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Abstract

A basic technique in comparing and detecting changes in geographical spatial data from satellite images consists of identifying
linear features or edges in the image and then matching those features. A chain of connected linear features which form a polygonal
line is used as the basic unit for matching two images. We develop a distance measure between two polygonal lines and an efficient
algorithm for conflating or optimally matching two polygonal lines based on this distance measure. We show that some of the alternative
approaches used in the literature, including Hausdorff’s distance, fajl to satisfy the basic requirements of a distance measure for image

conflation.
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1. Introduction

The general map conflation problem [1-3] consists of in-
tegrating different image data-sets, which may have been
collected over a period of time using different imaging tech-
nologies and thus resulting in different resolution and de-
tails. Two major difficulties in image conflation arise from:
(1) the differences in preprocessing of the raw image data
to simplify the image before conflation, and (2) the differ-
ences in the basic image-objects themselves (roads, build-
ings, vegetation, coast lines) that occur over time due to
natural causes or human activities. In particular, a given ob-
ject in one image may not exactly match any of the objects
in the other image. Also, it may be necessary to rotate and
translate one image in order to match the objects in the two
images. The matching of two objects is based on their ge-
ometric features and thus an object is represented by ap-
proximating its boundary by a polygonal line following a
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basic edge-detection step. One then attempts to pair up ma-
jor objects in one image with those in the other image which
have the best matching. The goal is to find a single trans-
formation (rotation and translation) which brings as many
major objects as possible in one image close to those in the
other image. The conflation problem becomes more difficult
when the images do not correspond to the same geograph-
ical region, in which case one has to essentially determine
the common or “overlapping” part between the two images
by using the conflation of a subset of the major objects in
the two images.

We focus here on the fundamental problem of finding the
transformation for optimal matching of two polygonal lines
(in short, polylines). Our main contributions are: (1) A dis-
tance measure Do(L1, Ly) that can be used as a measure
of the quality of a matching and which satisfies a set of
five basic requirements for the conflation problem. We also
show that some of the alternative approaches proposed in
the literature fail to satisfy the basic five requirements. (2)
An efficient algorithm for conflating two polylines, i.e., de-
termining the rotation and translation which minimizes the
distance between two polylines.
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2. Distance measure

Let Pi={(Li1, Li2, ..., Lim), i=1, 2, denote two polylines
each consisting of m linear segments L;;, 1 < j <m(=|P1|=
|P,]). If we are given a distance-function D(L1, Lp) be-
tween two line segments, then a simple way of defining a
distance D(P;, P») between P; and P; is by (1.1) below.
One can alternatively define D(Py, P2) by (1.2) which ba-
sically amounts to adding for each P; the imaginary line
segment L;(y41) joining the last point of P; with its first
point, making each P; a closed curve and thereby account-
ing each end point of the line segments in P; twice. We
can define the conflation C(Py, P2) = C(P2, P1) between
P; and P, by (2), where the transformation t is an arbi-
trary combination of translation and rotation around the
origin. If |P1| = m1>my = |P2|, then we consider the
conflation C (P{‘ , P)) between P, and each mo-subchain
Plk = (L1, L1g+1)> - - -5 Lik+my—1)) of Py, and take the
best (smallest) of them to be C(Py, P2).This is applicable
when P, is a subimage of P;. An alternative but computa-
tionally more expensive approach would be to approximate
Py by a polyline P{ with m line segment and then conflate
P| and P,. One can also approximate each P; with a poly-
line P{ having m = (m1 + m2)/2 line segments and then
conflate P{ and Pj. In any case, the key problem in defin-
ing the conflation C(Py, P») rests on having an appropriate
distance measure D(L1, L) between two line segments L
and L,. In addition, it must be possible to find an efficient
algorithm to compute the conflation-mapping 7, which may
not be always unique, using that distance measure.

m
D(P1, Py =Y D(Lij, Laj), (1.1)
j=1
m+1
D(P, P)) =) D(Lij,Laj), | (1.2)
j=1
C(P1, P»)
min(D(P1, o(P2))}  for |P1| =P,
= 4 mi1—ma+1 g
min {C(P{, P} for |Pi| =my>ma=|Pal.
B 2)

If pi, 1<i<m + 1, are the successive end points of the
line segments in P=(L1, Lo, ..., Ly), then we regard each
L;={pi, pi+1) to be directed from p; to p;+1. We write Ll@
for the line segment from p;41 to p;, having the opposite
direction of L;, and |L;| = length of L; (which should not
~ be confused with |P| = m).

A distance measure D(L1, Lo) (also called a metric [4])
should satisfy the basic requirements (D.1)—~(D.3) below. It
follows that both D(P;, P») given by Egs. (1.1)—(1.2) then
satisfy (D.1)—(D.3); the converse is also true (take m = 1).
For the purpose of conflation, we need the additional prop-
erties (D.4)—~(D.5). The invariance property (D.4) under the
rotation and translation operation 7 implies that D(L1, L2)

depends only on the relative positions of L1 and Ly. On
the other hand, (D.5) is a directional symmetry property. If
D(L1, L») satisfies (D.1)~(D.5), then the same is true for
cD(L1, Ly), where ¢ > 0 is a constant.

(D.1) D(L1, L) >0 and it equals 0 if and only if L; = L».

