Piano Protegé

Table of Contents

Project statement..........oooovieeeeierii e
(OF N 40 1<) o] = R TUPURPPRRI
MIDI and Song Creation..........cveerieieier e e e
Data ENtities. ...
F SIS e e s

Yo oTe) 0 1] 6 10) 5T

© O b W

11
14

The Project

Following the popularity of games such as Rock Band and Guitar
Hero, we propose a game that is of the same vision but a different flavor.
This program is a game using beat precision key strokes with the
difference being the instrument being emulated is the piano. The
selection of songs will range from beginning level using one hand and
three keys to difficult where the player will use both hands and 14 keys
to imitate the key strokes of many classical and contemporary songs
played on piano. This will all be played either on the keyboard or on a
MIDI keyboard.

The Problem

The multi-million dollar idea of simulating instrument playing
developed into video games has hit the nation by storm, so why can’t it
be extended to other popular instruments? Many people have had the
urge to play the piano or at least play song that use the piano, but don’t
have the skill of actually playing because of monetary lapses or lack of
connections to a proper teacher. This program allows for actual player
and non-players of the piano alike to have the opportunity to emulate
playing songs on the piano.

The Impact

This program will allow anyone the opportunity to emulate
playing songs written for piano without having to have any real piano
playing skills. It will over time develop the player’s sense of rhythm and
possibly influence them to actually learn to play piano for real. The
program will also open the player to a library of songs that use piano in
the main melody.

The Motivation

This program was though of out of a mutual enjoyment of playing
the games Rock Band and Guitar Hero. We thought that the
implementation of this game would be a good way to use the skills we
all have with music and programming and find a way to merge the two
together. We also wanted to extend our knowledge of MIDI interfaces
through java. This will allow for us to have experience dealing with
external interface implementation though a java environment.

Gameplay

The gameplay of Piano Protégé will be very similar to the gameplay
successfully implemented in games like Guitar Hero and Rock Band. The
user will choose a song to play from a list; then the song will begin.
While the song is playing, symbols representing notes will scroll down
the screen in time to the music. The horizontal position of these symbols
determines which note should be played. When a symbol reaches the
bottom of the screen, the user should play the correct note at that time.
If more than one note appears at the same height on the screen, a chord
is represented, and the user should play each of these notes at the same
time to receive credit. Every time the user plays a correct note at the
right time, the user’s score will increase. A combo is created by playing
consecutive notes correctly without playing any extra wrong notes. As
the combo increases, the user’s score will increase at a higher rate.
When the song ends, the user will be shown the total score.

Difference from Guitar Hero

Obviously, the main difference between Piano Protégé and Guitar Hero
is the particular musical instrument simulated in each game. Guitar
Hero uses a custom guitar-like controller to simulate playing a guitar.
Piano Protégé will allow the user to use a MIDI keyboard, which
provides for a much closer simulation of the piano. Also, for the piano,
two sets of notes are needed - one for each hand. Therefore, Piano
Protégé will have two sections of notes scrolling down the screen at the
same time.

This screenshot from Guitar Hero is similar to what Piano Protégé
will look like (minus the background and fireworks graphics). The
screenshot shows two sections of notes, which will be seen in Piano
Protégé. However, in Guitar Hero, the two sections are meant to be
played by two different people, whereas in Piano Protégé, the left
section will be played by the user’s left hand, and the right section
will be played by the same user’s right hand.

T2234) g?l »
R\

e ARIE -,

.

Explanation of the MIDI protocol

MID], or the Musical Instrument Digital Interface, is an industry standard protocol
designed to allow music hardware of all types and brands to communicate with one
another. Originally, the protocol was only used as a high baud rate, serial protocol
(much like RS-232), but eventually, it made its way to the computer and a standard
file format evolved. The protocol defines many different messages that relate to
musical controls. The messages that we will be focusing on are the note-on and
note-off events.

