
SOFTWARE TESTING

Tester’s Job:

• Find as many faults of different kinds as he can.

• Certify some kind of quality measure for the software based on
the test results, meaning he must

− carefully select test cases, and

− evaluate the test results.

Software testing does not show that there are no faults,
ev en when every test-case gives the correct output.

Basic Assumption in Software Testing:

• Errors are not intentional by the programmer, i.e., they are not
specially crafted.

• All Testing methods depend on this assumption.

Test Coverage Measures:

• They are based on program’s structure or more abstract forms like
finite-state model or data-flow model.

Mapping Test Results to Error Discovery: ???

8.2

INPUT-OUTPUT SPECIFICATIONS,
PROGRAM-BEHAVIOR, AND TEST-CASES

Program-Behavior:

• Actual observable input-output behavior of the program; it may
be different from the expected (based on requirements) behavior.

− We typically do not have a complete knowledge of the pro-
gram-behavior even if we hav e the code

Test-Case Behaviors:

• The input-output behavior that we want to test/observe.

Example. Requirement: compute n2 for −20 ≤ n ≤ 20.

• Program computes n2 for 0 ≤ n ≤ 10 and n3 for 10 < n ≤ 100.

Specifications Program behaviors

Test-case behaviors

Input-
Output

behavior
space†

1

7

25

3

6

4

8

Areas 1+2 = {(n, n2): 0 ≤ n ≤ 10} and
Areas 4+5 = {(n, n2): −20 ≤ n < 0 or 10 < n ≤ 20}

(−3, 10) ∈ Area#7 ∪ Area#8.

(1)

(2)

† Fig. 1.4 in "Software Testing" (3rd ed.) by P.C. Jorgensen.

8.3

AN ALTERNATE VIEW

Specifications Program behaviors

Test-case behaviors

Input-Output
behavior-space

1

7

25

3

6

4

8

Assume
at most
one output
is specified
for each
input in
the speci-
fication.

Inputs →

Outputs ↑

specification inputs
program inputs

S-P
match

S-P non-
match

P only S only

7 8

no test-cases selected
for these inputs

Question:

•? Mark all parts of the input-space (horizontal axis) corresponding
to the other areas in the top-diagram. (It may not be meaningful
to do the same for output-space − why?)

•? Which points in the second diagram belong to the input-output
behavior space in the top diagram?

•? Show a modified version of the "alternative" view if the specifica-
tion allows multiple different acceptable outputs for some inputs.

8.4

BLACK-BOX TESTING

• Based on requirements; uses an executable code only.

Example Requirements (for an WordCharCounts-function):

(1) Words in the input text file are at most 20 characters long. (This
is not same as saying that longer words are to be ignored.)

(2) Blanks, tabs, and new-lines are considered word-separators.

(3) Comma, semicolon, and colon are not part of a word; hyphens
as in "son-in-law" are part of a word.

Example Test-case (input file is shown as a string):

• The test-case below (t for a tab) can verify requirement (1) and
parts of (2), making it of category 1 or 4 (see page 3).

"This text t t has five words "

• This would not verify requirement (3), i.e., the required behavior;
requirement (3) falls in category 2 or 5 w.r.t this test case.

Question: Which of the requirements in (1)-(3) are of category 2
w.r.t the above test case and the source-code below?
Give a requirement of category 5 w.r.t this test case.

#define WORDLEN 20
void WordCharCounts(FILE *inFile)
{ int i;
char word[WORDLEN+1];
wordCount = charCount = 0;
while (fscanf(inFile, "%s", word) > 0) {

wordCount++;
for (i=0; i<=WORDLEN; i++)

if (’\0’ == word[i]) break;
else charCount++;

}
}

8.5

EXERCISE

1. Read the manual page for strcpy-function in C (Unix; type
"man strcpy" to see the manual-page); why do you think the
source-string pointer is not to be changed by strcpy-function?
Make sure that you understand what would go wrong with str-
cpy-function for the situation below; here, the destination and
source strings are next to each other but they do not overlap.
Things would also go wrong if we let destination = source + 2,
i.e., the destination-string starts at two places after the start of
source-string.

a
↓destination

b c \0 d
↓source

e f g h \0

Then, write a "good" set of requirements for a function, whose
profile is given below, and explain what should the new
safeStrcpy-function do in each of the above cases. Indicate
what should be the return-values in each of the cases.

int safeStrcpy(char * destination, char *source)

A programmer should be able to find out if a successful copy
action has been properly carried out while using safeStrcpy-
function or the nature of the problem that would have happened,
so that he can take appropriate alternate action (which could be to
use the old strcpy-function). Finally, giv e an implementation
(or a pseudocode) that meets the requirements you formulated.

