c(x, y) = 0 if (x, y) is not present.
• c(x, x) = 1 for all x.

(b) Is it true that Mmin(x, z) ≥ min{Mmin(x, y), Mmin(y, z)} for
all x, y, and z? Explain.

(c) Which of the equations (i)-(iii) in Problem 2 on page 3.5
are still true for d(x, y) = Mmin(x, y) and why?

(d) Write recursive equations (similar to Floyd’s equations) for
computing Mmin(x, y).

(e) Is it true that we need to consider only the acyclic-paths in
computing Mmin(x, y) (why)?

4. [Recursive approach to computing all shortest-path lengths
d(i, j) = |π m(xi , x j)|.] Assume that you have computed the
shortest-path lengths dN (i, j), 1 ≤ i, j ≤ N , in the digraph GN on
the first N nodes {x1, x2, ⋅⋅⋅, xN }. Show how to compute
dN+1(i, j), 1 ≤ i, j ≤ N + 1, in the digraph GN+1 using the results
for GN . Verify your results using the digraph in Problem 2 (with
A = x1, B = x2, etc.) and show the 4×4 matrix for d4(i, j)’s and
the 5×5 matrix of d5(i, j)’s. Show the additional term in
T (N + 1) = T (N) + ⋅⋅⋅ using the appropriate notation O(⋅), or
Θ(⋅), or Ω(⋅), where T (N + 1) is the time required to compute
dN+1(i, j)’s; also, express T (N) in the form O(⋅), Ω(⋅), or Θ(⋅), as
appropriate.

5. Let countk(i, j) = #(acyclic xi x j-paths corresponding to
F k(i, j), i.e., with length F k(i, j) and {x1, x2, ⋅⋅⋅, xk} as possible
intermediate nodes). Argue that the equations for computing
countk(i, j) below are correct. For each k, 1 ≤ k ≤ 6, show the
matrix of countk(i, j) for the digraph with N = 6 nodes and the

3.17

costs c(xi , x j) = |i − j| for 1 ≤ i ≠ j ≤ N ; show only the non-
zero counts for improved readability. List the paths correspond-
ing to count4(2, 6).

countk(i, j) =

countk−1(i, k)×countk−1(k, j),

if F k−1(i, j) > F k−1(i, k) + F k−1(k, j)

countk−1(i, j),

if F k−1(i, j) < F k−1(i, k) + F k−1(k, j)

countk−1(i, k)×countk−1(k, j) + countk−1(i, j),

if F k−1(i, j) = F k−1(i, k) + F k−1(k, j)

6. Let countk(i, j) = #(acyclic xi x j paths using the nodes {x1, x2,
⋅⋅⋅, xk} as possible intermediate nodes and which have length >
F k(i, j)). Use the formula for the total number of acyclic paths
among which F k(i, j) is the xi x j shortest-path length and
countk(i, j) to obtain a formula for countk(i, j). Why is it not
possible to obtain formulas for countk(i, j) in a way similar to
those for countk(i, j)?

7. Let G be an acyclic digraph. Give suitable recursive equations
for computing numPathsij = #(xi x j-paths using one or more
links in G). Note that numPathsii = 0 for all i. If G is not
acyclic, what will go wrong with the equations? What will be
the equations if we define numPathsk+1

ij = #(xi x j-paths using
exactly k + 1 steps)? How about if numPathsk+1

ij = #(xi x j-paths
using at most k + 1 steps)?

3.18

PROGRAMMING EXERCISE

1. Assume the input digraph is given in the form of adjacency lists,
including the cost of the links. Shown below is the first few lines
in the input file for the digraph on page 3.12.

5 //numNodes; adjList items are adjNode(linkCost)
0 (3): 1(5.0) 3(1.0) 4(1.0)
1 (2): 2(3.0) 4(1.0)
⋅⋅⋅

Write a function LengthAndNext **Floyd() which returns the
array of shortest-path lengths F N [i, j] and Next N [i, j] based on
the structure LengthAndNext (see below).

typedef struct {
double pathLength;
int nextNodeOnPath;

} LengthAndNext;

Your output should show the 2-dimensional matrix; for example,
for row 0 (node A) and column 2 (node C), the output should be
"1.5: 4", where 1.5 gives the length of the shortest AC-path 〈A,
E, C〉 and for the next node E after A on that path.