(D.2) D(L1, L) = D(La, L1). (Symmetry)

(D.3) D(L1, L3)<D(L1, L2) + D(La, L3). (Triangle in-
equality)

(D.4) D(L1, Ly) = D(z(L1), 1(L3)), where t is a rotation
or translation.

(D.5) D(Ly, Lo)=D(L{, LY, where LY is L; with the
opposite direction.

Note that we do not require any particular relationship be-
tween D(L1, Ly) and D(L”, Ly) in order to let D(L1, L2)
be sensitive to the relative directions of L1 and Lj. Indeed,
if we insist that D(L1, L)< D(Lgr), L»), say, then we also
have D(LY), L2)<D(L1, Ly), by replacing L1 with Lo,
and this would give D(L1, L) = D(LY, L,). This would
mean that the relative directions of Li and L, are not rele-
vant.

2.1. Distance between line segments

We first define a simple distance measure Dq(L1, L2) for
two line segments L1 = {p11, p12) and Lo ={p21, p22), and
then generalise it to Dy(L1, L2) to eliminate some of its
shortcomings.

The definition of Di(L1, L2) in Eq. (3) is based on the
Euclidean-distance function d(p, p’) between two points.
One can also use the more general Minkowski-distance func-
tion dy(p, py = (Ix = x"19 + |y — y'|9)1/4, for some con-
stant ¢ > 1, where p = (x,y) and p’ = (x’, y'); note that
d(p, p') =da(p, p'). It is easy to see that D1(L1, L) satis-
fies (D.1)~(D.5); in particular, the triangle inequality (D.3)
follows directly from the triangle inequality for d(p, p"). If
Li={p1, p2) and Ly = {pa, pry =L{", then D1(L1, L2) =
2d(p1. p2)

Di(L1, L) =d(p11, p21) +d(p12, p22)- 3)

Example 1. Figs. 1(i)-(iii) show three different situations
which give the same D1 (L1, L2) since D1(L1, Ly) accounts
only for the end points of L1 and Lj. The line segments in
Fig. 1(ii) are obtained by moving the right end points p12
and py; in Fig. 1(i) horizontally to the right by the same
amount (and not by the same factor of their lengths). One
may feel that since the line segments in Fig. 1(ii) have larger
lengths than those in Fig. 1(i) and they cover a larger area
between them than those in Fig. 1(i), we should have a larger
distance between them. But as we will show below, this is
not a valid argument because distance is a first-order quantity
and the area is a second-order quantity. The line segments in
Fig. 1(iii) are obtained by moving the point p3; along the
circle of radius &1 = d(p/;, py;) and centered at p7;. One




Fe

S. Kundu / Pattern Recognition 39 (2006) 363-372 365

Ly P2

(ii)

Fig. 1. Three different cases of L1 and L; for a given pair of distances
S1=d(p11. pa1) and Sy =d(p13. pyy) between their end points: (i) a pair
of non-intersecting line segments L and Lo; (ii) another non-intersecting
case with each L; stretched horizontally to the right; (iii) the case of
intersecting line segments; here, pé’l is moved along the cycle of radius
1 and centered at pf,.

is more justified in requiring that Fig. 1(iii) give a smaller
distance measure than that in Fig. 1(i) since there are many
more points along the two line segments that are closer to
each other than the case in Fig. 1(i). A similar situation arises
if we move the point py; in a circle of radius 5,=d (pf5, p%,)
around pf, and make the Jine segments cross each other. The
distance function D»(L1, L3) to be defined below corrects

‘this problem in D (L1, Ly). Note that if L, and L are the

horizontal and the vertical line segments in the letter “T”,
then D1(L1, Ly) = Dl(LY), L5), but this clearly does not
hold in general.

We now argue that there is no need to distinguish between
the cases in Figs. 1(i)~(ii). First, if the right end points of
Ly and Ly are moved horizontally far to the right by the
same amount and we look at L1 and Lj near their right end
points p1z and pay, then the line segments would appear al-
most parallel, with a natural distance between them given
by g2 = the length of the perpendicular from the point pi2
to L,. Likewise, by looking at L1 and L, near their left end
points p11 and pa;, the line segments would appear almost
parallel, with a distance between them given by g1 = the
length of the perpendicular from the point p; to Li. This
may suggest that the right-hand side of Eq. (3) should be re-
placed by g1 + ¢2. However, since ¢, does not change if we
justextend L to the right keeping its direction and leave L

unchanged, it follows that g2 is not a good replacement for
the term d(p12, p22) in Eq. (3). Likewise, ¢; is not a good
replacement for the term d(p11, p21) in Eq. (3). This indi-
cates that contrary to the initial intuition it is not necessary
to distinguish between the two cases Figs. 1(i)~(ii).

2.2. A generalization

We now introduce a generalization Dy(Li, L) of
Dy(L1, Ly) which can distinguish the cases in Figs. 1(i)
and (iii). Consider each L; as a curve L;(t) = (x; (1),
yi(®), 0<¢<1 given below, where p;; = (x;5, yij), 1<,
J<2, pi1 = (xi(0), %:(0)), pia= (x;(1), yi (1)),

x1(0) = x11 + (x12 —x11)¢  and
y1(®) = y11 + (12 = y1ue,

x2(t) = x21 + (x22 — x21)1  and
ya(t) = ya1 + (y22 — y21)t.