2. The next-page gives sev eral incorrect versions of safeStrcpy-
function; comments are added by me. Find out what is the prob-
lem in each case.

8.6

INCORRECT safeStrcpy-FUNCTIONS

Comments are added by me.

1. int safeStrcpy(char *destination, char *source)
{ int *ptr = malloc(strlen(source));

strcpy(ptr, source);
strcpy(destination, ptr);
source = ptr;
return destination;

}

2. int safeStrcpy(char *destination, char *source)
{ int length = strlen(source);

char array[length]; //does not work - use malloc
strcpy(temp, source); //what is temp?
strcpy(destination, temp);
return 1;

}

3. int safeStrcpy(char *destination, char *source)
{ int length = strlen(source);

char *temp[length];
strcpy(temp, source);
strcpy(destination, temp);
return 1;

}

4. int safeStrcpy(char *destination, char *source)
{ int n = LENGTH; //what is the relevance of LENGTH?

if (n != 0) {
char *d = dst;
const char *s = src;
while (--n != 0) {

if ((*d++ = *s++) == 0) { //you meant ’\0’
while (--n != 0) *d++ = 0; // ’\0’ ?
break;

}
}

}
return(&des);

}

5. Pseudocode for safeStrcpy(char *destination, char *source)
int length = getLength of string; //which string?
int arrayLength = getLength of array; //what array?
if (length < arrayLength)

strcpy(destination, course)
else strncpy(destination, source, arrayLength)

8.7

WHITE-BOX TESTING

• Uses the source-code, in addition to the requirements.

• Can focus on the way an output variable is affected by inputs
(static code analysis) and relationship among output variables.

• Allows more detailed testing, taking advantage of automated code
instrumentation. (Automated instrumentation prevents erroneous
code modification.)

• Helps to identify sources of error.

• Better assess the quality of testing in terms of test-coverage mea-
sures.

Example. Static-analysis can show that we will always have "char-
Count ≥ wordCount", which is obviously true (if we do
not exclude single character words).

#define WORDLEN 20
void WordCharCounts(FILE *inFile)
{ int i;
char word[WORDLEN+1];
wordCount = charCount = 0;
while (fscanf(inFile, "%s", word) > 0) {

wordCount++;
for (i=0; i<=WORDLEN; i++)

if (’\0’ == word[i]) break;
else charCount++;

}
}

Question: Give another property (relationship) among the outputs
or between inputs and outputs that can be obtained by
examining the code.

8.8

PATH-EQUIVALENCE OF INPUTS

Path-Equivalence of Inputs:

• Two inputs I1 and I2 are path-equivalent, denoted by I1 ≈ I2, if
they hav e the same execution paths π (I1) = π (I2).

− π (I1) and π (I2) follow the same true/false branch at each
decision-node for each execution of them, executing same
sequence of actions.

Characteristics of An Equivalence Relation:

• Reflexive: x ≈ x.

• Symmetric: If x ≈ y, then y ≈ x.

• Transitive: If x ≈ y and y ≈ z, then x ≈ z.

Equivalence Class: [x]~~ = {y: y ≈ x}.

Example: Considering the input file as a string of characters and I1
= "abc de", I2 = " abc ed ", and I3 = "ab cde",
we only have I1 ≈ I2, i.e., [I1] = [I2] ≠ [I3]. Why?

#define WORDLEN 20
void WordCharCounts(FILE *inFile)
{ int i;
char word[WORDLEN+1];
wordCount = charCount = 0;
while (fscanf(inFile, "%s", word) > 0) {

wordCount++;
for (i=0; i<=WORDLEN; i++)

if (’\0’ == word[i]) break;
else charCount++;

}
}

Question: Which of I1, I2, and I3 are path-equivalent if we replace
the for-loop by "charCount += length(word)"?

8.9

REACHABILITY RELATION
IS NOT AN EQUIVALENCE RELATION

Reachability Relation in a Flowchart (any directed graph):

• xRy, meaning y can be reached from x.

start

A1

D1

D2

A2

A3

end
Here,
A1 RA2 but not A2 RA1
although
D1 RA2 and A2 RD1.

