
Finding Shortest MultiPaths with O(N2) Message Complexity

Jerrolyn Brees and Sukhamay Kundu
Department of Computer Science

Louisiana State University
Baton Rouge, LA 70803, USA

Abstract

This paper presents a distributed algorithm for
discovering multiple shortest paths in an ad hoc net-
work from a source s to a destination d. For each
neighbor x of s which lies on a loop-free sd -path, we
find one shortest sd -path via node x. The algorithm
requires only O(N2) many messages.
Keywords: shortest multipath, distributed algorithm

1 Introduction

In this paper, we introduce and define a dis-
tributed algorithm for finding multiple shortest paths
in an ad hoc network from a source s to a known des-
tination d. These shortest multipaths could be used
by s to route its data to d. Shortest paths are ideal
for routing since they typically use the fewest number
of resources to send data. Discovering and updating
single shortest paths distributively has been an active
topic for many years, and [6] is one of the earlier papers
which have discussed this.

The benefit of finding multiple sd -paths is that
if one of the neighbors of s stops functioning due to
failure or congestion s may still know a working sd -
path through one of its other neighbors. Several al-
gorithms have been proposed to find multipaths in
distributed environments, as [1, 2, 3, 5, 7]. In par-
ticular, [5] showed that finding multipaths instead of
single paths in a mobile ad hoc network can increase
the network performance by reducing the frequency of
path discovery.

2 Assumptions and Definitions

Given a graph G with bidirectional links, the
source node s is the node that needs to communicate
with a particular destination node d ; interior nodes are
all other nodes i such that i 6= s, d. The hop count hi

is used in this paper to determine a shortest path from
node i to node d. If a more general distance measure is

to be used, then the algorithm developed by Ramarao
and Venkatesan in [6] should be used instead.

We assume that each node i has a unique id and
knows of its neighbors Ni, where Ni = {j : (i,j) ∈
G}. Additionally, we assume that there is at least one
sd -path in the network. Messages that are sent to a
node’s neighbors are eventually received in the order
they were sent.

We use S(k) to denote the set of nodes that are k
hops from d, i.e., S(k) = {j : hj=k}. Namely, S(0)
= {d} and S(1) = Nd. For an example, see Fig-
ure 2. K is the maximum hop distance from d, i.e.,
K=max{k :S(k)6=∅}.

T is the tree of shortest-paths from d that is built
by the algorithm. The links from G used in T will de-
pend on the order that messages are received at vari-
ous nodes. The set childreni is the set of children of
i in T, i.e., childreni⊂Ni. The parent of node i in T
is known as parenti. Si(k) is the set of descendants
of i in T which are k hops away from d. In particu-
lar, Sd(k) = S(k); for i∈S(k − 1), Si(k) = childreni;
and for i∈S(k′) where k′<k − 1, Si(k) =

⋃
{Sj(k): j

∈ childreni}. Note that except for Sd(k), each Si(k)
may depend on the structure of T.

T (k) is the part of T from d up to level k. Thus,
S(k) equals the terminal nodes of T (k) and T (K)=T.
We build T by successively extending T (k) to T (k+1),
starting with T (0)={T}.

3 Algorithm Basics

The discovery of multiple shortest sd -paths is ini-
tiated by node s when it has information to transmit
to d ; s begins by sending a find path message (fp()) to
each of its neighbors. The first time an intermediate
node receives an fp-message, it forwards the message
to each of its neighbors. If an sd -path exists, then d
eventually receives an fp-message and proceeds with
the second phase, ignoring any other fp-messages.

In the second phase of the algorithm, d constructs
a tree (rooted at d) of shortest multipaths to all nodes
reachable from d without going through s. Once d in-
forms s that this is complete, s can query its neighbors

to find out which of them are on a path to d and what
their hop-distance from d is. Once all the queries and
responses have been received, s knows of the multiple
shortest sd -paths that exist in G.

We introduce two similar algorithms for the sec-
ond phase: Algorithm 1 and Algorithm 2. The algo-
rithms are based on the same principle with Algorithm
2 being a simplification of Algorithm 1 that improves
the message count for sparse networks.

4 Finding Shortest Paths from d with
Algorithm 1

When d receives the fp-message forwarded from
s, it begins creating a tree of shortest paths from itself
to the nodes i that are taking part in this algorithm.
A shortest path from i to d is defined as the path with
the smallest number of hops needed for i to reach d
without traversing s. As an effect of this definition,
nodes that cannot reach d without going through s do
not find their distance to d.

