
FINITE-STATE MODEL OF
OPERATIONS IN A SOFTWARE

Why Make a Finite-State Model (FSM):

• It shows which high-level, user-operations can apply following
other operations.

• A finite-state model of a program P is an abstraction of it.

− It highlights the operations and their valid application
sequences.

− It is programming language independent.

− One can generate semi-automated code from the finite-state
model (FSM).

− One can easily build subsystem-models and higher level
(architecture) models from FSM.

• In practice, we build the model M(P) of P first and then build the
software P.

− Converting a P to an M(P) can be automated.

− Building an FSM from the problem-statement or requirements
(without having the software), cannot be fully automated, and
remains very much a human-centered activity.

+ The requirements use terms/concepts that cannot be auto-
matically converted to code.

+ The requirements must be, however, stated in a form and
with sufficient details to allow us build an FSM (not nec-
essarily automatically though).

36.2

FINITE-STATE MODEL FOR
A DOOR WITH LOCK

Assumptions: Four operations: open, close, lock, unlock.

• Door can be opened if it is closed and unlocked, and it can be
closed if it is opened.

• Door can be locked only if it is closed and unlocked, and it can be
unlocked only if it is locked.

• Initially, the door is closed and unlocked.

opened closed
unlocked

close
open lockedlock

unlock

The meaning of states determines
the transitions among them.

Question:

•? What would be the model if there are two locks and they can be
locked and unlocked in either order?

•? What is wrong with the model below, which has more states and
links? What does an arrow indicate here? Can we take "open"
and "lock" as start-states and "close" and "unlock" as final-states?

open close lock unlock

Tw o reasons for not using this kind of model is that typically, it
will have: (1) multiple states with the same operation-name, and
(2) more states and links, making the diagram more complex.

36.3

FINITE-STATE MODEL OF
A LIBRARY BOOK

A Simple Case: Tw o operations "borrowed" and "returned".

• The FSM shows that the two operations must alternate.

• The start-operation is borrow (why?) and we assume that a book
once borrowed will be returned at some point.

in-
Library

is-
Borrowed

borrow

return

Shows the applicable
operations in each state.

We need two states (why?).

•

•

Question:

•? State another situation where we have two operations "b..." and
"r..." which also alternate but the starting operation is "r...".

More Complex FSM: Adding renew-operation.

• A book can be renewed only if it is borrowed but not yet returned.

• There is no limit on the number of renewals.

inLibrary is-
Borrowed

borrow

return
renew

Questions

•? What is the similarity between return and renew operations? What
distinguishes them and how is it reflected in the FSM? Do you
see any shortcoming in this model?

•? Show the new FSM if we assume that a book can be renewed at
most 2 times. (Is there a need for such a restriction?)

•? How to model the fact that the person borrowing the book is the
person renewing it? (Is this restriction necessary?)

36.4

MODEL-BASED MENU FOR
DISPLAYING APPLICABLE OPERATIONS

Example of Applicable Operations for Different Books:

Book Borrow Return Renew
Book #1 ×
Book #2 ×
Book #3 × ×
⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅

General Case:

• We can create a menu of applicable operations based on the cur-
rent "state" of software.

• Such a menu would be less cluttered and therefore more user-
friendly.

• This is particularly important when there are many applicable
operations but only a few apply at any time (i.e., at any state).

36.5

FINITE-STATE MODEL OF A PERSON
FOR LIBRARY EXAMPLE

Assumptions:

• At most one book may be borrowed at any time.

• If a person doesn’t return a book by the due date, then he is sent a
book-overdue notice (BOD) periodically till the book is returned.

• A person can return a borrowed book; it can be also renewed if no
BOD-notice has been sent (= received).

can-
Borrow

has-
Borrowed

borrow

return

renew

received-
BOD

recvBOD

return

recvBOD

This is also a model
for a book (why?)
with 5 operations
borrow, return, etc

A Simplified Form Using Guards:

• Initially, variable BOD = "no"; not modified by borrow-operation.