Question:

•? Which of the three equivalence-relation properties are violated for
the reachability relation?

Output-Equivalence of Inputs:

• I1 and I2 are output-equivalent if P(I1) = P(I2).

Question:

•? Which of I1, I2, and I3 in the previous page are output-equiv-
alent? How about for the modified program with the for-loop
replaced by "charCount += length(word)"?

•? Does P(I1) = P(I2) imply that I1 ≈ I2? How about the converse?

•? For a function P, what else should be considered as the output
P(I) other than the value returned by P?

8.10

IMPORTANCE OF
PATH-EQUIVALENCE RELATION

An Elementary Form of Error:

• An error in an action A which does not affect any branch-test
condition (hence the execution path π (I) for any I).

• If P′ be an erroneous version of program P due to an elementary
error in the action A in P, then for each input I

− Path π (I) in P equals π ′(I) in P′, with each occurrence of A
in π (I) replaced by A′ in π ′(I).

Question: Give examples of elementary and non-elementary errors
in WordCharCounts-program below.

#define WORDLEN 20
void WordCharCounts(FILE *inFile)
{int i;
char word[WORDLEN+1];
wordCount = charCount = 0;
while (fscanf(inFile, "%s", word) > 0) {

wordCount++;
for (i=0; i<=WORDLEN; i++)

if (’\0’ == word[i]) break;
else charCount++;

}
}

Assumption in Program Testing for an Elementary Error:

• Each test-case I for which π (I) goes through the erroneous action
will show an error in the output.

• If I shows the error and I ′ ≈ I , then I ′ will also show the error.

8.11

TESTING STRATEGY FOR
ELEMENTARY ERRORS

Single Elementary Error:

• If we select one test-case I j from each path-equivalence class of
inputs such that

(a) the execution paths π (I j) together cover all actions, and

(b) each I j produces correct output,

then the program is error free.

Assumption for Multiple Elementary Errors:

• No two errors cancel each other’s effect.

• Thus, a test case I j whose execution path π (I j) goes through one
or more errors will result in an error in the output.

Same testing strategy applies
for multiple elementary errors.

Simplest Test Coverage Measure:

• C0 = The percentage of actions covered by the test-cases.

• We want C0 = 100% for any acceptable level of testing.

• If C0 < 100%, then there is some action A such that A ∉ π (I j) for
any of the test cases I j and we can replace A by an arbitrary A′
without any impact on the test-outputs P(I j).

Question: How can we always introduce an elementary error in a
program P to create a new program P′ with the property
that the error shows up in the output?

8.12

MEASURING ACTION-COVERAGE

Code Instrumentation:

• At the start of each non-trivial action-block introduce a suitable
print-operation to indicate that this block is entered:

Example. An instrumentation of WordCharCounts-function.

#define WORDLEN 20
void WordCharCounts(FILE *inFile)
{int i;
char word[WORDLEN+1];
printf(testCovFile, "entered block A1\n");
wordCount = charCount = 0;
while (fscanf(inFile, "%s", word) > 0) {

printf(testCovFile, "entered block A2\n");
wordCount++;
for (i=0; i<=WORDLEN; i++)

if (’\0’ == word[i]) break;
else {printf(testCovFile, "entered block A3\n");

charCount++;
}

}
}

Output in testCovFile for I = "abc de" (without indentations):
entered block A1

entered block A2
entered block A3
entered block A3
entered block A3

entered block A2
entered block A3
entered block A3

C0-coverage:
Ai covered in all test cases

Σ (#actions in Ai)

A j in the program
Σ (#actions in all A j)

= 100% for this I .

Question: Give an I with the smallest C0-coverage and give that
value of C0.

8.13

IT CAN BE DIFFICULT
TO ACHIEVE C0 = 100%

Difficulties:

• Unreachable code; no execution ever goes through some action-
blocks. Cannot achieve C0 = 100%.

• Difficulty in finding test-input I for which π (I) contains a specific
action-block.

• Both can happen when there are many interdependent if-state-
ments.

Problems with Code Instrumentation:

• Although code instrumentation can be done via automated tools,
it can increase the program size significantly.

• It can slow down the execution significantly.

• The instrumentation output file can be too large.

