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A Brief Essay on Software Testing 
Antonia Bertolino, Eda Marchetti 

Abstract— Testing is an important and critical part of the software development process, on which the quality and reliability of the 
delivered product strictly depend. Testing is not limited to the detection of “bugs” in the software, but also increases confidence in its 
proper functioning and assists with the evaluation of functional and nonfunctional properties. Testing related activities encompass 
the entire development process and may consume a large part of the effort required for producing software. In this chapter we 
provide a comprehensive overview of software testing, from its definition to its organization, from test levels to test techniques, from 
test execution to the analysis of test cases effectiveness. Emphasis is more on breadth than depth: due to the vastness of the topic, 
in the attempt to be all-embracing, for each covered subject we can only provide a brief description and references useful for further 
reading.  

Index Terms — D.2.4 Software/Program Verification, D.2.5 Testing and Debugging.  
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1. INTRODUCTION

esting is a crucial part of the software life cycle, and 
recent trends in software engineering evidence the 
importance of this activity all along the development 

process. Testing activities have to start already at the re-
quirements specification stage, with ahead planning of test 
strategies and procedures, and propagate down, with deri-
vation and refinement of test cases, all along the various 
development steps since the code-level stage, at which the 
test cases are eventually executed, and even after deploy-
ment, with logging and analysis of operational usage data 
and customer’s reported failures.  
Testing is a challenging activity that involves several high-
demanding tasks: at the forefront is the task of deriving an 
adequate suite of test cases, according to a feasible and cost-
effective test selection technique. However, test selection is 
just a starting point, and many other critical tasks face test 
practitioners with technical and conceptual difficulties 
(which are certainly under-represented in the literature): 
the ability to launch the selected tests (in a controlled host 
environment, or worse in the tight target environment of an 
embedded system); deciding whether the test outcome is 
acceptable or not (which is referred to as the test oracle 
problem); if not, evaluating the impact of the failure and 
finding its direct cause (the fault), and the indirect one (via 
Root Cause Analysis); judging whether testing is sufficient 
and can be stopped, which in turn would require having at 
hand measures of the effectiveness of the tests: one by one, 
each of these tasks presents tough challenges to testers, for 
which their skill and expertise always remains of topmost 
importance. 
We provide here a short, yet comprehensive overview of 
the testing discipline, spanning over test levels, test tech-
niques and test activities. In an attempt to cover all testing 

related issues, we can only briefly expand on each argu-
ment, however plenty of references are also provided 
throughout for further reading. The remainder of the chap-
ter is organized as follows: we present some basic concepts 
in Section 2, and the different types of test (static and dy-
namic) with the objectives characterizing the testing activity 
in Section 3. In Section 4 we focus on the test levels (unit, 
integration and system test) and in Section 5 we present the 
techniques used for test selection. Going on, test design, 
execution, documentation,d management are described in 
Sections 6, 7, 8 and 9, respectively. Test measurement issues 
are discussed in Section 10 and finally the chapter conclu-
sions are drawn in Section 11.  

2. TERMINOLOGY AND BASIC CONCEPTS 
Before deepening into testing techniques, we provide here 
some introductory notions relative to testing terminology 
and basic concepts. 

2.1 On the nature of the testing discipline 
As we will see in the remainder of this chapter, there exist 
many types of testing and many test strategies, however all 
of them share a same ultimate purpose: increasing the 
software engineer confidence in the proper functioning of 
the software.  
Towards this general goal, a piece of software can be tested 
to achieve various more direct objectives, all meant in fact 
to increase confidence, such as exposing potential design 
flaws or deviations from user’s requirements, measuring 
the operational reliability, evaluating the performance 
characteristics, and so on (we further expand on test objec-
tives in Section 3.3); to serve each specific objective, differ-
ent techniques can be adopted.  
Generally speaking, test techniques can be divided into two 
classes:  
• Static analysis techniques (expanded in Section 3.1), 

where the term “static” does not refer to the techniques 
themselves (they can use automated analysis tools), but 
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is used to mean that they do not involve the execution 
of the tested system. Static techniques are applicable 
throughout the lifecycle to the various developed arti-
facts for different purposes, such as to check the adher-
ence of the implementation to the specifications or to 
detect flaws in the code via inspection or review.  

