
HUFFMAN CODING AND HUFFMAN TREE

Coding:

• Reducing strings over arbitrary alphabet Σo to strings over a
fixed alphabet Σc to standardize machine operations (|Σc | < |Σo |).

− Binary representation of both operands and operators in
machine instructions in computers.

• It must be possible to uniquely decode a code-string (string over
Σc) to a source-string (string over Σo).

− Not all code-string need to correspond to a source-string.

• Both the coding and decoding should be efficient.

Word: A finite non-empty string over an alphabet (Σo or Σc).

Simple Coding Mechanism:

• code(ai) = a non-empty string over Σc, for ai ∈ Σo.

code(a1a2⋅⋅⋅an) = code(a1).code(a2)⋅⋅⋅code(an).

Example. Σ0 = {A, B, C, D, E} and Σc = {0, 1}.

Prefix-
property

A B C D E

000 001 010 011 100 code(AAB) = 000. 000. 001; yes
easy to decode

0 01 001 0001 00001 code(C) = code(AB) = 001; no
not always possible to
uniquely decode

1 01 001 0001 00001 prefix-free code yes
1 10 100 1000 10000 not prefix-free code no

4.2

PREFIX-FREE CODE

Definition:

• No code(ai) is a prefix of another code(a j).

In particular, code(ai) ≠ code(a j) for ai ≠ a j .

Binary-tree representation of prefix-free binary code:

• 0 = label(left branch) and 1 = label(right branch).

A
000

B
001

C
011

E
110

0 1 1
D
10 0

0 1 0 1

0 1

A
000

B
001

0 1
C
01

D
10

E
11

0 1 0 1

0 1

C and E have shorter code-word;
each non-terminal node has 2 children.

Advantage:

• One can decode the symbols from left to right, i.e., as they are
received.

• A sufficient condition for left-to-right unique decoding is the
prefix property.

Question:

•? How can we keep prefix-free property and assign shorter codes
to some of the symbols {A, B, ⋅⋅⋅, E}?

•? What should we do if the symbols in Σo occur with probabilities
p(A) = 0.1 = p(B), p(C) = 0.3, p(D) = p(E) = 0.25?

4.3

HUFFMAN-TREE

• Binary tree with each non-terminal node having 2 children.

• Giv es optimal (min average code-length) prefix-free binary code
to each ai ∈ Σo for a given probabilities p(ai) > 0.

Huffman’s Algorithm:

1. Create a terminal node for each ai ∈ Σo, with probability p(ai)
and let S = the set of terminal nodes.

2. Select nodes x and y in S with the two smallest probabilities.

3. Replace x and y in S by a node with probability p(x) + p(y).
Also, create a node in the tree which is the parent of x and y.

4. Repeat (2)-(3) untill |S| = 1.

Example. Σ0 = {A, B, ⋅⋅⋅, E} and p(A) = 0.1 = p(B), p(C) = 0.3,
p(D) = p(E) = 0.25. The nodes in S are shown shaded.

A

0.1

B

0.1

C

0.3

D

0.25

E

0.25

A B

0.2

C

0.3

D

0.25

E

0.25

A B C

0.3

D

0.45

E

0.25

A B C D

0.45

E

5.5

A B C D E

1.0

A
000

B
001

D
01

C
10

E
11

After redrawing
the tree

4.4

NUMBER OF BINARY TREES

0-2 Binary Tree: Each non-terminal node has 2 children.

• #(Binary trees with N nodes) =
1

2N + 1


2N + 1

N


.

• #(0-2 Binary trees with N terminal nodes)

= #(Binary trees with N − 1 nodes) =
1

2N − 1


2N − 1

N − 1



≥ 2N−2.

Example. Binary trees with N − 1 = 3 nodes correspond to 0-2
binary trees with N = 4 terminal nodes.

⇒ ⇒

⇒

⇒ ⇒

Merits of Huffman’s Algorithm:

• It finds the optimal coding in O(N . log N) time.

• It does so without having to search through
1

2N − 1


2N − 1

N − 1



possible 0-2 binary trees.

4.5

DATA-STRUCTURE FOR IMPLEMENTING
HUFFMAN’S ALGORITHM

Main Operations:

• Choosing the two nodes with minimum associated probabilities
(and creating a parent node, etc).

− Use heap data-structure for this part.

− This is done N − 1 times; total work for this part is
O(N . log N).

• Addition of each parent node and connecting with the children
takes a constant time per node.

− A total of N − 1 parent nodes are added, and total time for
this O(N).

Complexity: O(N . log N).

4.6

EXERCISE

1. Consider the codes shows below.

A B C D E
000 001 011 10 110

(a) Arrange the codes in a binary tree form, with 0 = label(left-
branch) and 1 = label(rightbranch).

(b Does these codes have the prefix-property? How do you
decode the string 10110001000?

(c) Modify the above code (keeping the prefix property) so that
the new code will have less average length no matter what
the probabilities of the symbols are. Show the binary tree
for the new code.

(d) What are the two key properties of the new binary tree
(hint: compare with your answer for part (a))?

(e) Give a suitable probability for the symbols such that
prob(A) < prob(B) < prob(C) < prob(D) < prob(E) and the
new code in part (c) is optimal (minimum aver. length) for
those probabilities.

2. Show the successive heaps in creating the Huffman-Tree for the
probabilities p(A) = 0.1 = p(B), p(C) = 0.3, p(D) = 0.14, p(E)
= 0.12, and p(F) = 0.24.

3. Give some probabilities for the items in Σo = {A, B, ⋅⋅⋅, F} that
give the largest possible value for optimal average code length.

4. Argue that for an optimal Huffman-tree, any subtree is optimal
(w.r.t to the relative probabilities of its terminal nodes), and also
the tree obtained by removing all children and other descendants
of a node x gives a tree which is optimal w.r.t to p(x) and the
probabilities of its other terminal nodes.