• The recvBOD-operation sets it to ’yes’ and the return-operation
resets it ’no’.

can-Borrow
(BOD = no)

has-
Borrowed-rcvd-

?BOD

borrow

return/(BOD=no)

[¬BOD]renew,
recvBOD/(BOD=yes)

EXERCISE

1. Add another variable to create a model with just one state.

36.6

EXERCISE

1. Modify the FSM of a person for the additional assumptions:

(a) The person can put a hold on a book (borrowed by someone
else) if he does not have another book borrowed.

(b) He can put at most one book on hold at any time (just as he
can borrow at one book at a time).

(c) He may borrow the book on which he has put a hold after he
gets a Book-on-Hold-Available (BHA) notice. He may can-
cel the hold after or before getting BHA-notice.

(d) The BHA-notice is sent periodically until the person borrows
the book or cancels the "hold". (Assume no limit on the
number of BHA-notice.)

2. Shown below is a finite-state model of a book which allows hold-
operation and BHA-notice-operation. State all restrictions
implied by this model. Why should we not merge the states "on-
Hold’ and "received-BHA"?

can-be-
Borrowed

is-
Borrowed

borrowed

returned

renewed

received-
BOD

recvBOD

returned

recvBOD

on-Hold

cancelled-
Hold

put-On-
Hold

received-
BHArecvBHA recvBHA

borrowedcancelled-
Hold

Generalize this model when a book may also be put on hold if it
is borrowed and may or maynot have received BOD. (The person
putting the hold must be different from the one having the book.)
Can we now merge the states "on-Hold’ and "received-BHA"?
Show the new model after merging.

36.7

A MORE COMPLEX MODEL OF A PERSON
FOR THE LIBRARY EXAMPLE

A More General Case:

• A person can borrow at most one book at a time and place an hold
on at most one book other than the one he has borrowed.

• Other restrictions apply as before.

borrow-
OrPutHold

has-
Borrowed

borrow

return

renew

has-
Hold

put-
Hold

cancel-
Hold

has-
BHA

recv-
BHA

cancel-
Hold

borrow
return

recv-
BHA

borrowed-
and-Has-

Hold

put-
Hold

cancel-
Hold

borrow
return

renew

borrowed-
and-Has-

BHA

borrow

recv-
BHA

return

cancel-
hold

renew,
recv-
BHA

has-
BOD

recv-
BOD

recvBOD

return

has-
BOD-and-

Hold

return

put-
Hold

cancel-
Hold

recvBOD

recvBOD

has-
BOD-and-

BHA
recv-
BHA

recvBOD,
recvBHA

cancel-
Hold

recv-
BOD

•? Should we have a "borrow" transition from "has-BHA" to "bor-
rowed-and-Has-Hold"? How would its meaning differ from the
existing borrow-transtion from "has-BHA"?

36.8

A SIMPLIFIED MODEL USING GUARDS

Following state-pairs are merged:

• {hasBorrowed, hasBOD}, {borrowedAndHasHold, hasBODand-
Hold}, and {borrowedAndHasBHA, hasBODandBHA}.

• The part "?BOD" in a state-name means BOD-notice may or
maynot have been received.

borrow-
OrPutHold

has-
Borrowed-

?BOD

borrow

return

[¬BOD]renew,
recvBOD

has-
Hold

put-
Hold

cancel-
Hold

has-
BHA

recvBHA

cancel-
Hold

BHA-borrow

recv-
BHA

has-
Borrowed-
has-Hold-

?BOD

put-
Hold

cancel-
Hold

borrow
return

[¬BOD]renew,
recvBOD

has-
Borrowed-
has-BHA-

?BOD

borrow

recv-
BHA

return

cancel-
hold

[¬BOD]renew,
recvBHA,
recvBOD

Question:

•? Show the state-diagram if we merge the states has-borrowed-has-
Hold-?BOD and has-borrowed-has-BHA-?BOD, (Hint: some
more transitions will now hav e new guards.) Should we also
merge has-hold and has-BHA at the same time?

•? Modify the model by adding "search" operation for books.