• Dynamic analysis techniques (further discussed in Sec-
tion 3.2), which exercise the software in order to expose 
possible failures. The behavioral and performance 
properties of the program are also observed.  

Static and dynamic analyses are complementary techniques 
[1]: the former yield generally valid results, but they may 
be weak in precision; the latter are efficient and provide 
more precise results, but only holding for the examined 
executions. The focus of this chapter will be mainly on dy-
namic test techniques, and where not otherwise specified 
testing is used as a synonymous for “dynamic testing”. 
Unfortunately, there are few mathematical certainties on 
which software testing foundations can lay. The firmest 
one, as everybody now recognizes, is that, even after suc-
cessful completion of an extensive testing campaign, the 
software can still contain faults. As firstly stated by Dijkstra 
as early as thirty years ago [22], testing can never prove the 
absence of defects, it can only possibly reveal the presence 
of faults by provoking malfunctions. In the elapsed dec-
ades, lot of progress has been made both in our knowledge 
of how to scrutinize a program’s executions in rigorous and 
systematic ways, and in the development of tools and proc-
esses that can support the tester’s tasks.  
Yet, the more the discipline progresses, the clearer it be-
comes that it is only by means of rigorous empirical studies 
that software testing can increase its maturity level [35]. 
Testing is in fact an engineering discipline, and as such it 
calls for evidences and proven facts, to be collected either 
from experience or from controlled experiments, and cur-
rently lacking, based on which testers can make predictions 
and take decisions.  

2.2 A general definition  
Testing can refer to many different activities used to check 
a piece of software. As said, we focus primarily on “dy-
namic” software testing presupposing code execution, for 
which we re-propose the following general definition in-
troduced in [9]: 
Software testing consists of the dynamic verification of the behav-
ior of a program on a finite set of test cases, suitably selected from 
the usually infinite executions domain, against the specified ex-
pected behavior. 
This short definition attempts to include all essential testing 
concerns: the term dynamic means, as said, that testing im-
plies executing the program on (valued) inputs; finite indi-
cates that only a limited number of test cases can be exe-
cuted during the testing phase, chosen from the whole test 
set, that can generally be considered infinite; selected refers 
to the test techniques adopted for selecting the test cases 
(and testers must be aware that different selection criteria 
may yield vastly different effectiveness); expected points out 
to the decision process adopted for establishing whether 

the observed outcomes of program execution are acceptable 
or not.  

2.3 Fault vs. Failure 
To fully understand the facets of software testing, it is im-
portant to clarify the terms “fault”, “error”1 and “failure”: 
indeed, although their meanings are strictly related, there 
are important distinctions between these three concepts.  
A failure is the manifested inability of the program to per-
form the function required, i.e., a system malfunction evi-
denced by incorrect output, abnormal termination or unmet 
time and space constraints. The cause of a failure, e.g., a 
missing or incorrect piece of code, is a fault. A fault may 
remain undetected long time, until some event activates it. 
When this happens, it first brings the program into an in-
termediate unstable state, called error, which, if and when 
propagates to the output, eventually causes the failure. The 
process of failure manifestation can be therefore summed 
up into a chain [42]:  

Fault→Error→Failure 
which can recursively iterate: a fault in turn can be caused 
by the failure of some other interacting system.  
In any case what testing reveals are the failures and a con-
sequent analysis stage is needed to identify the faults that 
caused them. 
The notion of a fault however is ambiguous and difficult to 
grasp, because no precise criteria exist to definitively de-
termine the cause of an observed failure. It would be pref-
erable to speak about failure-causing inputs, that is, those 
sets of inputs that when exercised can result into a failure. 