Since we assume that all links are of equal cost,
we add all nodes found at the same hop count at the
same time.

4.1 Message Types

Several different message types are used to find
the shortest paths. The message bp(k) is sent from
nodes in S(k − 1) to nodes in S(k) after all nodes in
S(k− 1) have been discovered. The sender of the first
bp-message that node i receives is set as parenti.

The ch(Yes/No) message is used as an acknowl-
edgment of the parent link. Node i sends chi(Yes)
to parenti and sends chi(No) to any other node from
which it receives a bp-message.

The node collection count message ncc(k, |Si(k)|)
originates from node i at the (k − 1)-th level and is
sent to d through the parent links. It tells how many
new nodes i found at the k -th level. A group of node
collection messages nc(k, j) follows the ncc message
relating each specific node j found at the k -th level.

Similarly, the node dissemination count message
ndc(k, |Sd(k)|) originates from d and is sent through
the child links to inform the other nodes that there
are |Sd(k)| nodes at the k -th level. A group of |Sd(k)|
node dissemination messages nd(k, i) follows the ndc-
message letting each child know exactly which nodes
have joined the spanning tree at level k.

The end() message halts the algorithm once there
are no new nodes to add to the spanning tree.

• When d receives an fp-message informing it that an sd-path
is wanted:

– Let k=1
– Send bpd(1) to each i∈Nd

– Loop the following until there are no new descendants:

∗ If k=1, listen for a chi(Yes/No) from each i∈Nd

· For each chi(Yes) received, add i to
childrend and add i to Sd(k)

∗ If k>1, listen for ncci(k,ci) from each neighbor i,
i∈childrend

· Receive ci nci(k, j) messages. Add j to Sd(k)

∗ Send ndcd(k, |Sd(k)|) to each i∈childrend

∗ For each j∈Sd(k)

· Send ndd(k, j) to each i, i∈childrend

∗ Increment k by 1

– Send endd() to each i∈childrend

• When node i receives bpm(k):

– If ki = null

∗ Let parenti = m and ki = k
∗ Send chi(Yes) to m

– Otherwise,

∗ Send chi(No) to m

• When node i receives ndcm(k, n):

– If i=s

∗ Send nccs(k + 1,0) to parents

– If ki < k ∧ i 6=s

∗ Send ndci(k, n) to each c∈childreni

∗ Listen for ndm(k, j) messages and do the following
until n such messages have been received

· Send ndi(k, j) to each c∈childreni

∗ Listen for nccj(k +1, t) and do the following until
|childreni| such messages received.

· For each ncc-message, receive t ncj(k + 1, r)
messages and add each r to Si(k + 1)

∗ Send ncci(k + 1, |Si(k + 1)|) to parenti

∗ For each j∈Si(k+1), send nci(k+1, j) to parenti

– If ki = k ∧ i 6=s

∗ Listen for ndm(k, j) messages and do the following
until n such messages have been received

· If k = kj ∧ j∈Ni, remove j from Ni

∗ Send bpi(k + 1) to each j∈Ni

∗ Listen for chj(ans) and do the following until |Ni|
such messages received.

· If ans = Yes, add j to childreni

∗ Send ncc(ki + 1, |childreni|) to parenti

∗ For each j∈childreni, send nc(ki+1, j) to parenti

• When node i receives endm()

– Send endi() to each j∈childreni. End execution at i.

Figure 1: Processing of Messages at a Node in Algorithm One

Figure 2: S(k) sets: S(0)={d}, S(1)={1,2,7}, S(2)={3,4,5},
S(3)={s}, S(4)=∅. Node 6 does not participate in this computa-
tion. Bold edges in this graph illustrate a possible T.

4.2 Processing Messages in Algorithm 1

Figure 1 illustrates the actions taken by nodes
in G when a message is received. In this section, we
discuss the use of ncc and ndc-messages in more detail.

4.2.1 Node Collection Messages: ncc(k, m),
nc(k, j′)

These messages are used to inform d of the nodes
at S(k). The node collection count message ncc(k,m)
is initiated by a node j that belongs to S(k−1) with m
= |Sj(k)| = |childrenj | and is sent to i = parentj ; it
is immediately followed by m many nc(k, j′)-messages
to i, one for each j′ ∈ Sj(k).