Show the output for the input digraph as on page 3.12 in the lec-
ture notes (http: //www,csc.lsu.edu/˜kundu/dstr/notes.html).
Show all distances upto one digit after the decimal point (as was
in the input); use a separate function for output.

3.19

A VARIATION OF FLOYD’S METHOD

The New Equations:

• Let Z k(i, j) = The shortest length of an xi x j-path with at most k
intermediate nodes (assume no negative cycle in

→
G).

If
→
G has N = 5, then the paths considered in the definition of

Z1(4, 5) are the following; we may exclude the two paths
marked ’*’ which have loops:

〈2, 5〉 〈2, 1, 5〉 〈2, 4, 5〉 *〈2, 2, 5〉
〈2, 3, 5〉 *〈2, 5, 5〉

In contrast, the definition of F1(2, 5), we consider the only loop-
free paths 〈2, 5〉 and 〈2, 1, 5〉.

• Z0(i, j) = c(xi , x j)

Z k(i, j) = min

Z k−1(i, j)

Z k−1(i, q) + c(xq, x j), 1 ≤ q ≤ N

(1) |π m(i, j)| ≤ Z k(i, j) ≤ Z k−1(i, j) ≤ F k−1(i, j) ≤ c(xi , x j)
(2) |π m(i, j)| = Z N−2(i, j) for i ≠ j

Comparison With Floyd:

• Complexity = θ (N 4), with Θ(N) work for each Z k(i, j).

• F k(i, j) converges to |π m(i, j)| slower than Z k(i, j) and yet takes
less time for computation.

• This is also a D.P. method, with the same states as in Floyd’s
method, but with a different meaning of the states and a corre-
sponding different relationship among them.

• Not all D.P. methods are equally good.

3.20

EXERCISE.

1. How many acyclic paths are considered in the definition of
Z k(i, j) for i ≠ j? How many paths (may not be acyclic) are
considered or looked at in the equation for Z k(i, j), i ≠ j?

2. Which of the paths 〈A, C, B〉 and 〈A, C, B, D〉 in
→
G on page 3.3

are looked at by Floyd’s and the Z k-method (explain)?

3. Can we say Z k(i, j) = min{Z k−1(i, j), c(xi , xq) + Z k−1(q, j): 1 ≤
q ≤ N}? Will both forms of Z k look at the same paths?

3.21

FINDING AN n-STEP SHORTEST-PATH

x1 x2

x3

x4x5

x6

→
G may have a neg ative-cost cycle.
Sn(i, j) = The shortest length of
an n-step xi x j-path.
We are not restricting to acyclic
paths as verification of acyclicity
becomes expensive.

•
•

•

Example. Paths π (1, 6) using 3 steps.

〈1, 1, 1, 6〉, 〈1, 1, 2, 6〉, ⋅⋅⋅

The length of shortest

path in this group is

c(x1, x2) + S2(2, 6)

〈1, 2, 1, 6〉, 〈1, 2, 2, 6〉,
〈1, 2, 3, 6〉, 〈1, 2, 4, 6〉,
〈1, 2, 5, 6〉, 〈1, 2, 6, 6〉

⋅⋅⋅ ⋅⋅⋅

S3(1, N) =
1 ≤ p ≤ N

min {c(x1, x p) + S2(p, N)}

General Case:

• S1(i, j) = c(xi , x j) for all i ≠ j

Sn(i, j) =
1 ≤ p ≤ N

min {c(xi , x p) + Sn−1(p, j)}, for n ≥ 2

Also, Sn(i, j) =
1 ≤ p ≤ N

min {Sn−1(i, p) + c(x p, x j)}, for n ≥ 2

• One can also keep track of the paths along with the path-length
computations.

Complexity: Θ(N 2 + (n − 1). N . N 2) = Θ(n. N 3) for n-step shortest
paths for all (i, j)-pairs.

Question: What is #(n-step xi x j-paths)? What does it say about
the above method for computing Sn(i, j)?

3.22

HISTOGRAM EQUALIZATION

Problem: Decompose the list of numbers L = 〈n1, n2, ⋅⋅⋅, nN 〉 into
k > 1 groups of consecutive items (in short, a k-group-
ing) such that: each group-total is as close to the ideal
value T /k, where T = n1 + n2 + ⋅⋅⋅ + nN . More pre-
cisely, if si = ith group-total, then minimize

E =
k

i = 1
Σ (si − T /k)2 = the sum of squared errors.