Approximate Methods:

• The runtime machine code execution is sampled.

• Each executed machine code is mapped to the program source-
code.

• Reduces program overhead in terms of program-memory, execu-
tion time, and measurement-output file.

Question:

•? How can we instrument a code more intelligently to minimize the
instrumentation-output and still have enough information to com-
pute C0? Show the instrumented form for WordCharCounts-func-
tion and the instrumentation output for I = "abc de".

8.14

A REFINEMENT OF C0-MEASURE

• Not all action-blocks Ai are of equal relevance in execution paths.

begin

A1

D1

endA2

D2

A3 A4

A5

(i) A flowchart.

beg

A1

D1

A2 end

D2

A3 A4 A5

(ii) The domination
tree.

end

D1

A1 A5

A3 A4 D2

A2

beg

(iii) The reverse
domination tree.

• If a set of begin-end paths cover the terminal nodes {A3, A4, A5}
in the domination-tree, then it covers all flowchart nodes.

• Similarly, for the terminal nodes of the reverse-domination tree.

For 100% C0-coverage, we only need to cover the common
terminal nodes in domination and reverse-domination trees.

Question:

•? State the definition of the new C0-coverage measure based on the
common terminal nodes of the two domination trees.

•? Give the new measure for I = empty-text-file for the WordChar-
Count function (with bounded word-length).

8.15

BRANCH-COVERAGE MEASURE

C1-coverage:
Di covered in all test runs

Σ (#T /F branches covered at Di)

2×(#branch nodes in program)
= 100% for I = "abc de".

Additional Instrumentation (for empty then/else blocks):
#define WORDLEN 20
void WordCharCounts(FILE *inFile)
{int i;
char word[WORDLEN+1];
printf(testCovFile, "entered block A1\n");
wordCount = charCount = 0;
while (fscanf(inFile, "%s", word) > 0) {

printf(testCovFile, "entered block A2\n");
wordCount++;
for (i=0; i<=WORDLEN; i++)

if (’\0’ == word[i]) {
printf(testCovFile, entered block A4\n");
break;
}

else {printf(testCovFile, "entered block A3\n");
charCount++;
}

}
}

Output in testCovFile for I = "ab cde" (without indentations):
entered block A1

entered block A2
entered block A3
entered block A3
entered block A3
entered block A4

entered block A2
entered block A3
entered block A3
entered block A4

Question: Should we instrument the exits from loops (for, while-do,
etc.)? What is the minimum C1-coverage for an I here?

8.16

BOUNDARY TESTING

• This may involve both valid test-cases that are "within specifica-
tion limits" and also invalid test-cases that are outside the limits
(testing for graceful-failing vs. "abort").

Requirement based:

• Many requirements represent constraints on inputs and outputs,
and they can give rise to the respective boundary values.

− Boundary testing can apply to inputs and to the outputs (try-
ing to push respectively the input and/or the output to the
boundary limits).

• The boundary values can be related to both entities and relation-
ships in the data-model.

Example.

• For WordCharCounts-program,

− Input text files with words of size 1 and of max length
WORDLEN = 20 represent a form of boundary case.

− Empty input file itself is also a boundary case.

− An input file with words longer than WORDLEN = 20 repre-
sent a test-case for testing graceful-degradation.

• For TriangleClassification-function

− An input file containing triplets for each category of triangles
(equilateral, isosceles, and scalar) and also non-triangular
triplets is a regular test-case.

− An input to test graceful-failing would be an abc-triplets
where the input-condition "a ≤ b ≤ c" is violated, which can
happen in more than one way.

8.17

NOTION OF PROGRAM SLICE

Program Slice:

• Giv en an output variable x, it is part of the program involving
only those (parts of) statements that may affect x.

• Includes relevant branch-statements, variables y that affect those
branches, and the statements that affect those y in turn.

• The slice may be a small fragment of the original program and
hence easier to test or debug.

Example. The bold lines below show the parts deleted to obtain the
slices of WordCharCounts-function for the output vari-
able wordCount and for charCount.