The structure and purpose of these message types are very straight forward. The
note-on event tells the event listener when a note on a keyboard is pressed and how
hard it was pressed (known as the note's velocity) and the note-off event tells the
event listener when that note was released. Let us briefly examine the structure:

Note-on Event
1-0-0-1 X-X-X-X Byte 1
0-X-X-X-X-X-X-X Byte 2
0-X-X-X-X-X-X-X Byte 3

The note-on event consists of three bytes. The most significant half of the first
byte is the code 1-0-0-1 which is the code for a note-on event. The least significant
half, X-X-X-X here, is the channel number. This value can be arbitrarily chosen by us
when we create the MIDI file so an explanation of its use is not important. The
important parts are bytes 2 and 3. Byte 2 is the note value. Since we have 7 bits to
work with, it is a number between 0 and 127. This value corresponds to the notes of
a keyboard with 0 being the lowest pitched note and 127 being the highest pitched
note. The value 60 usually corresponds to middle C on the keyboard. Byte 3
represents the velocity of the note. As explained earlier, the velocity is a number
between 1 and 127 that tells the event listener how hard the note was hit. For our
purposes, we are only concerned with this number being above a certain threshold,
for example, only velocity > 60 constitutes a note played event. The note-off event is
almost exactly the same as the note-on event except the code is 1-0-0-0 and the

velocity is always 0. The point of the note-off event in our case is to let us know how
long the player is holding down a note.

Song Construction

Now that we have explained what MIDI is, we will show how the songs will be
constructed. To create the MIDI files, we will use a MIDI editor. The layout of these
programs are very straightforward. They consist of a grid of squares where the X-
axis corresponds to a musically defined quantization (1/4 of a bar, 1/8th of a bar,
etc) and the Y-axis corresponds to the ascending notes of a keyboard (also the
ascending note values in the MIDI specification). More specifically, we will be using
a MIDI editor inside a multi-track studio. What this will allow us to do is import a
song as sound file (in wav, mp3, ogg, etc) and line it up with the MIDI notes that we
want the user to play. So basically, a song (as we define it) will consist of a MIDI file
and a sound file. Since they are both synced, we can use a single timecode for both
files (the sound file playing and the MIDI file being visualized with our custom
display). We can create the MIDI notes in a number of ways, we can play the song
file and have the multi-track studio record someone playing the keyboard, we can
use a program to convert sheet music to MIDI, or we can just put it in by hand with a
mouse and the midi editor interface.

Here is a picture of song construction in progress, you can see the actual sound file
represented by the sound wave on top, and the MIDI editor right under it:

sz
=
=

Player

0:1

Note - Playing >f Song

Score i Calculating >—

Player(Player ID, Player name, HasScore)

Song(Song Id, Title, Composer, NumberofNotes, Length, Tempo, Difficulty)
Note(Note Id, Song Id, Keys, Duration, WaitTime)

Score(Player ID, Song Id, Date Played, Score, Placement, HighestCombo)
Calculation(Song Id, Score, NumberOfCorrectNotes, HighestCombo)
Playing(Song Id, Note Id, boolCorrect)

Starting(Player Id, Song Id, difficulty)

0:1 Player to Starting link:
A player may at any one time have a minimum of 0 songs starting and a maximum
of 1 song being started

0:1 Song to Starting link:
A minimum of 0 songs may be starting at any one time to a maximum of 1.

0:n Song to Playing link:
A Song may at any one time be playing a minimum of 0 notes and a maximum of n
notes

1:1 Note to Playing link:
At any one time a note will be playing for only one song

1:1 Song to Calculating link:
A song may at any one time have 1 score being calculated at a time

1:1 Score to Calculating link:
A Score may at any one time be calculated for only one song at a time

Menus and Interfaces FSM

Program Run Program Exited

Pa1d3jag suonsnsy)

Choose Song
Menu

Song Paused
&
N

Start up song from Pause

Play Song

Choose New Song Selected

Pause Menu

Retry Selected
313)dwoy Buog

End of Song

Note FSM

Wait for next
Note Event

Note
Expected

Any More
Notes?

Note correctly scored

Score Note

Play correct note

Correct Note Played|

Correct Note Not Played

Screenshots

PIANO PROE‘GE

Please Wait...

Aaron Banks
Tyler Barker
Benjamin Eckel
Aaron Tureau

—

Main Menu

- Choose Song

- Instructions

- View Scores

End Game

Measure or Bar

“@hy n

|

Star
Spangled
Banner!

Score:
492

Right Hand

Great
Job!

Main Menu

- Choose Song
- Instructions

- View Scores

End Game

THANKS FOR
PLAYING
PIANO PROTEGE!