36.9

GOING FROM A PROGRAM P
TO ITS FINITE-STATE MODEL M(P)

The WordCharCount program:

#include <stdio.h>
#define WORDLEN 20

void WordCharCount(FILE *inFile)
{int i;
char word[WORDLEN+1]; //1 for end of string

wordCount = charCount = 0;
while (fscanf(inFile, "%s", word) > 0) {

wordCount++;
for (i=0; i<=WORDLEN; i++)

if (’\0’ == word[i]) break;
else charCount++;

}
}

Example Input And Activities:

inFile:

wordCount=charCount=0

a

wordCount++; i=0

charCount++; i++

b

charCount++; i++

c

⋅⋅⋅
d

⋅⋅⋅
e

wordCount++; i=0

charCount++; i++

f

⋅⋅⋅
⋅⋅⋅

Behavior Patterns:
Patterns of read, test, and update operations.

36.10

FLOWCHART OF WordCharCount

WordCharCount (inFile)start-node

wordCount =
charCount = 0A1

fscanf(..., word) > 0D1 end

A2 wordCount++;
i=0

T

i ≤ WORDLEND2

’\0’ == word[i]D3

T
break

charCount++;
i++A3

F

Decision to decision path (DD-path):
The "chunk" of activities, if any, between two consecutive
branch-points on a path from start to end.

• Start → A1 (→ D1)

• D1 → A2 (→ D2); D1 → end;

• D2 (→ D1); D2 (→ D3)

Question: What is the relationship between the #(DD-paths) and
#(decision-points) in the program? (Assume that each
decision is two-way: true and false.)

36.11

EXERCISE

1. Show all possible improvements to the logic and efficiency of the
following pseudocode (assume input file has no error); in particu-
lar, is it possible to require that the data in the input file be in a
certain form that would allow simplifying the pseudo- code?
Show the flowchart of the new pseudo-code; how many DD-paths
are there in the flowchart? [7+6+2].

function ClassifyTriangles(inputFile of one
integer-triplet per line)

{ int a, b, c;
1. while (not end of input file) {
2. read-integers(a, b, c); //positive numbers
3. print("input lengths:");
4. print-integers(a, b, c);
5. if ((a < b + c) && (b < a + c) && (c < a + b))
6. then isTriangle = true;
7. else isTriangle = false;
8. if (isTriangle)
9. then if ((a == b) && (b == c))

10. then print(" an equilateral triangle");
11. else if ((a ≠ b) && (a ≠ c) && (b ≠ c))
12. then print(" scalene triangle");
13. else print(" an isosceles triangle");
14. else print(" not a triangle");
15. }

}

2. What is the general formula for the number of DD-paths and the
number of decision-points (assume each decision is two-way: true
and false)?

3. Assume initially ClassifyTriangles-function simply distinguished
"triangular" and "non-triangular" triplets. What would be the suc-
cessive refinements (extension) of the function that would result
in the final improved form.

36.12

FINITE-STATE MODEL FROM DD-PATHS

Link Label:

• Conditions and actions: cij /aij .

• Conditions cij for the links from each node Di are disjoint
(cij∧ci j′ = F) and complete (∨cij o ver j = T).

start D1

inFile ≠ NULL
/ (wordCount = 0;

charCount = 0)
end

fscanf(inFile, ⋅⋅⋅) = 0
/ −

D2

fscanf(inFile, ⋅⋅⋅) > 0
/ (wordCount++; i=0)

i > WORDLEN / −

D3
i ≤ WORDLEN / −

’\0’ ≠ word[i] / (charCount++; i++)

’\0’ = word[i] / −

• Each node, other than the start and end nodes, has two transitions
from it.

• Cycles in the flowchart give cycles in the FSM.

Abstracton of History of Computation:

• Decision-node + current values of all local/global vars.

• This determines the future computations from that point on.

All computations can be modeled, at any desired level,
by FSMs using condition-guards on the transitions.

36.13

COMMON PROBLEMS IN
SPECIFYING AN FSM

• Unused transitions:
Not used in any computation-path.

• Predecessor dependency:
Transition t is predecessor dependent on t′ if t′ must be used
before t.

si
t′ t A trivial case:

t′ is the only transition to si .

• Successor dependency:
Transition t is successor dependent on t′′ if t′′ must be used
after t.

si
t′′t A trivial case:

t′′ is the only transition from si .