2.4 The notion of software reliability  
Indeed, whether few or many, some faults will inevitably 
escape testing and debugging. However, a fault can be 
more or less disturbing depending on whether, and how 
frequently, it will eventually show up to the final user (and 
depending of course on the seriousness of its conse-
quences).  
So, in the end, one measure which is important in deciding 
whether a software product is ready for release is its reli-
ability. Strictly speaking, software reliability is a probabilistic 
estimate, and measures the probability that the software 
will execute without failure in a given environment for a 
given period of time [44]. Thus, the value of software reliabil-
ity depends on how frequently those inputs that cause a 
failure will be exercised by the final users.  
Estimates of software reliability can be produced via test-
ing. To this purpose, since the notion of reliability is specific 
to “a given environment”, the tests must be drawn from an 
input distribution that approximates as closely as possible 
the future usage in operation, which is called the operational 
distribution. 

 
1 Note that we are using the term “error” with the commonly used mean-

ing within the Software Dependability community [42], which is stricter 
than its general definition in [28]. 
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3. TYPES OF TESTS 
The one term testing actually refers to a full range of test 
techniques, even quite different from one other, and em-
braces a variety of aims.  

3.1 Static Techniques 
As said, a coarse distinction can be made between dynamic 
and static techniques, depending on whether the software 
is executed or not. Static techniques are based solely on the 
(manual or automated) examination of project documenta-
tion, of software models and code, and of other related in-
formation about requirements and design. Thus static tech-
niques can be employed all along development, and their 
earlier usage is of course highly desirable. Considering a 
generic development process, they can be applied [49]:  
• at the requirements stage for checking language syntax, 

consistency and completeness as well as the adherence 
to established conventions; 

• at the design phase for evaluating the implementation 
of requirements, and detecting inconsistencies (for in-
stance between the inputs and outputs used by high 
level modules and those adopted by sub-modules). 

• during the implementation phase for checking that the 
form adopted for the implemented products (e.g., code 
and related documentation) adheres to the established 
standards or conventions, and that interfaces and data 
types are correct. 

Traditional static techniques include [7], [50]: 
• Software inspection: the step-by-step analysis of the 

documents (deliverables) produced, against a compiled 
checklist of common and historical defects. 

• Software reviews: the process by which different aspects 
of the work product are presented to project personnel 
(managers, users, customer etc) and other interested 
stakeholders for comment or approval.  

• Code reading: the desktop analysis of the produced code 
for discovering typing errors that do not violate style or 
syntax.  

• Algorithm analysis and tracing: is the process in which 
the complexity of algorithms employed and the worst-
case, average-case and probabilistic analysis evalua-
tions can be derived. 

The processes implied by the above techniques are heavily 
manual, error-prone, and time consuming. To overcome 
these problems, researchers have proposed static analysis 
techniques relying on the use of formal methods [19]. The 
goal is to automate as much as possible the verification of 
the properties of the requirements and the design. Towards 
this goal, it is necessary to enforce a rigorous and unambi-
guous formal language for specifying the requirements and 
the software architecture. In fact, if the language used for 
specification has a well-defined semantics, algorithms and 
tools can be developed to analyze the statements written in 
that language.  
The basic idea of using a formal language for modeling re-
quirements or design is now universally recognized as a 
foundation for software verification. Formal verification tech-
niques are attracting today quite a lot attention from both 

both research institutions and industries and it is foresee-
able that proofs of correctness will be increasingly applied, 
especially for the verification of critical systems. 
One of the most promising approaches for formal verifica-
tion is model checking [18]. Essentially, a model checking tool 
takes in input a model (a description of system functional 
requirements or design) and a property that the system is 
expected to satisfy. 
In the middle between static and dynamic analysis tech-
niques, is symbolic execution [38], which executes a program 
by replacing variables with symbolic values.  
Quite recently, the automated generation of test data for 
coverage testing is again attracting lot of interest, and ad-
vanced tools are being developed based on a similar ap-
proach to symbolic execution exploiting constraint solving  
techniques [3]. A flowgraph path to be covered is translated 
into a path constraint, whose solution provides the desired 
input data. 
We conclude this section considering the alternative appli-
cation of static techniques in producing values of interest 
for controlling and managing the testing process. Different 
estimations can be obtained by observing specific proper-
ties of the present or past products, and/or parameters of 
the development process.. 