Once node i collects all ncc(k, j)-message and the
associated nc(k, j′)-messages from each j ∈ childreni,
i knows Si(k) = {j′ | nc(k, j′) received by i} and at
that point i propagates Si(k) to parenti using a combi-
nation of one ncc(k,|Si(k)|)-message and |Si(k)| many
nc(k, .)-message. This continues until d knows Sd(k).

4.2.2 Node Dissemination Messages:
ndc(k,m), nd(k, j)

These messages are used to notify each node
in S(k) about the whole set S(k). The message
ndc(k, m), with m = |S(k)| is initiated by d to each i
∈ childrend, and it moves down the tree from a node
i to its children until it reaches the nodes in S(k) and
is not forwarded further down the tree. If some node i
at level ki < k does not have a child then the arriving
nd -message is responded to with an ncci(k + 1,0) to
show that i has no new descendants.

The ndc(k,m) message from d to its children is
followed by m many nd(k, j), one for each j in S(k).
These nd -messages follow the ndc-message down the
tree. When a node i∈S(k) (where i 6=s) receives all of
the nd -messages, it starts the k+1-th step of the algo-
rithm by sending a bpi(k + 1) to each of its neighbors
that were not mentioned in an nd -message.

4.2.3 Optional Improvement

We can improve this algorithm by having the
nodes keep track of which of their children have no
more descendants. When node i sends ncc(k,0) to
parenti, it will not report any more new descendants
for the duration of the algorithm; and thus, it does not
need to participate in any more of the tree building ac-
tivities. Table 1 shows a progression of messages that
occur using Algorithm 1 with this improvement. We
leave this improvement out of the algorithm so that
the message count derived in the next section is not
dependent on the specific structure of the tree that is
built.

4.3 Message Count

We count the number of nc-messages up to the
point when d knows that it is done finding a shortest
path to all reachable nodes. After that d informs each
node i in the tree T of shortest di -paths that it is done
by sending the end message along T, which will require
N -1 messages. where N is the number of nodes in T.
We write ik for a general node in S(k), k ≥ 1.

4.3.1 Specific Case Where k=1.

If there is no S(2), then each node i1∈S(1) will
report Si1(2) = ∅, and d will know that it is done. This
requires d to send the set S(1) to each node i1∈S(1)
using N messages (one ndc-message for the size N -1 =
|S(1)| and N -1 nd -messages for the elements of S(1)).
Each node i1∈S(1) sends one ncc-message indicating
Si1(2) = empty. The total number of messages is (N−
1) ∗N + (N − 1) = O(N2).

4.3.2 Specific Case Where k=2.

Now assume that we have |S(1)| = N1 > 0, |S(2)|
= N2 > 0, and S(3) = ∅. In this case, after d sends
N1 ∗ (N1 + 1) nd -messages to inform each i1∈S(1)
of the set S(1), each node i1 in S(1) will send 1 +

Table 1: Example Order of Messages for Algorithm 1 using the
graph in Figure 2 and optional improvement from Section 4.2.3 with
79 total messages: 9 bp, 9 ch, 11 ndc, 27 nd, 11 ncc, 5 nc, 7 end

S.Time Message From To R.Time
1 bp(1) d 1, 2, 7 2
2 ch(Yes) 1, 2, 7 d 3
3 ndc(1, 3) d 1, 2, 7 4

nd(1, 1) d 1, 2, 7 5
nd(1, 2) d 1, 2, 7 6
nd(1, 7) d 1, 2, 7 7

7 ncc(2, 0) 7 d 8
bp(2) 2 4, 5 9
bp(2) 1 3, 4 10

9 ch(Yes) 4, 5 2 11
10 ch(Yes) 3 1 12

ch(No) 4 1 13
11 ncc(2, 2) 2 d 14

nc(2, 4) 2 d 14
nc(2, 5) 2 d 14

13 ncc(2, 1) 1 d 15
nc(2, 3) 1 d 15

15 ndc(2, 3) d 1, 2 16
nd(2, 3) d 1, 2 16
nd(2, 4) d 1, 2 16
nd(2, 5) d 1, 2 16

16 ndc(2, 3) 1 3 17
nd(2, 3) 1 3 17
nd(2, 4) 1 3 17
nd(2, 5) 1 3 17
ndc(2, 3) 2 4, 5 18
nd(2, 3) 2 4, 5 18
nd(2, 4) 2 4, 5 18
nd(2, 5) 2 4, 5 18