We take the sum of the distances between the corresponding
points in L1(¢) and Ly(t) for t =¢t; = j/n, 0< j<n for a
fixed n > 1, to define

Dy(L1, Ly)

=3 ) - aP+ ) - neP @

j=0

For n =1, we have Dy(Ly, L2) = D{(Ly, L3). On the other
hand, if p11 = p21, then Dy (L1, Ly) =c¢, D1(L1, L»), where
cp=1+1/241/3+--. 4 1/n. Note that although ¢, —
o0 as n increases, this is not a problem because we use the
same n for each line segment pair {L1;, L2;} in measuring
the distance between two polylines P and Ps.

Theorem 1. Suppose the line segment pairs {L1, L2} and
(LY, L3} have the same distances for their end points, i.e.,
d(p11, p21) =d(pTy, pyy) and d(pra, p22) =d(pY,, ph,) as
in Figs. 1(i) and (iii), where L1 N Ly =@ and LY N LY # @.
Then, Do(LY, L) < Dy(L1, L) for n 2.

Proof. For each t; # 0 and 1, the points Li(¢;) = (x1(¢),
y1(#;)) and La(t;) =(x2(t;), y2(f;)) contribute a larger value
to Do(L1, L) than the contribution of the points L’l’ ;) =
(1), ¥/ (¢))) and Ly (e))=(x5(2), y3 (t)) to Da(LY, L).
The theorem follows immediately. [0

Theorem 2. D1(L1, L)< Do(L1, L)< +1/2+--- +
1/n)D1(Ly, Ly).

Proof. The inequality D{(L1, Ly) < D,(L1, L,) is imme-
diate. To prove the other inequality, first consider the case
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Fig. 2. Hlustration of the proof of Theorem 2 when L1 N Ly =#%: (i) the
case where Ly and L, intersect, when extended, at a point not in L1 or
Ly; (ii) the case where L and Lj intersect, when extended, at a point
in L.

where L1 N Ly =@, as in Fig. 1(1). Figs. 2(i)—(ii) show the
case where L1 and L, intersect if they are extended to the
left; let L = {pa1, p12), indicated by the bold dotted line.
The contribution to Dy(Ly, Ly) for t; = j/n, 0<j<n, is
given by

d(L1(tj), La(t;)) <d(L1(t)), L(t;)) + d(L(t;), L2(t;))
- =[1—1¢;1d(p11, p21) + tjd(p12, p22).

The theorem follows in this case since the sum of the
right-hand side above for 0<j<n gives [1 4+ 1/2 +
<o+ 1/nlld(p11, p21) +d(pi2, p)l1=[1+1/2+ -+ +
1/n]D1(Ly, Lp). If L1 and L, are parallel or they intersect
when extended to the right, the same argument holds. Fi-
nally, if L1 N Ly # @ as in Fig. 1(iii), we get the result by
combining the above case with Theorem 1 and the fact that
Dy(Lq, L) is the same for the two cases in Fig. 1(i) and
(i), O

Several remarks are due at this point. First, if we vary the
parameter n in the definition of Da(L1, Ly) and make #,
say, proportional to [L1|+4|L2] in order to make D2(L1, L2)
sensitive to the lengths |L1} and |L,], this can lead to the
failure of the triangle inequality (D.3). This happens, for
example, if |Ly| is very small compared to |L1| = |L3].
Second, the larger the value of n, more significant is the
distinction between the D, (L1, Ly)-measures for the cases
in Figs. 1(i) and (iii). Finally, although the inequalities in
Theorem 2 imply that the distance measures D1(L1, L2) and
Dy (L1, Ly) are topologically equivalent [4], the ability of
Dy (L1, L) to distinguish between the cases in Figs. 1(i) and
(iii) makes it more suitable for conflation. It should be noted
that Do(L1, Lp) does not distinguish between the cases in
Figs. 1(i) and (ii).

3. Inadequacy of Hausdorff’s measure

We now show that Hausdorff’s distance measure,
which has been suggested in the literature (http://www.
vividsolutions.com), is not suitable for conflation. First, it is
not sufficiently sensitive to the relative positions of L and
L,. Hausdorff’s measure, which was originally defined to
measure distance between two arbitrary subsets (in a metric
space), does not account for the geometric properties of the
subsets. In particular, it does not account for the geometric
feature of line segments when applied to L1 and Lo. Sec-
ond, it does not give a computationally efficient method to
determine the transformation ¢ to conflate two polylines.

Given a line segment L and a point p in the plane, a
simple definition of a point-to-set distance is dy;(p, L) =
min{d(p, q) : g € L}, which is positive unless p € L. It is
easy to see that dps(p, L) equals the perpendicular distance
of p from L, if the perpendicular meets the line segment L,
and otherwise dps(p, L) equals the minimum distance be-
tween p and the end points of L (see Figs. 3(1)—(ii)). Haus-
dorff’s distance Dy(L1, L) between two line segments
is defined by (5), where dg (L1, L2) = max{dp;(p, L2) :
p € Li} = max{dys(p,Ly) : p = pi1 or pp}, giving
a simple method for computing dg (L1, L2). In particular,
dy (L1, L3) may not be the same as dg (L2, L1).