3.2 Dynamic Techniques 
Dynamic techniques [1] obtain information of interest about 
a program by observing some executions. Standard dy-
namic analyses include testing (on which we focus in the 
rest of the chapter) and profiling. Essentially a program pro-
file records the number of times some entities of interest 
occur during a set of controlled executions. Profiling tools 
are increasingly used today to derive measures of coverage, 
for instance in order to dynamically identify control flow 
invariants, as well as measures of frequency, called spectra, 
which are diagrams providing the relative execution fre-
quencies of the monitored entities. In particular, path spectra 
refer to the distribution of (loop-free) paths traversed dur-
ing program profiling. Specific dynamic techniques also 
include simulation, sizing and timing analysis, and proto-
typing [49].  
Testing properly said is based on the execution of the code 
on valued inputs. Of course, although the set of input val-
ues can be considered infinite, those that can be run effec-
tively during testing are finite. It is in practice impossible, 
due to the limitations of the available budget and time, to 
exhaustively exercise every input of a specific set even 
when not infinite. In other words, by testing we observe 
some samples of the program’s behavior. 
A test strategy therefore must be adopted to find a trade-off 
between the number of chosen inputs and overall time and 
effort dedicated to testing purposes. Different techniques 
can be applied depending on the target and the effect that 
should be reached. We will describe test selection strategies 
in Section 5. 
In the case of concurrent, non-deterministic systems, the 
results obtained by testing depend not only on the input 
provided but also on the state of the system. Therefore, 
when speaking about test input values, it is implied that the 
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definition of the parameters and environmental conditions 
that characterize a system state must be included when 
necessary. 
Once the tests are selected and run, another crucial aspect 
of this phase is the so-called oracle problem, which means 
deciding whether the observed outcomes are acceptable or 
not (see Section 7.2).  

3.3 Objectives of testing 
Software testing can be applied for different purposes, such 
as verifying that the functional specifications are imple-
mented correctly, or that the system shows specific non-
functional properties such as performance, reliability, us-
ability. A (certainly non complete) list of relevant testing 
objectives includes: 
• Acceptance/qualification testing: the final test action 

prior to deploying a software product. Its main goal is 
to verify that the software respects the customer’s re-
quirement. Generally, it is run by or with the end-users 
to perform those functions and tasks the software was 
built for [51].  

• Installation testing: the system is verified upon instal-
lation in the target environment. Installation testing can 
be viewed as system testing conducted once again ac-
cording to hardware configuration requirements. In-
stallation procedures may also be verified [51]. 

• Alpha testing: before releasing the system, it is de-
ployed to some in-house users for exploring the func-
tions and business tasks. Generally there is no test plan 
to follow, but the individual tester determines what to 
do [36].  

• Beta Testing: the same as alpha testing but the system 
is deployed to external users. In this case the amount of 
detail, the data, and approach taken are entirely up to 
the individual testers. Each tester is responsible for cre-
ating their own environment, selecting their data, and 
determining what functions, features, or tasks to ex-
plore. Each tester is also responsible for identifying 
their own criteria for whether to accept the system in 
its current state or not [36]. 

• Reliability achievement: as said in Section 2.4, testing 
can also be used as a means to improve reliability; in 
such a case, the test cases must be randomly generated 
according to the operational profile, i.e., they should 
sample more densely the most frequently used func-
tionalities [44]. 

• Conformance Testing/Functional Testing: the test 
cases are aimed at validating that the observed behav-
ior conforms to the specifications. In particular it 
checks whether the implemented functions are as in-
tended and provide the required services and methods. 
This test can be implemented and executed against dif-
ferent tests targets, including units, integrated units, 
and systems [50]. 

