EQUIVALENT AND REDUNDANT FUNCTIONAL DEPENDENCIES

Assume we are given a schema R and a set of fds on Attrb(R).

Closure of a Set of Attributes Based on A Set of FD's:

For each non-empty X ⊂ Attrb(R), X⁺ = {Y ∈ Attrb(R): X→Y}; X⁺ is called the *closure* of X.
Here X→Y may be in F or it may be derivable from F via the

Here, $X \rightarrow Y$ may be in *F* or it may be derivable from *F* via the transitive and other rules on fd's.

Properties of Closure Operation:

- *Upwardness:* $X \subseteq X^+$ (because of trivial fd's) and $\emptyset^+ = \emptyset$.
- Monotonicity: If $X \subseteq X'$, then $X^+ \subseteq (X')^+$.
- Idempotent Property: $(X^+)^+ = X^+$.

Example. Let $F = \{A \rightarrow B, A \rightarrow C, C \rightarrow A\}$.

• We write a set of attributes by listing them together, without the enclosing in '{' and '}' and the separating commas.

 $\overline{A^+ = ABC} = (AB)^+ = (AC)^+ = (ABC)^+$ $B^+ = B$ $C^+ = ABC$

Question:

- •? What is $(BC)^+$ and $[(BC)^+]^+$ for the *F* above?
- •? Show the closures X⁺ for F = {A→B, B→C, C→A}. How do you compare these closures X⁺ with those in Example above? Why does this happen?

CLOSURE OF A SET OF fds

Closure F^+ of a set F of fds:

- *F*⁺ consists of all fds of the form *X*→*X*⁺, *X* ≠ Ø. Put another way, *F*⁺ is the set *F* together with all other non-trivial fd's that can be obtained by transitive and other properties of fd's.
- If $F_1 \subseteq F_2$, then X^+ w.r.t F_1 is a subset of X^+ w.r.t F_2 and thus $F_1^+ \subseteq F_2^+$. Also, $F^+ = (F^+)^+$ and $\emptyset^+ = \emptyset$.
- For each X, X^+ is the same w.r.t F and F^+ .

Question: If $F = \emptyset$, then what is X^+ ?

Example.

- Consider $F_1 = \{A \rightarrow B, A \rightarrow C, C \rightarrow A\} \subseteq \{A \rightarrow B, B \rightarrow C, A \rightarrow C, C \rightarrow A\} = F_2.$ Then, $F_1^+ = \{A \rightarrow ABC, B \rightarrow B, C \rightarrow ABC\}$. (What is F_2^+ ?)
- In both F_1 and F_1^+ , $B^+ = B$; in both F_2 and F_2^+ , $B^+ = ABC$.

Equivalence of F_1 and F_2 ($F_1 \cong F_2$):

- F_1 is *equivalent* to F_2 if $F_1^+ = F_2^+$, which is the same as $F_1 \subseteq F_2^+$ and $F_2 \subseteq F_1^+$. (Why?)
- To test $F_1 \subseteq F_2^+$, we need to verify that each fd $X \to Y \in F_1$ is in F_2^+ , i.e., $Y \subseteq X^+$ w.r.t F_2 . (No need to compute F_2^+ .)

Question:

- •? Show that $F_1 = \{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$ and $F_2 = \{A \rightarrow C, C \rightarrow B, B \rightarrow A\}$ are equivalent.
- •? Argue that $F_1 \cong F_2$ if and only if for each $X \subseteq \text{Attrb}(R)$ we have X^+ is the same w.r.t F_1 and F_2 .

REDUNDANT fds

Redundancy:

- An fd $f: X \rightarrow Y \in F$ is redundant if $F \cong F \{f\}$, i.e $F^+ = (F \{f\})^+$.
- This is the same as saying X→Y can be obtained from the other fds in *F*. This, in turn, is the same as saying Y ⊆ X⁺ computed using F {f}.

Example.

• $A \rightarrow C$ is redundant in $\{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$ because $A^+ = ABC$ w.r.t $\{A \rightarrow B, B \rightarrow C\}$.

Reduced *F*:

• A set of fd's *F* is *reduced* if it contains no redundant fd.

Example.

- The set $F = \{A \rightarrow B, B \rightarrow C, C \rightarrow A, A \rightarrow C, C \rightarrow B, B \rightarrow A\}$ can be reduced in many ways; shown below are some.
 - 1. { $A \rightarrow B, B \rightarrow C, C \rightarrow A$ } 2. { $A \rightarrow C, C \rightarrow B, B \rightarrow A$ } 3. { $A \rightarrow C, C \rightarrow A, C \rightarrow B, B \rightarrow C$ }

Question:

•? Show all possible reduced form of *F* in Example above.

BERNSTEIN'S ALGORITHM

Algorithm Form-3NF-Decomposition:

- Input: A schema *R* and a set *F* of fds on Attrb(*R*) = $\{A_i: 1 \le i \le n\}$.
- Output: A set of 3NF relations that form a loss-less, fd-preserving decomposition.
- 1. Reduce F by eliminating all redundant fd's.
- 2. Group together all fd's which have the same left-hand side. That is, if $X \to A_1$, $X \to A_2$, ..., $X \to A_k$ are the fd's with the l.h.s *X*, then replace them by the single fd $X \to A_1A_2...A_k$,
- 3. For each fd $X \to Y$, form the relation schema (*XY*) with the attributes $X \cup Y$ in the decomposition (representing $\Pi_{XY}(R)$).
- 4. If $X'Y' \subset XY$, remove schema (X'Y') from the decomposition.
- 5. If no schema in the decomposition contains a key of R, then add schema (K), where K is a key, to the decomposition.