17 bp(3) 3 s 19
18 bp(3) 4 s 20

ncc(3, 0) 5 2 20
19 ch(Yes) s 3 21
20 ch(No) s 4 22
21 ncc(3, 1) 3 1 23

nc(3, s) 3 1 23
22 ncc(3, 0) 4 2 24
23 ncc(3, 1) 1 d 25

nc(3, s) 1 d 25
24 ncc(3, 0) 2 d 26
26 ndc(3, 1) d 1 27

nd(3, s) d 1 27
27 ndc(3, 1) 1 3 28

nd(3, s) 1 3 28
28 ndc(3, 1) 3 s 29

nd(3, s) 3 s 29
29 ncc(4, 0) s 3 30
30 ncc(3, 0) 3 1 31
31 ncc(3, s) 1 d 32
32 end() d 1, 2, 7 33
33 end() 1 3 34

end() 2 4, 5 34
34 end() 3 s 35

|childreni1 | many nc-messages to d to inform it of
the set Si1(2); the total number of these messages is
N1 +N2. Now d will compute the set S(2) and inform
each node i2∈S(2) about the set S(2) via the links in
tree T of shortest-paths. This requires (1 + N2) nd -
messages along each of N1 + N2 links of T, a total of
(1 + N2)(N1 + N2). Finally, each node i2∈S(2) will
inform its parent in S(1) that Si2(3) = ∅ and each
node i1∈S(1) will inform d that Si1(3) = ∅, and d
will stop since S(3) = ∅; this part requires N2 + N1
ncc-messages.
Total = N1(N1 + 1)+(N1 + N2)+(1 + N2)(N1 + N2)+(N1 + N2)

= N1(N1 + 1) + 3(N1 + N2) + N2(N1 + N2)

= N1(N1 + 1) + 3(N − 1) + (N − 1−N1)(N − 1)

= N1(N1 − (N − 2)) + 3(N − 1) + (N − 1)
2

Since 1 ≤ N1 ≤ N − 2, this is maximum when N1 is
maximum, i.e., N1 = N−2 and N2 = 1. The maximum
is 3(N − 1) + (N − 1)2 = (N − 1)(N + 2).

4.3.3 General Proof of O(N2).

Assume that the maximum number of nc-
messages for the case where S(k−1) is non-empty and
S(k) is empty is (N−1)(N +k−1). We show by induc-
tion that when S(k) is non-empty and S(k+1) is empty
the maximum number of message is (N − 1)(N + k).

For the next case of S(k) non-empty and S(k+1)
empty, we have the following additional messages:

• (k− 1) ∗Nk: nc-messages in communicating S(k)
to d via the sets Sx(k) where x are nodes in S(k−
1), S(k − 2), ..., S(1); previously Nk was zero
• (1 + Nk)(N1+N2+...+Nk): nd -messages in com-

municating S(k) to each node in S(k); previously
d stopped since Nk was zero
• N1+N2+...+Nk: ncc-messages in communicating

to d that S(k + 1) is empty; previously this part
was not present

The total number of extra messages is Ek = (k − 1) ∗
Nk + (1 + Nk)(N − 1) + (N − 1).

Thus for a given Nk, the number of messages is
Total = (N −Nk − 1)(N −Nk + k − 1) + Ek

= (N −Nk − 1)(N + k − 1) + N
2
k + Nk(k − 1) + 2(N − 1)

= (N − 1)(N + k − 1)−Nk ∗ (N −Nk) + 2(N − 1)

= (N − 1)(N + k + 1)−Nk ∗ (N −Nk)

This is maximum when Nk = 1.
Totalmax = (N − 1)(N + k + 1)− (N − 1)

= (N − 1)(N + k)

Thus, the number of messages required is O(N2).

5 Finding Shortest Paths from d with
Algorithm 2

In this section, we modify Algorithm 1 to reduce
the number of messages to compute the tree T of

shortest paths. Though Algorithm 2 also takes O(N2)
messages, it tends to reduce the actual number.