• Regression testing: According to [28], regression testing 
is the “selective retesting of a system or component to 
verify that modifications have not caused unintended 
effects and that the syustem or component still com-

plies with its spec ified requirements]”. In practice, the 
objective is to show that a system which previously 
passed the tests still does [51]. Notice that a trade-off 
must be made between the assurance given by regres-
sion testing every time a change is made and the re-
sources required to do that. 

• Performance testing: this is specifically aimed at veri-
fying that the system meets the specified performance 
requirements, for instance, capacity and response time 
[51]. 

• Usability testing: this important testing activity evalu-
ates the ease of using and learning the system and the 
user documentation, as well as the effectiveness of sys-
tem functioning in supporting user tasks, and, finally, 
the ability to recover from user errors [51]. 

• Test-driven development: test-driven development is 
not a test technique per se, but promotes the use of test 
case specifications as a surrogate for a requirements 
document rather than as an independent check that the 
software has correctly implemented the requirements 
[6]. 

4. TEST LEVELS 
During the development lifecycle of a software product, 
testing is performed at different levels and can involve the 
whole system or parts of it. Depending on the process 
model adopted, then, software testing activities can be ar-
ticulated in different phases, each one addressing specific 
needs relative to different portions of a system. Whichever 
the process adopted, we can at least distinguish in principle 
between unit, integration and system test [7], [51]. These are 
the three testing stages of a traditional phased process (such 
as the classical waterfall). However, even considering dif-
ferent, more modern, process models, a distinction between 
these three test levels remains useful to emphasize three 
logically different moments in the verification of a complex 
software system. 
None of these levels is more relevant than another, and 
more importantly a stage cannot supply for another, be-
cause each addresses different typologies of failures. 

4.1 Unit Test 
A unit is the smallest testable piece of software, which may 
consist of hundreds or even just a few lines of source code, 
and generally represents the result of the work of one pro-
grammer. The unit test’s purpose is to ensure that the unit 
satisfies its functional specification and/or that its imple-
mented structure matches the intended design structure [7], 
[51].  
Unit tests can also be applied to check interfaces (parame-
ters passed in correct order, number of parameters equal to 
number of arguments, parameter and argument matching), 
local data structure (improper typing, incorrect variable 
name, inconsistent data type) or boundary conditions. A 
good reference for unit test is [30]. 
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4.2 Integration Test 
Generally speaking, integration is the process by which 
software pieces or components are aggregated to create a 
larger component. Integration testing is specifically aimed 
at exposing the problems that can arise at this stage. Even 
though the single units are individually acceptable when 
tested in isolation, in fact,  they could still result in incorrect 
or inconsistent behaviour when combined in order to build 
complex systems. For example, there could be an improper 
call or return sequence between two or more components 
[7]. Integration testing thus is aimed at verifying that each 
component interacts according to its specifications as de-
fined during preliminary design. In particular, it mainly 
focuses on the communication interfaces among integrated 
components.  
There are not many formalized approaches to integration 
testing in the literature, and practical methodologies rely 
essentially on good design sense and the testers’ intuition. 
Integration testing of traditional systems was done substan-
tially in either a non-incremental or an incremental ap-
proach. In a non-incremental approach the components are 
linked together and tested all at once (“big-bang” testing) 
[34]. In the incremental approach, we find the classical 
“top-down” strategy, in which the modules are integrated 
one at a time, from the main program down to the subordi-
nated ones, or “bottom-up”, in which the tests are con-
structed starting from the modules at the lowest hierarchi-
cal level and then are progressively linked together up-
wards, to construct the whole system. Usually in practice, a 
mixed approach is applied, as determined by external pro-
ject factors (e.g., availability of modules, release policy, 
availability of testers and so on) [51]. 
In modern Object Oriented, distributed systems, ap-
proaches such as top-down or bottom-up integration and 
their practical derivatives, are no longer usable, as no “clas-
sical” hierarchy between components can be generally 
identified. Some other criteria for integration testing imply 
integrating the software components based on identified 
functional threads[34]. In this case the test is focused on 
those classes used in reply to a particular input or system 
event (thread-based testing) [34]; or by testing together 
those classes that contribute to a particular use of the sys-
tem.  
Finally, some authors have used the dependency structure 
between classes as a reference structure for guiding integra-
tion testing, i.e., their static dependencies [40], or even the 
dynamic relations of inheritance and polymorphism [41]. 
Such proposals are interesting when the number of classes 
is not too big; however, test planning in those approaches 
can begin only at a mature stage of design, when the classes 
and their relationships are already stable.  
A different branch of the literature is testing based on the 
Software Architecture: this specifies the high level, formal 
specification of a system structure in components and their 
connectors, as well as the system dynamics. The way in 
which the description of the Software Architecture could be 
used to drive the integration test plan is currently under 
investigation, e.g., [45].  