Dy (L1, Ly) =max{du (L1, L3),du(La, L)} 5

It is not hard to see that Dy (L1, L,) satisfies all the prop-
erties (D.1)~(D.5). However, the measure Dy (L1, Lp) is
insensitive in two ways to the geometric properties of L
and L. First, if we reverse the direction of Lo, say, then
Dy (L1, L) remains unchanged. Second, as seen in Fig. 4,
Dy (L1, Ly) = d(p11, p21), remains unchanged if the end
point pyy of L lies anywhere between the points A and B
of the upper part of the circular arc of radius Dy (L1, L2)
at pyz intersecting the extension of L, or, more generally,
in the region of that circle above the line L,. (In contrast,
D1(L1, Ly) remains the same only for pys at the end points
A and B))

In order to show that Dy (L1, Lo) < D1(L1, Lo), let p =
p21 and L = Ly in Fig. 3. It follows that dp:s{p21, L1) <
d{(pa1, p11) and likewise we have dpre(pn, L1)<d
(p22, p12) which gives dp(La, L)< D1(L1, L). Sim-
ilarly, we get dm(L1, L2)<Di(L1,Ls), and hence
Dy (L1, Ly)<D1(L1, Ly). However, theratio Dy (L1, L)/
Dy(L1, L) 1s not bounded below by a positive number. To
see this, consider the case where p11=p22 and |L1|=|L3|=r.
If 0 = the angle between Lj and Ly and 0 < 0 < x/2, then
D1 (L1, Ly)=2r, whereas Dy (L1, L2)=r sin(8#) and hence
the ratio Dy (L, Ly)/Di(Ly, L) can be arbitrarily small.
Although, there is no easy way of finding the best trans-
formation 7 to conflate two polylines using Hausdorff’s
distance, the best conflation of two line segments L; when
Ly using Hausdorff-distance places L; symmetrically on
top of L, (along the same line). The same is true if we use
the distance measure Dy(L1, L2) for n 22, except that now
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Fig. 3. Ilustration of dprs(p. L): (i) the perpendicular from p to
L={py, P) intersects L at g; (ii) the perpendicular from p to L={p1, Py}
does not intersect L.

Ly, Lyy=d{py. pa)

Fig. 4. Dy(L;. Ly) remains unchanged for any position of p; on the
chord AB.

Ly and L must be in the same direction. For n = 1, i.e., if
we use Dy(L1, L), then 7 is not unique and we only need
to make the shorter of L; and Ly completely overlap the
other and keep them in the same direction.

4. Comﬁuting optimal 7

Since minimizing Dy ( Py, ©(P2)) is closely related to min-
imizing D1(P1, 1(P2)), with the only difference being the
additional partition points in the former, we first focus on
minimizing D1(P1, 1(P)). If we know ©(P3), then we can
express 7 as a combination of a translation 7y, y» which moves
each point (x’, y') to (x +x', y+y"), followed by a rotation
7g around the new start point of 7, ,(P). Once 74 , and t¢
are determined, it is a simple matter to express t in terms
of a translation and a rotation around the origin (0, 0). The
translation 1y is easily determined from the start points of
Py and t(P,), and the rotation-angle 0 is determined from
the slope of the first line segment Ly; € P and its slope in
7(P,). Throughout this section, we use (1.2) for the distance
between two polylines.

4.1. Best translation To,y

Let v; = p1;pz;, the vector from the jth point pi; €
Py to the jth point py; € Pp. If we write p;j = (x(pij),
y(pij)), 1<i<2and 1< j<m+1, then vj=1(x;y;j), where
xj=x(p2j) —x(p1;) and y; = y(p2;) — y(p1;). Moreover,
v=—(x, y) corresponding to 7,y is given by the point which
minimizes the sum of distances dy +dy + - - - +dyy, + dp i1,

where d; =d(v, v;) =v; — vll =,/ (xj + 0+ () + 02

Since an analytical solution for the optimal v is difficult,
we employ a slight variation of D;-measure to bypass this
problem; the basic idea of this variation came from the fuzzy
c-means method [5]. Let

m+1
DYI(P, P)= |2 Z d*(pij, p2j)
N\
m+1 m+1
= 12> Ilr= | D DLy, Lapl?,
N Jj=1 j=1

(©6)

where D{?(L1, Ly) = /d2(p11, pa1) + d2(p12, pa). Tt is
not hard to see that Diq (L1, Lp) is a metric (see Appendix)
and that it also satisfies (D.4)—(D.5). Likewise, D (P, Pr)
satisfies (D.1)—~(D.5). Since minimizing D1 (Pl, Tx,y(P2))
amounts to minimizing }_ {[v; — v|[?, the minimum is ob-
tained when v equals the centroid of the points vj, ie.,
x=(=Yx)/0n+1)and y= (=Y y;)/(m + 1).

We can likewise define D q(Ll, Ly) by generalizing

D}Y(Ly, Ly) using the (n — 1) equally spaced intermediate
pomts in each of L1 and L, as in Eq. (4). To be precise, we
have

DY (L1, Ly)

D () — x)P + D) — 1)1
j=0
where 7; = j/n. @)

To get the con‘espondmg measure for polylines, again using
form (1.2), let p1 ) denote the kth partition point of the line

segment Ly1; € Pp, with plj

p{? = the end point of Llj = the start point of Lyj+1) =

p%& 41y and similarly let Po; *) be the points arising from Ps.