• Elimination of unused transitions and the dependencies can sim-
plify the FSM and hence the program.

More Complex Dependencies:

• Dependencies between transitions that do not follow each other
immediately (head of one transition ≠ tail of the other).

36.14

ELIMINATION OF
UNUSED TRANSITION

start D1

inFile ≠ NULL
/ (wordCount = 0;

charCount = 0)
end

fscanf(inFile, ⋅⋅⋅) = 0
/ −

D2

fscanf(inFile, ⋅⋅⋅) > 0
/ (wordCount++; i=0)

i > WORDLEN / −

D3
i ≤ WORDLEN / −

’\0’ ≠ word[i] / (charCount++; i++)

’\0’ = word[i] /−

start D1

inFile ≠ NULL
/ (wordCount = 0;

charCount = 0)
end

fscanf(inFile, ⋅⋅⋅) = 0
/ −

D2

fscanf(inFile, ⋅⋅⋅) > 0
/ (wordCount++; i=0)

D3
T / −

’\0’ ≠ word[i]/ (charCount++; i++)

’\0’ = word[i]/−

36.15

THE NEW PROGRAM

The Original Program:

void WordCharCount(FILE *inFile)
{ int i;
char word[WORDLEN+1];
wordCount = charCount = 0;
while (fscanf(inFile, "%s", word) > 0) {

wordCount++;
for (i=0; i<=WORDLEN; i++)

if (’\0’ == word[i]) break;
else charCount++;

}
}

The New Program: Save the loop-test "i ≤ WORDLEN".

void WordCharCount(FILE *inFile)
{ int i;
char word[WORDLEN+1];
wordCount = charCount = 0;
while (fscanf(inFile, "%s", word) > 0) {

wordCount++;
for (i=0; ’\0’≠word[i]; i++)

charCount++;
}

}

36.16

TRANSITION ELIMINATION

si s j
cij /aij

sk

c jk /a jk

sm

c jm/a jm

⋅⋅⋅⋅⋅⋅
Before
elimination
of (si , s j).

s jsi

skcij∧σ (c jk , aij)/(aij ; a jk)

c jk /a jk

smcij∧σ (c jm, aij)/(aij ; a jm)

c jm/a jm

⋅⋅⋅⋅⋅⋅
After
elimination
of (si , s j).

The modified form σ (c jk , aij) of c jk:

aij: (x = x + y; y = f (x, y, z))
c jk: x > y

σ (c jk , aij): (x + y) > f (x + y, y, z)

• If there are no transitions left to s j , eliminate s j .

36.17

ELIMINATION OF
PARALLEL TRANSITIONS

si s j

c(1)
ij /a(1)

ij

c(2)
ij /a(2)

ij

si s j

cij /aij

cij = c(1)
ij ∨ c(2)

ij [disjoint]
aij = If (c(1)

ij) then a(1)
ij else a(2)

ij

= If (c(2)
ij) then a(2)

ij else a(1)
ij

aij is more complex than both a(1)
ij and a(2)

ij

Remarks:

• If a(1)
ij = a(2)

ij = a, then aij = a.

• All other transitions from si are disjoint from cij :
cij ∧ cik = [c(1)

ij ∧cik] ∨ [c(2)
ij ∧cik] = False

• cij together with all other cik from si are complete:
cij ∨ [

k
∨cik] = True

36.18

ELIMINATION OF
PRECEDENT-DEPENDENT TRANSITION

start D1

inFile ≠ NULL
/ (wordCount = 0;

charCount = 0)
end

fscanf(inFile, ⋅⋅⋅) = 0
/ −

D2

fscanf(inFile, ⋅⋅⋅) > 0
/ (wordCount++; i=0)

D3
T / −

’\0’ ≠ word[i]/ (charCount++; i++)

’\0’ = word[i]/−

start D1

inFile ≠ NULL
/ (wordCount = 0;

charCount = 0)
end

fscanf(inFile, ⋅⋅⋅) = 0
/ −

D2

fscanf(inFile, ⋅⋅⋅) > 0
/ (wordCount++; i=0)

’\0’ ≠ word[i]/
(charCount++; i++)

’\0’ = word[i]/−

State D3 is also eliminated.