In this algorithm, the S(k) sets are not communi-
cated up and down T ; instead, when looking for nodes
in S(k + 1), a node i∈S(k) sends a bp-message to each
node j∈Ni, where j∈S(k) or j∈S(k + 1). By doing so,
we reduce the number of different types of messages
needed. Namely, the nc, ndc, and nd message types
are no longer used; ncc-messages are still used to tell
parents how many new nodes have been found. The
details of this algorithm are illustrated in Figure 3.

An important note is that this approach will
cause nodes to send bp-messages to other nodes in the
same k -level. Additionally, since bp-messages origi-
nate from d, many more bp-messages will be used in
Algorithm 2 than in Algorithm 1. Thus, for networks
that have high connectivity within S(k), Algorithm 1
may actually perform better than Algorithm 2.

• When d has received an fp-message:

– Send bpd(1) to each i∈Nd

– Listen for a chi(Yes/No) from each i∈Nd

∗ For each chi(Yes), add i to childrend

– Let kd = 2
– Do the following until no new descendants are found

∗ Send bpd(k) to each i∈childrend

∗ Listen for a ncci(k,ci) message from each
i∈childrend

∗ Let k = k+1

– Send endd() to each i∈childrend

• When node i receives bpm(k):

– If ki = null

∗ Let parenti = m and ki = k
∗ Send chi(Yes) to m. Add m to closedi.

– Otherwise if i = s

∗ Make a note of the new path to d through m
∗ If m 6= parents, send chs(No) to m
∗ Otherwise, send ncc(k,0) to parents

– Otherwise if ki = k

∗ Send chi(No) to m. Add m to closedi.

– Otherwise, if ki = k-1

∗ Send bpi(k) to all j∈Ni∧j /∈closedi

∗ Listen for chj(ans) and do the following until |Ni|-
|closedi| such messages received

· If ans = Yes, add j to childreni

∗ Send ncci(k,|childreni|) to m

– Otherwise, if ki < k-1

∗ Send bpi(k) to all j∈childreni

∗ Let ci = 0
∗ Listen for nccj(k, cj) and do the following until
|childreni| such messages received

· Increment ci by cj

∗ Send ncci(k, ci) to parenti

• When node i receives endm()

– Send endi() to each j∈childreni

Figure 3: Processing of Messages at a Node in Algorithm 2

5.1 Optional Improvement

Similar to Algorithm 1, Algorithm 2 can also be
improved by only sending bp-messages to those nodes
that may have descendants left. When a node sends

ncc(.,0) to its parent, it no longer needs to participate
in this tree building step because it has no more open
descendants. Table 2 illustrates a possible message
procession for Algorithm 2 using this improvement.

5.2 Message Count

The following section builds a proof showing the
maximum number of messages required to successfully
complete Algorithm 2. Additionally, we show that the
worst case network graph scenario is similar to the one
found for the previous algorithm, namely that each of
|Nk|, |Nk−1|, ..., |N3| = 1 and either (|N1|=N − k and
N2=1) or (N1=1 and N2=N − k).

Here are a few notes about the algorithm to ex-
plain where these message counts are derived from.
Each node xk ∈ S(k) will send a bp-message only af-
ter it receives a bp(k+1) from its parent corresponding
to the determination of S(k + 1). By that time, each
xk has its unique parent in S(k − 1).

In order to avoid sending bp-messages to nodes in
S(k − 1), each xk keeps track of all nodes in S(k − 1)
from which it has received a bp-message through using
the closedx set.

Each node xk ∈ S(k) sends bp-message to adja-
cent nodes that are not in closedx. This includes only
nodes in S(k) and nodes in S(k + 1). All nodes in
S(k) will reject xk as its parent, and 0 or more nodes
in S(k+1) will accept xk as their parent. When xk has
heard from all nodes to which it sent a bp-message, it
informs parentxk

that it is ready to proceed with the
next stage by sending an ncc-message.

Table 2: Example Order of Messages for Algorithm 2 using the
graph in Figure 2 and optional improvement from Section 5.1 with
59 total messages: 26 bp, 15 ch, 11 ncc, 7 end