Example. L = 〈3, 2, 1, 1, 2〉 and k = 3; T /k = 3.

The groups in a 3-grouping Group totals
〈3〉 〈2〉 〈1, 1, 2〉 3, 2, 4
〈3〉 〈2, 1〉 〈1, 2〉 3, 3, 3 ← optimal solution
〈3〉 〈2, 1, 1〉 〈2〉 3, 4, 2
〈3, 2〉 〈1〉 〈1, 2〉 5, 1, 3
〈3, 2〉 〈1, 1〉 〈2〉 5, 2, 2
〈3, 2, 1〉 〈1〉 〈2〉 6, 1, 2

Question:

•? Show that #(k-groupings) = C N−1
k−1 ; verify the formula for k = 1,

2, 3. (Hint: consider k-step paths in the digraph
→

GN considered
in the next page.) How to generate them systematically and how
long will it take?

•? If si, j = ni+1 + ni+2 + ⋅⋅⋅ + n j , then show a table of all si, j that are
relevant in the optimal k-grouping problem? How many of them
are there and what is the complexity for an efficient algorithm
for computing them?

•? Give the pseudocode for finding an optimal k-grouping of N
items using the si, j’s. Giv e its complexity.

3.23

k-STEP SHORTEST-PATH FORMULATION

Digraph
→
GN :

• V = {x0, x1, ⋅⋅⋅, xN },
→
E = {(xi , x j): 0 ≤ i < j ≤ N}, where the

link (xi , x j) corresponds to the group {ni+1, ni+2, ⋅⋅⋅, n j}.

• Each k-step x0 xN -path give a k-grouping and vice-versa.

• Let c(xi , x j) = (si, j − T /k)2, where si, j = ni+1 + ni+2 + ⋅⋅⋅ + n j .

• A shortest k-step x0 xN -path gives an optimal k-grouping.

x0 3 x1 2 x2 1 x3 1 x4 2 x5

(3 − 3)2=0 (2 − 3)2=1 (4 − 3)2=1

For L = 〈3, 2, 1, 1, 2〉 and the 3-step x0 x5-path 〈x0, x1, x2, x5〉,
the associated 3-grouping is {〈3〉, 〈2〉, 〈1,1,2〉}, with cost 0+1+1 = 2.

Question

•? Show the weighted digraph
→
G5 for L = 〈3, 2, 1, 1 , 2〉 and the ta-

ble of Sn(0, j), n ≤ j and 1 ≤ n ≤ 3.

•? Explain why the following is true for the digraph
→
GN , where all

links go from left-to-right: Sk(0, j) = min {Sk−1(0, p) +
c(x p, x j): k − 1 ≤ p < j}.

•? Verify your formula for k = 3 and L = 〈3, 2, 1, 1, 2〉. Mark the
items Sn(0, j) that will be computed in the process.

•? Give the exact number of additions involving one or more
c(xi , x j) in computing Sk(0, N); show sufficient details.

•? What is the (total) complexity of this method in terms of k and
N? Why can we call this a D.P. method?

3.24

AN ALTERNATIVE LINK-COSTS FOR
HISTOGRAM-EQUALIZATION

• Consider a k-steps x0 xN -path π = 〈x0, xi1
, xi2

, ⋅⋅⋅, xik−1
, xN 〉. Let

s1 = s0,ii
, s2 = si1,i2

, ⋅⋅⋅, sk = sik−1,N and a = T /k. Then,

cost(π) = (s1 − a)2 + (s2 − a)2 + ⋅⋅⋅ + (sk − a)2

= [s2
1 + s2

2 + ⋅⋅⋅ + s2
k] − 2a[s1 + s2 + ⋅⋅⋅ + sk] + ka2

= [s2
1 + s2

2 + ⋅⋅⋅ + s2
k] − 2aT + ka2

• Minimizing cost(π) is the same as minimizing s2
1 + s2

2 + ⋅⋅⋅ + s2
k .