4.3 System Test 
System test involves the whole system embedded in its ac-
tual hardware environment and is mainly aimed at verify-
ing that the system behaves according to the user require-
ments. In particular it attempts to reveal bugs that cannot 
be attributed to components as such, to the inconsistencies 
between components, or to the planned interactions of 
components and other objects (which are the subject of in-
tegration testing). Summarizing the primary goals of sys-
tem testing can be [13]:  
• discovering the failures that manifest themselves only 

at system level and hence were not detected during 
unit or integration testing; 

• increasing the confidence that the developed product 
correctly implements the required capabilities; 

• collecting information useful for deciding the release of 
the product. 

System testing should therefore ensure that each system 
function works as expected, any failures are exposed and 
analyzed, and additionally that interfaces for export and 
import routines behave as required. 
System testing makes available information about the ac-
tual status of development that other verification tech-
niques such as review or inspections on models and code 
cannot provide.  
Generally system testing includes testing for performance, 
security, reliability, stress testing and recovery [34], [51]. In 
particular, test and data collected applying system testing 
can be used for defining an operational profile necessary to 
support a statistical analysis of system reliability [44]. 
A further test level, called Acceptance Test, is often added to 
the above subdivision. This is however more an extension 
of system test, rather than a new level. It is in fact a test ses-
sion conducted over the whole system, which mainly fo-
cuses on the usability requirements more than on the com-
pliance of the implementation against some specification. 
The intent is hence to verify that the effort required from 
end-users to learn to use and fully exploit the system func-
tionalities is acceptable. 

4.4 Regression Test 
Properly speaking, regression test is not a separate level of 
testing (we listed it in fact among test objectives in Section 
3.3. ), but may refer to the retesting of a unit, a combination 
of components or a whole system (see Fig. 1 below) after 
modification, in order to ascertain that the change has not 
introduced new faults [51].  
 
 

Fig. 1. Logical schema of software testing levels 
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As software produced today is constantly in evolution, 
driven by market forces and technology advances, regres-
sion testing takes by far the predominant portion of testing 
effort in industry.  
Since both corrective and evolutive modifications may be 
performed quite often, to re-run after each change all pre-
viously executed test cases would be prohibitively expen-
sive. Therefore various types of techniques have been de-
veloped to reduce regression testing costs and to make it 
more effective. 
Selective regression test techniques [53] help in selecting a 
(minimized) subset of the existing test cases by examining 
the modifications (for instance at code level, using control 
flow and data flow analysis). Other approaches instead 
prioritize the test cases according to some specified criterion 
(for instance maximizing the fault detection power or the 
structural coverage), so that the test cases judged the most 
effective with regard to the adopted criterion can be taken 
first, up to the available budget. 