Example. It shows the need for steps (2) and (4).

- Attrb(R) = {A, B, C} and F = { $A \rightarrow B, A \rightarrow C, C \rightarrow A, C \rightarrow B$ }.
 - Step 1. $\{A \rightarrow B, A \rightarrow C, C \rightarrow A\}$ Step 2. $\{A \rightarrow BC, C \rightarrow A\}$ Step 3.(ABC), (CA)Step 4.(ABC)Step 5.(ABC); the key A is contained in ABC.
- Without steps (2) and (4), we get the decomposition $(ABC) = (AB) \otimes (AC)$, which is not preferred (although it is lossless, fd-preserving, and each of (AB) and (AC) is in 3NF), because it causes unnecessary duplication of values for the attribute A. The relation (ABC) itself is in 3NF.

ILLUSTRATION OF $(ABC) = (AB) \otimes (AC)$

A	В	С		A	В	-	A	С
a1 a2 a3	b1 b1 b3	c1 c2 c3	=	a1 a2 a3	b1 b1 b3	8	a1 a2 a3	c1 c2 c3

It satisfies $\{A \rightarrow B, A \rightarrow C, C \rightarrow A\}$.

ANOTHER ILLUSTRATION OF BERNSTEIN'S ALGORITHM

Example. It shows the need for step (5).

• Let Attrb(R) = {A, B, C, D} and F = {A $\rightarrow C$, $B \rightarrow D$, $AB \rightarrow CD$ }.

Step 1.	$\{A \rightarrow C, B \rightarrow D\}$
Step 2.	$\{A \rightarrow C, B \rightarrow D\}$
Step 3.	(AC), (BD)
Step 4.	(AC), (BD)
Step 5.	(AC), (BD), (AB)

A	В	С	D		А	С		В	D
a1 a1	b1 b2	c1 c1	d1 d2	≠	a1 a2	c1 c2	\otimes	b1 b2	d1 d2
a2	b2	c2	d2						

but it is easy to see that $(ABCD) = (AC) \otimes (BD) \otimes (AB)$.

Question:

- •? Show $(AC)\otimes(BD)$ in the above example, and verify that $(ABCD) = (AC)\otimes(BD)\otimes(AB)$.
- •? What are the possible sets of fds F such that $(ABC) = (AB)\xi(BC)$ is a Bernstein's decomposition?

ANOTHER ILLUSTRATION

Example.

- Consider a course-schedule with the attributes course(C), student(S), teacher(T), class-period-time(P), room(R), and day(D). Here, C includes the course-section, if any.
- The fds and their meaning are:
 - (1) $C \rightarrow P$: A course meets at the same period each time.
 - (2) $C \rightarrow R$: A course meets at the same room each time.
 - (3) $C \rightarrow T$: No joint teaching of any course.
 - (4) $TPD \rightarrow C$: A teacher cannot teach more than one course at a period of any day.
 - (5) $TPD \rightarrow R$: A teacher cannot be in more than one room at a period of any day.
 - (6) $SPD \rightarrow C$: A student cannot take more than one course at a period of any day.
 - (7) $SPD \rightarrow R$: A student cannot be in more than one room at a period of any day.

It is easy to see that (4) and (2) implies (5), and (6) and (2) implies (7). A reduced set of fd's is

(1)	$C \rightarrow P$	(2)	$C \rightarrow R$
(3)	$C \rightarrow T$	(4)	$TPD \rightarrow C$
(5)	$SPD \rightarrow C$		

There are two keys: SDP, SDC. The Bernstein's fd-preserving, loss-less, 3NF decomposition is

 $\begin{array}{l} (\text{CDPRST}) = (\text{CPRT}) \otimes (\text{TPDC}) \otimes (\text{SPDC}) \\ = (\text{CP}) \otimes (\text{CR}) \otimes (\text{CT}) \otimes (\text{TPDC}) \otimes (\text{SPDC}) \\ = (\text{CR}) \otimes (\text{TPDC}) \otimes (\text{SPDC}). \ (\text{Bernstein's method} \\ \text{may not give the simplest 3NF decomposition.}) \end{array}$

Some Impportant Comments:

1. The relation (CP) is deleted because the attribute $\{C, P\}$ (in short, CP) appear in other relations. Actually (CP) can be omitted only by assuming that every CP-tuple has at least some student or some instructor associated with it.

This would not be the case if (CP) represents a tentative schedule before the students and instructors are assigned.

- 2. Similar remarks hold for (*CT*).
- 3. The relation (*SPDC*) is what the students need to know, and the relation (*TPDC*) is what the teachers need to know. Note that there is significant amount of duplication of *CPD*-information in between (*SPDC*) and (*TPDC*).
- 4. We should not merge (TPDC) and (SPDC) into one relation (STPDC) because the latter is not 3NF under the fd's {C \rightarrow PT, SPD \rightarrow C, TPD \rightarrow C} which give the keys SDC and SDP. The relation (TPDC) with the fd's {C \rightarrow PT, TPD \rightarrow C} is 3NF as is (SPDC) with {C \rightarrow P, SPD \rightarrow C}.
- 5. The relation (CR) is useful to both teachers and students.