S.Time Message From To R.Time
1 bp(1) d 1, 2, 7 2
2 ch(Yes) 1, 2, 7 d 3
3 bp(2) d 1, 2, 7 4
4 bp(2) 2 1, 4, 5 5

bp(2) 1 2, 3, 4 6
ncc(2,0) 7 d 7

5 ch(Yes) 4, 5 2 7
ch(No) 1 2 7

6 ch(Yes) 3 1 8
ch(No) 2, 4 1 9

7 ncc(2,2) 2 d 8
9 ncc(2,1) 1 d 10
10 bp(3) d 1, 2 11
11 bp(3) 1 3 12

bp(3) 2 4, 5 13
12 bp(3) 3 4, s 14
13 bp(3) 4 3, 5, s 15

bp(3) 4 2 16
14 ch(Yes) s 3 17

ch(No) 4 3 17
15 ch(No) 3, 5, s 4 18
16 ch(No) 4 5 18
17 ncc(3,1) 3 1 19
18 ncc(3,0) 4, 5 2 20
19 ncc(3,1) 1 d 21
20 ncc(3,0) 2 d 22
22 bp(4) d 1 23
23 bp(4) 1 3 24
24 bp(4) 3 s 25
25 ncc(4,0) s 3 26
26 ncc(4,0) 3 1 27
27 ncc(4,0) 1 d 28
28 end() d 1, 2, 7 29
29 end() 1 3 30

end() 2 4, 5 30
30 end() 3 s 31

5.2.1 Case of S(1) non-empty and S(2) empty.

Let N1 = |S(1)|. The total number of messages
are as follows:

• N1, bp(1) messages from d to nodes in S(1)
• N1, ch(Yes) messages from nodes in S(2) to d
• N1, bp(2) messages from d to nodes in S(1)
• N1(N1 − 1), bp-messages from nodes in S(1) to others in S(1)
• N1(N1 − 1), ch(No) messages among the nodes in S(1)
• N1, ncc(0) messages to d from nodes in S(1)

The total number of messages sent when S (2)=∅ is
2(N−1)(N−2)+4(N−1).

5.2.2 Case of S(2) non-empty and S(3) empty.

Let N2 = |S(2)|. The total number of messages
are as follows:

• N1, bp(2) messages from d to nodes in S(1)
• N1(N1 − 1) + N1N2, bp-messages from nodes in S(1) to those

in S(1)∪S(2)
• N1(N1 − 1), ch(No) messages among the nodes in S(1)
• N1N2, with N2 ch(Yes) messages and the remainder being

ch(No) messages from nodes in S(2) to S(1))
• N1, ncc(.) messages to d
• N1 + N2, bp(3) messages from d to nodes in S(2) via T
• N2(N2 − 1), bp(3) messages among nodes in S(2)
• N2(N2 − 1), ch(No) messages among nodes in S(2)
• N2, ncc(0) messages to parents of nodes in S(2)
• N1, ncc(0) messages to d from nodes in S(1)

Total = 2 ∗ (N1N1 + N1N2 + N2N2 + N1)

= 2 ∗ (N1+N2)(N1 + N2) + 2N1 − 2N1N2

= 2(N − 1)(N − 1)− 2N1(N2 − 1)

which is maximum when N1 = N−2 and N2 = 1, and
the maximum is 2(N−1)(N−1).

5.2.3 The case of S(3) non-empty and S(4)
empty.

The computation of S (3) will have following ad-
ditional messages, where N3 = |S(3)|.
• N2N3, bp(3) messages from nodes in S(2) to nodes in S(3)
• N2N3, with N3 ch(Yes) messages from nodes in S(3) to nodes

in S(2) and the remainder being ch(No) messages.

There will be following number of messages for deter-
mining that S (4) is empty:
• N1 + N2 + N3, bp(4) messages from d via T
• N3(N3 − 1), bp-messages among nodes in S(3)
• N3(N3 − 1), ch(No) messages among nodes in S(3)
• N3, ncc(0) messages to parents of nodes in S(3)
• N2, ncc(0) messages to parents of nodes in S(2)
• N1, ncc(0) messages to d from nodes in S(1)

The total additional messages here is 2[N1 + N2 +
N3(N3 + N2)].

The total number of messages are now:
Total = 2N1N1 + (N2N2+N1N2+N1) + (N3N3+N3N2+N1+N2)

Here N1 and N3 appears in a symmetric fashion for
the most part (N1N1 vs N3N3 and N1N2 vs N3N2)
except for 2N1 (without a matching 2N3). This shows
that to maximize for a given N2, we need to make
N3=1. This gives the total number of messages:

Total = 2[N1N1 + N1N2 + N2N2 + 2N1 + 2N2 + 1]

= 2[(N1 + N2)(N1 + N2)−N1N2 + 2.(N1 + N2) + 1]

Since N1+N2=N − 2, to maximize the number of
messages, we make N1=1 and N2=N−3 or vice versa
and the maximum is

Total = 2((N − 2)(N − 2) + 1(N − 2) + 2)

= 2(N − 1)(N − 2) + 2(2)

In particular, both (N1=N -3, N2=1, N3=1) and
(N1=1, N2=N -3, N3=1) give the maximum.