36.19

ELIMINATION OF LOOP

start D1

inFile ≠ NULL
/ (wordCount = 0;

charCount = 0)
end

fscanf(inFile, ⋅⋅⋅) = 0
/ −

D2

fscanf(inFile, ⋅⋅⋅) > 0
/ (wordCount++; i=0)

’\0’ ≠ word[i]/
(charCount++; i++)

’\0’ = word[i]/−

start D1

inFile ≠ NULL
/ (wordCount = 0;

charCount = 0)
end

fscanf(inFile, ⋅⋅⋅) = 0
/ −

D2

fscanf(inFile, ⋅⋅⋅) > 0
/ (wordCount++; i=0)

T/
(charCount += length(word);
i = length(word))

start D1

inFile ≠ NULL
/ (wordCount = 0;

charCount = 0)
end

fscanf(inFile, ⋅⋅⋅) = 0
/ −

fscanf(inFile, ⋅⋅⋅) > 0/ (wordCount++; charCount += length(word))

After elimination of i, operations on it, and D2.

36.20

THE NEW PROGRAM

The final Program: //Slightly more efficient than the previous one.
//Does not use the variable i, and charCount
//is incremented once in outer while-loop.

void WordCharCount(FILE *inFile)
{ char word[WORDLEN+1];

wordCount = charCount = 0;
while (fscanf(inFile, "%s", word) > 0) {

wordCount++;
charCount += length(word);

}
}

The Original Program:

void WordCharCount(FILE *inFile)
{ int i;

char word[WORDLEN+1];
wordCount = charCount = 0;
while (fscanf(inFile, "%s", word) > 0) {

wordCount++;
for (i=0; i<=WORDLEN; i++)

if (’\0’ == word[i]) break;
else charCount++;

}
}

Keep Program Logic as clean as possible.

36.21

EXERCISE

1. Shown below is a variation of the WordCharCount-function,
where there is no restriction on word-length; it assumes that the
only word separators are the blanks and new-lines. Show the
flowchart (draw it properly), list the DD-paths, show the initial
FSM (with condition-guards) based on the DD-paths, and then
simplify the FSM as much as possible using transition-elimina-
tions and state-elimination. Show intermediate steps.

void WordCharCounts(FILE *inFile)
{ char ch;
wordCount = charCount = 0;
while (fscanf(inFile, "%c", ch) > 0)

if ((ch != ’ ’) && (ch != ’\n’)) {
charCount++; wordCount++;
while (fscanf(inFile, "%c", ch))

if ((ch != ’ ’) && (ch != ’\n’))
charCount++;

else break;
}

}

36.22

AN EQUIVALENT 3-STATE FSM

start

inFile ≠ NULL
/ (wordCount = 0;

charCount = 0;
s = D1)

D1D2: [s = D1] ∧ [fscanf(inFile, ⋅⋅⋅) > 0]/
(wordCount++; i=0; s = D2)

D2D1: [s = D2] ∧ [i > WORDLEN] / s = D1
D2D3: [s = D2] ∧ [i ≤ WORDLEN] / s = D3
D3D1: [s = D3] ∧ [’\0’ = word[i]] / s = D1
D3D2: [s = D3] ∧ [’\0’ ≠ word[i]]/

(charCount++; i++; s = D2)
D1End: [s = D1] ∧ [fscanf(inFile, ⋅⋅⋅) = 0] /s = end

ends = end/ −

Remarks:

• The state variable s keeps track of the current-state in the original
FSM.

• It has identical computation sequences, save the actions/tests
involving s.

− This state reduction does not help understanding/analysis of the
FSM.

− It is similar to structuring an unstructured code by introducing
additional variables and tests.

36.23

AUTOMATIC CODE GENERATION

Algorithm FSM-SIMULATOR:

Input: An FSM for a program P and
an input data.

Output: The output of P for that input.

1. Let s = start-state of the finite-state model.

2. Do the actions for the unique transition from start-state and let s
be the next state.

3. While (s ≠ end-state) do the following:
For (each state si) do the following:

If (s = si), then do the following:

(3a) For (each transition t(si , cij , aij , s j) from state si) do
the following:

If (cij holds for the current values of variables),
then break for-loop (3a).