#define WORDLEN 20 //slice for wordCount
void WordCharCounts(FILE *inFile)
{ int i;

char word[WORDLEN+1];
wordCount = charCount = 0;
while (fscanf(inFile, "%s", word) > 0) {

wordCount++;
for (i=0; i<=WORDLEN; i++)

if (’\0’ == word[i]) break;
else charCount++;

}
}

#define WORDLEN 20 //slice for charCount
void WordCharCounts(FILE *inFile)
{ int i;
char word[WORDLEN+1];
wordCount = charCount = 0;
while (fscanf(inFile, "%s", word) > 0) {

wordCount++;
for (i=0; i<=WORDLEN; i++)

if (’\0’ == word[i]) break;
else charCount++;

}
}

8.18

DEFINITION-USE RELATIONSHIP

Definition of a Variable: def (x, s)

• A statement s is a definition of x if an execution of s assigns a
value to x.

• s can be a input-statement from a file, an assignment statement, or
a function-call statement.

Use of a Variable: use(x, s)

• A statement s is an use of a variable x if an execution of s
requires a value of x.

Example:

• The statement

fscanf(fp, "%s", word);

is a definition of word, assuming that fp ≠ NULL. It assigns a
value to word only if reading a non-empty string succeeds and
otherwise the old value (if any) is retained.

It is also a definition fp, as it may update fp.

• The above statement is not an use of word; it uses the address of
word. It also uses the file-pointer fp.

• The statement

fscanf(fp, "%s %d", word, &i);

may define i and in that case it is also an use of word!

• The statement "i++;" is both a definition and an use of i.

8.19

AN EXAMPLE
1. void WordCharCounts(FILE *inFile)
2. { int i;
3. char word[WORDLEN+1];
4. wordCount = charCount = 0;
5. while (fscanf(inFile, "%s", word) > 0) {
6. wordCount++;
7. for (i=0; i<=WORDLEN; i++)
8. if (’\0’ == word[i]) break;
9. else charCount++;

10. }
11. }

WordCharCounts (inFile)

wordCount = charCount = 0;A1

fscanf(inFile, "%s", word) > 0D1 end

wordCount++; i = 0; A2

T

i ≤ WORDLEN D2

’\0’ == word[i]T D3

T

charCount++; i++;A3

Variables Definitions Uses
inFile 1, 5 5
charCount 4, 9 4, 9
i 7 7, 8
word (addr of word) 5 (3) 8 (5, 8)
wordCount 4, 6 6

8.20

DEF-USE RELATIONSHIP

Def-Use relationship:

• We say def (x, s) is related to use(x, s′), where s may equal s′, if
there is an ss′-path of length ≥ 0 such that there is no other defini-
tion of x on that path in between s and s′.

Example of Def-Use Relationship.
1. void WordCharCounts(FILE *inFile)
2. { int i;
3. char word[WORDLEN+1];
4. wordCount = charCount = 0;
5. while (fscanf(inFile, "%s", word) > 0) {
6. wordCount++;
7. for (i=0; i<=WORDLEN; i++)
8. if (’\0’ == word[i]) break;
9. else charCount++;

10. }
11. }

Variable Definitions Uses of each definition
inFile 1 5

5 5
charCount 4 4, 9

9 9
i 7 (twice) 7 (twice), 8
word 5 8
wordCount 4 6

6 6

• A definition with no uses is a potential flaw (e.g., a missing use).

• Even if a definition has an use, this may not be a "true" use
because the def-use path is not executable.

Question: Is there any non-realizable (non-executable) def-use rela-
tionship above?

8.21

EXERCISE

1. Show the def-use relationships for the code below. Show a test-
data that covers all the def-use relationships, but does not give
100% C1-coverage; give the C1-coverage measure for this test
data and indicate the branch(es) not covered. Give another test-
data to cover some of those uncovered branch(es). If we insert a
suitable print-statement in the beginning of the body of the outer
while-loop, then which def-use relationship-pairs will it track, and
what happens if we put the print-statement just before line 4?
(Draw the flowchart to see things more clearly.)

01. void WordCharCounts(FILE *inFile)
02. {char ch;
03. wordCount = charCount = 0;
04. while (fscanf(inFile, "%c", &ch) > 0)
05. if ((ch != ’ ’) && (ch != ’\n’)) {
06. charCount++; wordCount++;
07. while (fscanf(inFile, "%c", &ch) > 0)
08. if ((ch != ’ ’) && (ch != ’\n’))
09. charCount++;
10. else break;
11. }
12. }

2. How do you define a coverage measure based on the def-use rela-
tionship? Explain with an example.

8.22

A GLOBAL VIEW OF TESTING

Test Strategy: White-box or Black-box testing.