Then, x(k) —x(P(k)) x(p% ) and y(k) _y(sz )= X(P1k))
are glven by

= the start point of L1; and

2 = e (pag) — x (PNl + [ (P2, i41) = x(p2)]

= [x(p1r.g+1) —x(p1)llk/n, 0<k<n,
= [yp27) = y(pipl + [y (p2.G+1)) — ¥(p2;)]
= (pr.g+p) — y(pi)llk/n, O0<Lk<n.

(k)

Finally, let 0 J (xﬁk), y(k) ) and we have D2 (P, Py) is
given by Eq. (8). If we Want to avoid duplicate account
of the start and end points of the line segments L;; and
Ly; in Eq. (8) compared to each intermediate partition
point being counted only once, then the sum for k should



368 S. Kundu / Pattern Recogniiion 39 (2006) 363372

be only for 0<k <n. In either case, D;q(Pl, Py) satis-
fies (D.1)—(D.5) and D;q (L1, L») distinguishes between the
cases in Figs. 1(i) and (iii):

m+1l n

o3 R

N j=1 k=0

DY(Py, Py) =

m—+1
= | > IDY (L1, LapT™, ®)
N j=1

The optimal translation 7., of P which minimizes
Dg (P1 Tx,y(P2)) is related to the centroid of the points
(x (.k), ¥ )) 1<j<m+1,0<k<n, as before and is given
by Eq. (9), where x; —x( ) and yji= y}(O) If we use the sum

for 0<k <n in Eq. (8), then interestingly the final result in
Egq. (9) remains the same:

m+1 n o
¢
ot 1)(n+ 1 IDeTD =
j=1 k=0
_1 m+1 1
T [t )
j=1
1 m1
- ni +1 Z i
j=1
and
m+1l n
&)
r= (m+1)(n+1) Zl§y
_ m--1 1
m—+1 |:}’j + 5()’j+1 - }’j)]
-1 m+1
7 Yi- )
Tm+1 et

4.2. Best rotation g

As in the previous section, we first consider the minimiza-
tion of DS (P1, 19(P>)). Since the rotation of P, around its
start point py; does not change the distance dy =d(p11, p21)
we are now concerned only with minimizing the sum d2
a’3+ —|—dm+1 For 2<j<m + 1, let ; + 0 be the an-
gle from the line p21p1;, joining pai to the Jth point pyj €
Py, and the line P21 p2;, joining p1 to the jth point py; €
19(Py) (see Fig. 5(1)). We also write d1; = d(p21, p1;) and
d>; = d(pa1, p2j). Note that 6y + 0 is not defined; like-
wise, 0; + 0 is not defined if di; = 0, and in that case the
corresponding term in the sum below is taken to be zero.

(D

Fig. 5. Computation of the best 74: (i) the relationship of dy;.da;,
and the angle (0; + 0) after rotating P> by g; (i) a geometric v1ew
associated with the minimization of 3 ¢; cos(f; + 0) for m =3.

From Fig. 5(i), we get

m+1

> a-
j=2
ST

m+1
=c—22(:j cos(0; + 0)
j=2

> d}; +d3; —2d1jdaj cos(8; + 0)]

Z 2d1jd2j COS(QJ' + 6)

where ¢ and ¢; are constants.

Thus, minimizing qu(Pl, 1g(P2)) is the same as maxi-
mizing the sum Y _ ¢; cos(0; +0) (for 2< j <m+1), which
is simply a weighted sum of the projections (see Fig. 5(ii)) of
the given radial lines of the unit circle with the angles 6 on
the dashed radial line with the angle —6. However, since the
sum of projections equals the projection of the sum of vec-
tors ¢;(cos(0;), sin(0;)) on the dashed line, the maximum
occurs when the direction of the dashed line is the same as
that of the sum of vectors, i.e., the angle 8 is given by

0 = — direction of the vector
m+1
> cjcos(8;), sin(6;))
j=2

To minimize D;q(Pl, 75(P2)), the best rotation-angle 0
is then given by Eq. (10). Once again, if we use the sum
0<k <ninEq. (9), then the same would be the case in (10):
§ = — direction of the vector

m+1 n

>3 cﬁ."’ (cos(0§k)), sin(0§k>)), (10)

=2 k=0
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where

&) __ &) k) k) _ (k)
< —dldej’ d]j ——d(pZI,plj),

&Y =d(pa, p¥)
and

k)

Qg.k) = angle of the line py; p§ ; ®)

from the line po; pij-

4.3. Algorithm CONFLATE

We now present the algorithm CONFLATE for determin-
ing the final position (P2} of P, which minimizes the dis-
tance D37 (Py, t(P2)). We have included steps (3)~(5) in
CONFLATE to specifically avoid a local optimum position
of 7(P») after step (1). Example 2 shows a few known cases
of this local optimum phenomenon. Since there may be other
cases that are not resolved by steps (3)—~(5) alone, one can
in general apply a random translation 7, and a random
rotation 7g to the current position of P, after an applica-
tion of CONFLATE and then reapply CONFLATE to see if
this gives a smaller distance D;q(Pl, 7(P2)). This procedure
may be repeated a few times to provide more confidence
that the global optimum is reached.