(3b) Do the corresponding action aij , let s = s j , and break
the (outer) for-loop.

36.24

SUMMARY

All computations can be modeled,
at any desired level, by FSMs

using condition-guards on the transitions.

Remarks:

• This is basically a restatement of the Church-Turing hypothe-
sis:

Each computation/algorithm can be
modeled by a Turing Machine.

• Construction of an FSM, without having a program in hand, is
often a non-trivial task.

36.25

MORE EXAMPLES OF FSM

Window with a Lock:

• Four operations: open, close, lock, and unlock.

• Constraints:

− can be opened only if it closed and unlocked.

− can be closed only if it opened.

− can be locked only if it is closed and unlocked.

− can be unlocked only if it is locked.

• Initially closed and unlocked.

open
(unlocked)

closed
(unlocked)

close

open

locked
(closed)

lock

unlock

Proper state-names help us to easily identify
the applicable actions at a state.

• There are no condition-guards for the transitions here (why?).

• There are no final states here because the operations can be
continued for ever, without termination.

• We allowed transitions to the start-state to keep the number of
states small.

36.26

MORE EXAMPLES OF FSM

Door With Two-sided Lock:

• Eight operations: openFromIn, closeFromIn, lockFromIn, and
unlockFromIn, and similar operations from out.

Imagine a person moving in and out of the room when the
door is open; the person’s moves are not modeled.

• Initially, the door is closed from out and unlocked.

• Constraints:

− Similar to those for the window for the operations from in
and for the operations from out.

− "Inside" operations can occur only after the operation
openFromOut, and likewise for "outside" operations.

• The door can be closed/locked from one side at a time.

CO

O

closeFrOut
openFrOut

CI

closeFrIn
openFrIn

LOlockFrOut
unlockFrOut

LIlockFrIn
unlockFrIn

CO:
CI :
O:

LO:
LI :

closed from out
closed from in
open
Locked from out
Locked from in

EXERCISE

1. Show the new FSM after we add the operations goIn and
goOut to model the person’s move.

36.27

THE CHOICE OF OPERATION-NAMES
CAN AFFECT THE FSM

• Imagine a single lock-function that takes into account the state
of the door-with-two-sided-lock and performs the appropriate
operation lockFrIn or lockFrOut as needed.

• Similarly for the unlock-function.

CO

O

closeFrOut
openFrOut

CI

closeFrIn
openFrIn

LOlock
unlock

LIlock
unlock

Cannot use the same
name "close" for both
closeFrIn and closeFrOut
because it causes
non-determinism.

EXERCISE

1. Show the new FSM when we use "close" both for closeFrIn
and closeFrOut and similarly for open, but keep different
names lockFrIn and lockFrOut. (Hint: Following FSM is no
good - why? Start with the FSM with goIn and goOut opera-
tions, replace them by λ-moves, and finally convert the FSM
to a deterministic form if necessary.)

open
(unlocked)

closed
(unlocked)

close open

lockedFrOut
(closed)

lockFrOut
unlockFrOut

lockedFrIn
(closed)

lockFrIn
unlockFrIn

36.28

EXERCISE

1. How can a state-diagram fail to represent a proper FSM?

2. An elevator control problem. Assume that:

G1. The elevator-use of a person is controlled by his id-card,
which is validated by a security office at the ground
level, for the following:

(a) one groundFloor-entry and one destination-exit,
(b) one destination-entry and one groundFloor-exit.

G2. One registers the elevator-use request on his current
floor by inserting his id-card in a slot next to the ele-
vator. (The elevator has no floor-buttons inside or out-
side, and no floor-indicator light inside; the id-card has a
sound/light indicator to show that a person can exit the
the elevator when it stops.)

A1 The elevator moves when an entry/exit-request (by per-
sons outside/inside the elevator) is pending.

A2 The load/unload operations are restricted so that no one
goes to a floor beyond his destination.