Test Goals/Objectives: Functional or performance testing.

• Select (user or design) requirements to be tested.

− Identify functions and their input and output variables.

• Select test-coverage measures and the percentage coverage to be
achieved for each measure.

Three Test Conclusions:

• More test needed, selected requirements satisfied, or not satisfied.

A Dataflow Diagram for Testing:

Select Test
Objectives

Select Test-
coverage Measures
and Levels for each

function

test-coverage measures
and levels

selected
functions
and their

source-codes

Select Test-
cases and Expected

outputs for each
function

selected requirements
(and post-conditions)
for selected functions

Instrument
Source-codes

Execute
Test-cases

test-cases instrumented
source-codes

Analysis
and Evaluation
of Test Runs

test-case# and
expected outputs

test-case#
and
test

outputs

test con-
clusions

program
P

require-
ments

8.23

COMPARISON OF TEST-CASES

Basis of Comparison:

• Output point of view: how different are the outputs.

• Execution point of view: how different are the execution-paths (or
the number of statements executed, etc)?

• Performance point of view: how different are the the performance
parameters like execution time and memory use?

Notes:

• The first and third above falls in black-box view, and the second
one in white-box view.

Question:

•? What are some other points of view for comparing test-cases, and
which ones fall in black-box view and which ones fall in white-
box view?

•? How would you differentiate test-cases from input point of view?

8.24

COMPARISON OF TEST-CASES
VIA PROGRAM STRUCTURE

A Program Execution Path is More Than A Path:

• The nesting structure of program blocks gives a program execu-
tion-path more structure than just the linear (sequential) structure
of a path in a general digraph.

Nesting Tree of Program Blocks:

• It is a rooted ordered tree, with each node represents an one-
entry-one-exit block (disregarding breaks, continues, and returns).

− Children of a node are ordered left-to-right representing
sequential order of the associated subblocks.

• If-then-else decision nodes have two children: then-part forms the
left-child and else-part forms the right-child.

• The decision-nodes for for-loop and whileDo-loop are shown as
filled, and those for doWhile-loops are shown as double circles.

− The subtrees of the children of these decision nodes form the
body of the loop.

• Unlike the T/F labels of the links to children of an if-then-else
decision node, there are no labels of the links to the children of
decision-nodes for the loops.

8.25

NESTING TREE OF PROGRAM-BLOCKS

Flowchart and Nesting Tree for wordCharCounts-function:

• We are using below the version that uses WORDLEN and does
not use strlen-function.

• Since the then-part of D3 has no action other than transfer of
abnormal (semi-structured) control via "break" (to D1) it is shown
as a dashed circle.

start

A1

D1 end

A2
T

D2

D3
T

break
T

A3

start

A1 D1

A2 D2

D3

br

T

A3

F

Question: Suppose we replace the for-loop "for (i=0;
i≤WORDLEN; i++) ⋅⋅⋅" by the following; note that the
for-loop now starts with i = 1. Show the new action
blocks, the new flowchart, and the new nesting-tree.

charCount++;
for (i=1; i<=WORDLEN; i++)

if (’\0’ == word[i]) break;
else charCount++;

8.26

APPROX. REPRESENTATION OF
AN EXECUTION-PATH USING NESTING-TREE

• Shows the count of each node in the nesting-tree for an execution-
path π (I) for some input I , giving an abstraction of π (I).

− Allows giving different weights for action-blocks at different
levels and define a more refined form of C0-measure.

− Allows giving different weights for branches of decision-
nodes at different levels and define a more refined form of
C1-measure.

Example.

• An action-block node shows its #(executions).

• A loop-decision node shows #(loop-body executions).

• An if-then-else decision node shows #(true-branch executions)
and #(false-branch executions).

• The mark "?" shows an unknown value (based on the limited
action-block instrumentation output); they can be derived if we
know the source-code (or have the branch-instrumentation output)
and they are indicated in parentheses next to ’?’.

Instrumentation output for I = "abc de":

entered block A1
entered block A2

entered block A3
entered block A3
entered block A3

entered block A2
entered block A3
entered block A3

start

A1 D1

A2 D2

D3

A3

1

1 2

2 ?(2)+5

?(2), 5

?(2) 5

8.27

EXERCISE

1. How can use the representation of test-paths to analyze a set of
test-cases?