Algorithm CONFLATE.

Input: A pair of polylines P; and P,, each P; having m
line segments L;;, 1< j<m, and an error thresh-
old & > 0 for the optimal conflation 1.
Output: A transformed position z(P;) that minimizes
D;q ( Py, 1(P,)) within the bound ¢ of the optimal,
where T consists of a translation and a rotation.

1. Repeat the steps (a)—(b);

(a) Find the translation T = 1, ,, where (x, y) is given
by Eq. (9), so that D3Y(Py, t(Py)) is minimized
among all translations. Let & = D;q(Pl, Py —
DY (P1,1(P2)) >0 and P, = t(Py).

(b) Find the rotation 7=1y, where § is given by Eq. (10),
so that Dy (Py, ©(Py)) is minimized among all ro-
tations. Let &, = D3 (Py, P) — Dy1(Py, ©(P2)) =0
and Py = 1(P»).

While at least one of ¢1 and & >¢.

2. Let Q be the most recent position of Ps.

3. If max(e1, &3) = 0, then stop; otherwise, give an initial
rotation of 7w to Q around psy, i.e., let Py = 7,(Q), go
back to step (1), and let Q’ be the resulting best position
of P, in step (2).

4. 1f D3 (Py, Q) < D31 (Py, Q'), then let P, = Q else let
Py =0

5. Repeat steps (1)—(4) as long as the new position of P
achieves a decrease in Dy?(P1, P,) by ¢ or more.

Example 2. Consider the simplest case with m=1=n, Pi=
Liand P,=1, = Lgr). Step (1) has only one iteration. In

step 1(a), we obtain (x, y)=(0, 0) for the optimal translation
Ty, and in step 1(b) we obtain §=0 for the optimal rotation
79, giving &1 = & = 0. Then, after we force a rotation by
0 =7 to Py around pa; = pj2 in step (3) and we go back
to step (1), we again get only one iteration. In step 1(a),
we get (x, y) = (x(p21) — x(p11), y(p21) — y(P11)) for the
optimal translation, which shifts L, completely on the top
of L1 matching the direction of L1, i.e., T y(L2) = L1 and
giving D37 (L1, 1x.y(L2))=0. In step 1(b), we get §=0, and
the algorithm now stops in step (3) by finding the optimum
position of P,. Note that for n=1, the initial rotation by 0=n
step (3) does not change D;q (Py, Py); however, forn> 1,
it actually increases D;q(Pl, P>), which is then reduced to
0 by the next optimal translation in step 1(a).

A similar situation arises if m =3, n=1, Pj has the shape
of the letter “W” going from left to right, and P, has the
shape of an upside-down “W” (or equivalently, the shape of
the letter “M”) of the same size but going from right to left.
In this case, the optimal translation 7., in step 1(a) positions
P, on the top of Py with partial vertical overlapping but the
optimal 74 does not do any change (6 =0). After we force a
rotation of 6 = = in step (3), which increases D;q -distance,
and we go back to step (1) we again get only one iteration.
In step 1(a), the optimal translation shifts P, completely on
top of P matching the direction of Py, i.e., 7, ,(P2) = Py
and giving D5?-distance zero. In step 1(b), we get =0 and
the algorithm now stops in step (3) by finding the optimum
position of P.

Example 3. Fig. 6 illustrates the algorithm CONFLATE
when applied to a pair of L-shaped polylines. Here, we have
used n =3 and e=0.1 to keep the number of iterations smalil.
The initial positions of P; and P, are shown in Fig. 6(i).
The step (1) now involves three iterations of steps 1(a) and
(b), combining a translation and a rotation in each iteration.
The results of the first application of steps 1(a) and 1(b)
are shown in Fig. 6(ii), and the final result of step (1) after
the three iterations are shown in Fig. 6(iii). Note that the
position of P; remains fixed throughout. Fig. 6(iv) shows
the positions of P; and P, at the start of the second phase
after the forced rotation of P around its start point by 7.
There are nine iterations of steps 1(a) and (b) now. Fig. 6(v)
shows the results after the first iteration of step 1(a) and 1(b)
and Fig. 6(vi) shows the final positions at the end of step
(3). This also corresponds to the minimum D;-distance and
the final conflation between the initial P; and P;.

. 4.4. Computational complexity

It is clear that computing the best translation 7,y of P, by
using (9) takes O (mn) time, where m = | Py| = | P;| =#(line
segments in P1) = #(line segments in P;) and n = #(equal
length partitions for each segment in P;) = #(equal length
partitions for each segment in P;). Likewise, it takes O (mn)
to compute the best rotation tg of P, around the start point
of Pp.
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L L

) (ii)

Py
P,

@v) )

L L
PN

i)

Fig. 6. lustration of algorithm CONFLATE: (i) initial positions of polylines P; and Py; (ii) results of first translation and first rotation of Py from (i);
(iii) final positions of P; and P after step (1); (iv) positions of P; and P, after rotation by 7 in step in (3); (v) results of first translation and first

rotation of P, from (iv); (vi) final positions of P; and Py after step (3).