• This means we can replace the link-cost (si − a)2 simply by s2
i ,

which is independent of k and T /k.

x0 3 x1 2 x2 1 x3 1 x4 2 x5

32=9 22=4 42=16

Some of the new link-costs for L = 〈3, 2, 1, 1, 2〉; the new cost of path
〈x0, x1, x2, x5〉 is 29 and the old cost = 2 = 29 − 2. 3. 9 + 3. 32.

The Sn(0, j)’s to be computed to obtain S3(0, N) for N = 5.

• Let S[n, j] denote Sn(0, j) for n ≤ j (’−’ means not computed).

x0 x1 x2 x3 x4 x5

S[1, ⋅]: − 9 25 36 − −
S[2, ⋅]: − − 13 18 25 −
S[3, ⋅]: − − − 14 17 27

Computing Link-Costs: //not all are used in finding Sk(0, N)

for (i=0; i<numItems; i++)
for (sum=0, j=i; j<numItems; j++) {

sum += items[j];
linkCosts[i][j+1] = sum*sum; }

3.25

EXERCISE

1. Consider the problem of creating k = 3 best possible grouping of
the data-items 〈1, 2, 3, 1, 2〉, with N = 5. Consider the two dif-
ferent link-cost structures (with and without using the average a
= 9/3 = 3) and for each of them show the relevant values of
Sn(i, j) in the table form for computing S3(0, 5). Also, for each
of these values of Sn(i, j), show the associated path in the same
table (use the node names x0, x1, ⋅⋅⋅, x5 to specify the paths).

2. For Problem 1 above, list all possible 3-step paths from x0 to x5

in the digraph
→
G5 and list the paths whose length are not com-

puted. For the general case N ≥ k, what is the total number
Sn(i, j) values that we will compute to determine Sk(0, N)?

3. Trav elling salesman problem (TAP): Given a digraph with link
costs c(x, y) ≥ 0, find a hamiltonian cycle (i.e., a cycle that goes
through each node exactly once) which has the smallest cost.
For the digraph below,

A B
10

C

15
15

D
10

8
210

(a) Why is it that we can drop the assumption c(x, y) ≥ 0? (In
other words, the condition c(x, y) ≥ 0 does not make it
easier or more difficult to solve TSP.)

(b) Why can’t we use the shortest-path algorithm to solve the
TSP?

(c) Why can’t we use the k-step shortest-path algorithm to
solve the TSP?

3.26

ASSIGNING LETTER-GRADES
TO TEST-SCORES

Problem:

• We are given the distinct scores 0 ≤ s1 < s2 < ⋅⋅⋅ < sm ≤ 100 in a
class-test and the frequency ni for each score si (ni = number of
students with score si). How do we determine the cut off points
for the letter-grades A, B, C, D, and F?

Solution: By formulating it as a 5-Step shortest path problem.

• The scores for each letter-grade are viewed "equivalent" in some
sense. Also, they are considered "significantly" different from
the scores for the other letter-grades.

This suggests the cost associated with a group gi = {s j , s j+1, ⋅⋅⋅,
sk} to be the variance V (gi).

• Since the letter-grade "A" has higher GPA than that of "B", we
should have V (gA) ≤ V (gB), and so on. This means we should
minimize

wAV (gA) + wBV (gB) + wCV (gC) + wDV (gD) + wFV (gF)
with, say, wA = 4, wB = 3, wC = 2, wD = 1, and wF = 1 (> 0).

|
71

×
| | | |

×
|

76
|
×
×

|
×

|
×

| |
81

×
×

|
×

|
×

|
×

| |
86

×
|
×

| |
×

|
×

|
91

×
|
×
×

| |
×
×

|
×

|
96

×
×

Scores of 23 students in a course (one ’×’ per student).

Question:

•? Should we consider any F or D grades (based on Data), i.e.,
does it significantly reduce the final cost?

3.27

|
71

×
| | | |

×
|

76
|
×
×

|
×

|
×

| |
81

×
×

|
×

|
×

|
×

| |
86

×
|
×

| |
×

|
×

|
91

×
|
×
×

| |
×
×

|
×

|
96

×
×

|
71

×
| | | |

×
|

76
|
×
×

|
×

|
×

| |
81

×
×

|
×

|
×

|
×

| |
86

×
|
×

| |
×

|
×

|
91

×
|
×
×

| |
×
×

|
×

|
96

×
×