Show the FSM from a person’s view point. Also, show the
FSM for elevator’s movement, assuming that the floors are
{0=ground, 1, 2, 3, 4}. Here, use the states Uj (resp. Dj) =
arriving at floor j going-up (resp. going-down). A transition
from Uj to Dj indicates a change of move-direction. Let D0 =
startState. Do not label the transitions now.
A complete system-state will consist for pending requests for
people inside/outside the elevator, the elevator’s current floor,
and its move direction.

36.29

DECOMPOSING AN FSM

The FSM for Door With Two-sided Lock:

CO

O

closeFrOut
openFrOut

CI

closeFrIn
openFrIn

LOlockFrOut
unlockFrOut

LIlockFrIn
unlockFrIn

CO:
CI :
O:

LO:
LI :

closed from out
closed from in
open
Locked from out
Locked from in

Decomposition into Two FSMs:

• We use guards to coordinate the interaction between them.

• The composition M(D)×M(L) giv es the original FSM.

D0

D1

closeFrOut
[L0] openFrOut

D2

closeFrIn
[L0] openFrIn

L2

L0

[D0] lockFrOut
unlockFrOut

L1

[D2] lockFrIn
unlockFrIn

The finite-state model
M(D) for door.

The finite-state model
M(L) for two-sided-lock.

Question: What do the states in M(D) and M(L) look like in
terms of the states in the original FSM?

36.30

FORMING THE COMPOSITION M(D)×M(L)

Starting FSMs M(D) and M(L):

D0

D1

closeFrOut
[L0] openFrOut

D2

closeFrIn
[L0] openFrIn

L2

L0

[D0] lockFrOut
unlockFrOut

L1

[D2] lockFrIn
unlockFrIn

M(D) for door. M(L) for two-sided-lock.

Composition M(D)×M(L):

• The dashed transitions are not present due to guards.

• The shaded states are not there because they are not reachable
from the start-state D0 L0.

D0 L0 D1 L0

openFrOut

closeFrOut
D2 L0

closeFrIn

openFrIn

D0 L2

unlockFrOut

lockFrOut

D1 L2
closeFrOut

D2 L2

closeFrIn

D0 L1 D1 L1
closeFrOut

D2 L1

lockFrIn

unlockFrIn
closeFrIn

unlock-
FrOut

unlock-
FrOut

unlock-
FrIn

unlock-
FrIn

36.31

Simplifying Assumptions:

• At most one book can be borrowed at any time. In addition,
at most one hold can be placed at any time.

• No limit on how many book-overdue or book-on-hold-avail-
able notices are received before memberhsip is cancelled.

start-
state

can-
borrow

end

has-
borrowed

has-hold

has-BHA borrowed-
has-hold

borrowed-
has-BHA

has-BOD

hasBOD-
has-hold

hasBOD-
hasBHA

Show the transitions among the states. The operations are: start-
Membership, stopMembership, borrow, renew, return, putHold,
cancelHold, recvBOD, and recvBHA. Assume people are respon-
sible and non-mischievous.

36.32

DOMINATION-TREE BASED DEVELOPMENT PLAN

start-
state

can-
Borrow

startMembership

end

stopMem-
bership

has-
Borrowed-

?BOD

borrow
return

renew,
recvBOD

has-
Hold

putHold
cancel-

Hold
has-
BHA

cancel-
Hold

recv-
BHA recvBHA

has-
borrowed-
HasHold-

?BOD

put-
Hold

cancel-
Hold return

renew,
recvBOD

has-
borrowed-
HasBHA-

?BOD

recvBHA

returncancelHold

renew,
recvBHA
recvBOD

Development (and Test Plan):

(1) startMembership, stopMembership (test them together)

(2) borrow, return (test borrow + return); recvBOD, renew (test
them together, and also test them with borrow and return)

(3) putHold, cancelHold (test putHold + cacnelHold; also test
them with borrow + ⋅⋅⋅ + return)

(4) recvBHA (test recvBHA + cancelHold; also test return +
recvBHA + cacnelHold), etc.

36.33

DOMINATION-TREE FOR THE OPERATIONS

start-
Membership

stop-
Membership borrow

return renew recv-
BOD

putHold

cancel-
Hold recvBHA

Development and Test Plan:

(1) startMembership, stopMembership (test them together)

(2) borrow, return (test borrow + return); recvBOD, renew (test
them together, and also each with ? + return)

(3) putHold, cancelHold (test putHold + cacnelHold; also test
each with borrow + and test borrow + putHold + return + ?)