4.5. Conflation vs. distance

We briefly point out that if Py, P, and P; are three
polylines with the same number of line segments, i.e.,
|P1| = |P2| = | P3|, then we have the triangle inequality
C(P1, P3)<C(Py, P») + C(P3, P3) for the conflation mea-
sure given by Eq. (2). The triangle inequality also holds for
Eq. (2) when [P <|P2| < | P3|, but it is not true in general.
It is for this reason the conflation measure C(P;, P») cannot
be taken as a distance when |[P;| # | Ps].

5. Some unsuccessful distance functions

One might wonder if there are other distance func-
tions which satisfy (D.1)-(D.5) and has properties like
Dy (L1, L) in terms of distinguishing between the cases in
Figs. 1(i) and (iii). We show that many other definitions for
D(Ly, Ly) which appear attractive at first sight fail to satisfy
one or more of the properties (D.1)—(D.5). This provides
additional evidence about the goodness of Dy(Ly, Lo).

5.1. Area between L and Ly

One may consider the area enclosed between the line
segments L1 and L, as a possible distance measure. Figs.
6(1)—(ii) illustrate such a definition of distance D3(L1, Ly).
However, D3(L1, L) violates (D.1); it also violates the tri-
angle inequality (D.3), as shown in Fig. 7(iii), which is not
surprising since distance is of first-order of dimensionality
and area is of second-order of dimensionality. The mea-
sure D3(Ly, Ly) satisfies the other three properties (D.2)
and (D.4)—~(D.5); it nevertheless distinguishes the cases in
Figs. 1(1)-(iii).

3.2. An alternative area-based measure

Now, consider the sum of the area [1(x1, x2) covered be-
tween the parametrized linear curves x1(¢) and x,(f) used

P2

(ii) Pn

Di3(Ly, Ly) = area(A[pyp1 p2])
Ds(Ly, Ls) = area(A[po p2p3D)
Dy(Ly, Ly) = area(Alpop1 p3l)

Po

(ii)
Fig. 7. The measure D3(L, L;)= “area between the line segments L,
and L,” does not satisfy the triangle inequality: (i) D3(L1,Lp) =
area(4[pop12p22]) — area(Alpopr1p211); (i) D3(Ly. L) = area({4lpgy

p11p21l) + area(Alpopiaprl): (i) D3(Ly. L3)€D3(Ly.Ly) + D3
(La. L3).

in Section 2.2 and the area LI(y, y2) covered between the
parametrized linear curves y;(¢) and y»(#). Fig. 8 shows the
curves x1(t), x2(f), y1(¢), and y»(t) for the line segments
Ly and Ly in Fig. 1(i). We refer to these curves simply
as xi1, x2, y1, and y; below, when no confusion is likely.
Note that each of these curves is a straight line. The re-
sulting distance measure D4(L 1, L) interestingly satisfies
the triangle inequality. The only property that it fails to
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%2
X1
*12
Xy x, (0
1
t=0 t=1
]

Yn

Y \
)’I(t) Y12

Fig. 8. An alternative area-based approach to defining a distance measure using the curves x;(¢) and y;(¢),i = 1,2: (i) the parametrized linear curves
x1(t) and x,(¢) for the lines in Fig. 1(i); (ii) the parametrized linear curves y; () and y,(r) for the lines in Fig. 1().

satisfy is (D.4):
Dy(Ly, La) = O(x1, x2) + 0(y1, y2)
1
= /0 lx1(2) — xp(t)|dt

1

+ /0 y1(2) — y2(2)lds (11.1)

In contrast to the lines {Lj, L, L3} in Fig. 7(iii), which
gave rise to the violation of the triangle inequality, the lines
x;(¢) and y;(¢) in Figs. 8(i)~(ii) have their right end points
on a vertical line (at r = 1) and similarly for their left end
points (at t =0). The measure D4(L1, L2) is a special case
of the more general distance measure, for ¢ > 1, given by

1 1/q
DO (L1, Ly) = ( fo Ix1 () — x2(0)? dt)

1 1/q
+<f0 l'yl(t)—yz(t)lth> . (11.2)

The case g =1 is computationally the simplest. For exam-
ple, if x17 <xp1 and x12 <x22 (or, x11 2> x21 and x12 >x22),
then Li(x1, x2) = |(x21 +x22) /2 — (x11 + x12)/2|. The com-
putation is slightly more complicated if two inequalities are
in the reverse direction, i.e., the curves x1(¢) and x2(f) cross
each other. Note that both D4(L{, Ly) and Diq)(Ll, L)
have dimensionality one unlike D3(L{, L;). The distance
measure D4(L1, L2) can distinguish between the cases in
Figs. 1(i) and (iii), but cannot distinguish between the cases
in Figs. 1(i)—(i1) when the line x1(z) does not cross x> ()
and line y1(z) does not cross y(z).

Fig. 9 shows that D4(L1, Ly) does not satisfy the prop-
erty (D.4) when t = tp is a rotation. Here, D4(L1, Ly) =
[cos(6) — cos(8 + ¢p)1/2 + [sin(0 + ¢) — sin(6)]/2, which
is not independent of 6. The measure D4(L1, L) clearly
satisfies (D.4) when 7 =14 y is a translation.