5.2.4 The case S(k) not empty and S(k+1)
empty, k ≥ 2.

The maximum is obtained when N1 = N −k and
all other Ni = 1 for 0 ≤ i ≤ k. If we interchange, N1
and N2 we also get the same maximum.

Total = 2(N − (k − 1))(N − 1) + 2(2 + 3 + 4 + ... + (k − 1))

= 2(N − (k − 1))(N − 1) + [k(k − 1)− 2]

= O(N
2
)

6 Finding Multiple Shortest sd-Paths

After following Algorithm 1 or Algorithm 2, each
viable neighbor of s now has a path to d. If Algorithm
1 is used, then after it receives the end -message, s must
ask its neighbors for the lengths of their paths. Any of
its neighbors that do not have a path length can only
reach d through s. With this, s can pick which of its
neighbors to use to forward its data to d.

If Algorithm 2 is used, then s has already heard
from each of its neighbors that have a valid path to d.
As such, no additional steps are needed. Node s can
use the information gathered in Algorithm 2 to decide
which nodes to use to forward its data to d.

As such, regardless of whether Algorithm 1 or
Algorithm 2 is used, node s has discovered multiple
shortest paths to d, if such paths exist.

7 Optional Bounding of the Graph

In [4], an algorithm is presented that can deter-
mine which neighbors of d have a viable path to s given
an s and d node pair. A viable path from i∈Nd to s is
one that does not use d as an intermediate node. To
do this, the algorithm traverses all of the links in the
graph starting at s without going through d and takes
linear time based on the number of links.

For a large, sparse network G′ where d is likely to
be a cut vertex, using this algorithm can help reduce
the number of messages needed to find the shortest
multipaths by limiting S(1) to only the neighbors of d
that have a viable path to s.

8 Conclusion

We have obtained an efficient O(N2) distributed
algorithm for finding multiple shortest paths for a node
pair s and d. From an application point of view, intro-
ducing node disjointness in the shortest paths would
be useful because the more disjoint the paths are the
more likely that one sd -path will survive through sev-
eral node failures. Currently, it is possible for a single
node to be a part of each shortest path found, and
thus if that single node fails, then the entire algorithm
would have to be reexecuted to discover new shorter
paths. We wish to address this issue in the future.

References

[1] C. Balasubramanian and J.J. Garcia-Luna-Aceves,
”Shortest Multipath Routing Using Labeled Dis-
tances,” IEEE International Conference on Mobile
Ad-hoc and Sensor Systems, pp.314-323, 2004.

[2] M.S. Corson and A. Ephremides, ”A Distributed
Routing Algorithm for Mobile Wireless Networks,”
Wireless Networks, vol.1(1), pp.61-81, 1995.

[3] D. Ganesan, R. Govindan, S. Shenker, and D. Es-
trin, ”Highly-Resilient, Energy-Efficient Multipath
Routing in Wireless Sensor Networks,” ACM SIG-
MOBILE Mobile Computing and Communication
Review, vol.5(4), pp.11-25, 2001.

[4] S. Kundu, ”A Clean Distributed Algorithm for
Building Multiple Paths for a Source-Destination
Pair,” Technical Report: TR-01-06, Computer Sci-
ence Department, Louisiana State Univ., 2006.

[5] A. Nasipuri, R. Castaneda, and S.R. Das, ”Perfor-
mance of Multipath Routing for On-Demand Pro-
tocols in Mobie Ad Hoc Networks,” Mobile Net-
works and Applications, vol.6(4), pp.339-349, 2001.

[6] K.V.S. Ramarao and S. Venkatesan, ”On Find-
ing and Updating Shortest Paths Distributively,”
Journal of Algorithms, vol.13(2), pp.235-257, 1992.

[7] W.T.Zaumen and J.J.Garcia-Luna-Aceves, ”Loop-
Free Multipath Routing Using Generalized Dif-
fusing Computations,” INFOCOM ’98, vol.3,
pp.1408-1417, 1998.