(4) recvBHA (test recvBHA + cancelHold; also test return +
recvBHA + cacnelHold)

36.34

Question:

•? Why can’t we merge some of the states above?

•? Show the new FSM if we model a book that is not returned
within a given number of reminders as "lost-notReturned"; the
book may still be returned by the borrower at a later date.

•? What is the new FSM if we allow multiple-holds on a book?
What are the constraints for each new transition?

•? What is the new FSM if we also add an event bookLost?

36.35

EXERCISE

1. Show the guards for each transition in the finite-state diagram
for a book with at most one hold-request.

2. Repeat Problem 1 for the modified FSM with multiple holds
on a book.

3. Consider a simulation program for the library operation,
where all events occur at the discrete time points 0, 1, 2, ⋅⋅⋅
and all requests are processed instantaneously at those dis-
crete time points. In particular, all borrow and hold periods
start and end at those discrete time points, and two distinct
borrow periods can be juxtaposed without any gap between
them. Give a pseudocode to describe how multiple borrow
requests will be processed at a time point t. Do the same for
the hold-requests. In which order will you process the bor-
row, hold, cancel, return requests at time t?

4. Shown below is the borrowed states (solid line) and isHeld
states (dashed line) of a particular book for a period of 11
units of time.

brrw#1
hold#1 hold#2

rtrn#1
BHA#1

cncl#1
BHA#2

brrw#2 brrw#3

rtrn#3rtrnr#2
BHA#3

| | | | | | | | | | | |

Assume that only three persons p1, p2, and p3 were involved
during this time. One of these persons, who was very patient,
had put a hold but canceled the hold after a long period of
time. Assume that the max. period that a book is held for any
customer is one unit of time. Show the times of each borrow-

36.36

request, hold-request, and cancel-request (use a horizontal line
to show the start and end of a borrow-period and the start and
end of a hold-request before cancellation, and so on). How
long the person waited before he canceled his hold? Note that
"borrow#i" is simply the ith borrow-activity and it need not be
related to pi .

36.37

EXTENSION OF BOOK-FSM TO
THE CASE OF MULTIPLE HOLDS

σ0=purchased-
ByLibrary

start-state

σ1=inCircu-
lation

addTo-
Circulation

σ5=end

remove-
FromCir-

culation

σ2=borrowed
borrow

return

renew, periodic-
OverdueReminder

σ3=borrowed
AndHasHold

hold

[C1]cancel

hold, [C2]cancel, perio-
dicOverdueReminder

σ4=isHeld

return

[C2]borrowed-
WithinTimeLimit

[C1]canceledOrNot-
BorrowedWithinTimeLimit

[C1]borrowed-
WithinTimeLimit

hold,
[C2]canceledOrNot-

BorrowedWithinTimeLimit

Guards:

• C1 = Has one hold and C2 = Has ≥ 2 holds.

Notes:

• The transition σ3→σ4 for return involves addtional action of
informing the first hold-requester.

• The transition σ4→σ4 for cancel by the isHeld.person
involves additional action of informing the next hold-
requester.

36.38

FURTHER MODIFICATION OF
THE BOOK-FSM

New Operations:

• Putting "hold" on a book currently checked-out, and canceling
the "hold". Assume at most one hold on a book.

• Periodic overdue-notice (ODN) to the borrower for overdue
books (including need-for-early-return when a "hold" is put
on the book).

• Informing a customer who has a "hold" on a book that is
available (BAV).

• ODN and BAV are automatically generated by the system.

inLibrary borrowed
borrow(c)

return

renew, ODN(c)

borrowed-
AndHasHold

[c≠c′]hold(c′)

cancel(c′)

ODN(c)

isHeld

BAV(c′)

return/BAV(c′)

cancel(c′)

borrow(c′)

Question:

•? Why do we need a separate state "isHeld", i.e., why can’t we
merge it with some other state?

•? How to extend this model using guards and other-actions if m
= max #(ODN or BAV) sent?