5.3. Another variation

If we use the curves x;(¢) and y; (¢) to define a distance in
a fashion similar to D{(L1, L»), then we do not alleviate the

i
3
i
i (cos(9+ ¢), sin(0 + ¢)) X2
i
1
: x1(z X2
1
i
: Xy =
! 13
| =0 ()
i =0 t=1
6] (i)
Y2
2z
- Y12
Y=
yun=0 yi()
=0 t=1
(iii)

Fig. 9. Hlustration of D4(L1, L) failing to satisfy the property (D.4): (i)
two line segments of unit length with p1; = pog; (ii) the lines x1 (t) and
xp(t) for Ly and Ly in (i); (iii) the lines y; (r) and yp(z) for Lq and L)
in ().

problem of not distinguishing between the cases in Figs. 1(i)
and (iii). This is because, first, we get the distance between
x1(¢) and x2(¢) given by (12.1) and that between y;(¢) and
y2(f) given by Eq. (12.2). Finally, Ds(L1, L2) is given by
Eq. (12.3). Note that Ds(L1, Ly)=0if and only if L; = L;
the triangle inequality for Ds(L1, L) follows directly from
that of D1 in Egs. (12.1)-(12.2).

Di(x1, x2) = [x1(0) — x2(0)[ + [x1 (1) — x2(1)}, (12.D
Di1(y1, y2) = |y1(0) — y2(0)| + [y1(1) — y2(D)], (12.2)
Ds(Ly, Ly) = D1(x1, x2) + D1(y1, 2). (12.3)

It is worth pointing out that since (@ + b)//2<
Va?+b2<a + b for all a, b>0 and d(p1y, p21) =
VIx10) = O + 510) — 20 and d(pi2, pr)
\/[xl(l) - x2(D?] + [y1(1) — y2(1)]%, it follows that
Ds(L1,L2)//2<D1(L1,L2)<Ds(L1,Ly). Hence, Dy (L1,
Ly) and Ds(Ly, Ly) are equivalent from a topological




372 S. Kundu / Pattern Recognition 39 (2006) 363-372

Pu = P2

Fig. 10. The case of Dg(L1, Lp)=tan(8/2) when |L1|=|L3|=1, p11=p21
and 0= the angle between L and Lj.

point of view [4] as is the case for Di(L1, Ly) and
Dy(Ly, Ly). However, unlike Dy(L1, Ly), D5(L1, Ly)
fails to distinguish cases in Figs. 1(i) and (ii); this
can be seen by replacing the role of the dotted circle
at pj, of radius d(p{,, p5;) in Fig. 1(iii) by the curve
Ix{; — x|+ 1y]; — ¥yl =1x{} — x5, + [¥1; — ¥3; |, which has
a diamond-shape with pf; as the center and 2d(pf;, p5;)
being its diagonal length.

5.4. Radius of largest circle enclosed between L1 and Lo

Another possible definition for the distance between two
line segments is Dg(L1, Ly) =the radius of the largest circle
which lies between the line segments L1 and Ly and which
touches both L1 and L, tangentially. Fig. 10 shows that
Dg(L1, Lo) = tan(6/2), when |Li] = |Lz| =1 and p1] =
p21. It follows that Dg(Ly, Ly) fails to satisfy the triangle
inequality when the line segments Ly, Ly, and L3 have the
same start point and the same length because “tan(f; +
0>) < tan(61) + tan(62)” does not hold for all 8; and 6.
Another important shortcoming of Dg(L1, Lp) is that it is
not sensitive to the directions of L1 and Lo; in particular,
D¢(L1, Ly) = Ds(L"”, Ly) for all Ly and Ly. Note that
we cannot use the “smallest cycle” in place of the “largest
cycle” above because that would violate the property (D.1).

6. Conclusion

We have presented a distance-measure between two poly-
lines P; and P;, given by Egs. (7) and (8), which satisfies
the five desirable properties (D.1)~(D.5). This measure is
a variation of the initial measure defined by Eq. (1.1) (or
Eq. (1.2)) that makes the computation of an optimal con-
flation transformation 7 between P; and P, efficient. We
have shown that many other intuitive formulations of a dis-
tance measure fail to satisfy one or more of the properties
(D.1)~(D.5). We have also argued that Hausdorff’s distance
measure is inadequate for conflation.
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Appendix

We want to show that if both d; (x, y) and da>(x, y) satisfy
the triangle inequality, then the same is true for d(x, y) =
J& . y) + 3, y). Let @i = di(x, 2), b = di(x. y), and
¢; = d;(y, z) so that we have q; <b; +¢;, fori =1, 2. Also,
leta =d(x,z) = /a?+a} b=d(x,y) = /b} +b3, and

c=d(y,2)=,/ c% + c%. In order to show that @ <b-+c holds,
it suffices to show that a% + a% =a?<bh*+ c?+2bc = b% +
b3 + ¢} + c5 + 2bc. This holds if
(b2 + ¢ + 2bic1) + (B3 + ¢3 + 2byc2)

<B4+ b2+ 2+ c3 + 20,

ie.,
bic1 + baca < be,
1.e.,
bc? + b3c3 + 2byc1baca <bc?
=B+ + D)
= b%c% + b%c% + blzc% -+ b%c%,
ie.,
0< (b1ey — bac1)?,

which is clearly true and this completes the proof that d (x, y)
satisfies the triangle inequality.
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