5. STRATEGIES FOR TEST CASE SELECTION 
Effective testing requires strategies to trade-off between the 
two opposing needs of amplifying testing thoroughness on 
one side (for which a high number of test cases would be 
desirable) and reducing times and costs on the other (for 
which the fewer the test cases the better). Given that test 
resources are limited, how the test cases are selected be-
comes of crucial importance. Indeed, the problem of test 
cases selection has been the largely dominating topic in 
software testing research to the extent that in the literature 
“software testing” is often taken as a synonymous for “test 
case selection”.  
A decision procedure for selecting the test cases is provided 
by a test criterion.  
A basic criterion is random testing, according to which the 
test inputs are picked purely randomly from the whole in-
put domain according to a specified distribution, i.e., after 
assigning to the inputs different “weights” (more properly 
probabilities). For instance the uniform distribution does not 
make any distinction among the inputs, and any input has 
the same probability of being chosen. Under the operational 
distribution, instead, inputs are weighted according to their 
probability of usage in operation (as we already said in Sec-
tion 2.4).  
In contrast with random testing is a broad class of test crite-
ria referred to as partition testing. The underlying idea is 
that the program input domain is divided into subdomains 
within which it is assumed that the program behaves the 
same, i.e., for every point within a subdomain the program 
either succeeds or fails: we also call this the “test hypothe-
sis”. Therefore, thanks to this assumption only one or few 
points within each subdomain need to be checked, and this 
is what allows for getting a finite set of tests out of the infi-
nite domain. Hence a partition testing criterion essentially 
provides a way to derive the subdomains.  
A test criterion yielding the assumption that all test cases 
within a subdomain either succeed or fail is only an ideal, 
and would guarantee that any fulfilling test set of test cases 

always detect the same failures: in practice, the assumption 
is rarely satisfied, and different set of test cases fulfilling a 
same criterion may show varying effectiveness depending 
on how the test cases are picked within each subdomain. 
Many are the factors of relevance when a test selection cri-
terion has to be chosen. An important point to always keep 
in mind is that what makes a test a “good” one does not 
have a unique answer, but changes depending on the con-
text, on the specific application, and on the goal for testing. 
The most common interpretation for “good” would be 
“able to detect many failures”; but again precision would 
require to specify what kind of failures, as it is well known 
and experimentally observed that different test criteria 
trigger different types of faults [5], 0. Therefore, it is always 
preferable to spend the test budget to apply a combination 
of diverse techniques than concentrating it on just one, even 
if shown the most effective. 
Paradoxically, test case selection seems to be the least inter-
esting problem for test practitioners. A demonstration of 
this low interest is the paucity of commercial automated 
tools for helping test selection and test input generation, in 
comparison with a profusion of support tools (see Section 
7.3) for handling test execution and re-execution (or regres-
sion test) and for test documentation. The most practiced 
test selection criterion in industry probably is still tester's 
intuition, and indeed expert testers may perform as very 
good selection “mechanisms” (with the necessary warnings 
against exclusively relying on such a subjective strategy). 
Empirical investigations [5] showed in fact that tester's skill 
is the factor that mostly affect test effectiveness in finding 
failures. 

5.1 Selection Criteria Based on Code 
Code-based testing, also said “structural testing”, or “white 
box” testing, has been the dominating trend in software 
testing research during the late 70's and the 80's. One rea-
son is certainly that in those years in which formal ap-
proaches to specification were much less mature and pur-
sued than now, the only RM formalized enough to allow 
for the automation of test selection or for a quantitative 
measurement of thoroughness was the code.  
Referring to the fault-error-failure chain described in Sec-
tion 2.3, the motivation to code-based testing is that poten-
tial failures can only be detected if the parts of code related 
to the causing faults are executed. Hence, by monitoring 
code coverage one tries to exercise thoroughly all “program 
elements”: depending on how the program elements to be 
covered are identified several test criteria exist.  
In structural testing, the program is modelled as a graph, 
whose entry-exit paths represent the flow of control, hence 
it is called a flowgraph. Finding a set of flowgraph paths 
fulfilling a coverage criterion thus becomes a matter of 
properly visiting the graph (see for instance [11]). Code 
coverage criteria are also referred to as path-based test cri-
teria, because they map each test input to a unique path p  
on the flowgraph.  
The ideal and yet unreachable target of code-based testing 
would be the exhaustive coverage of all possible paths 
along the program control-flow. The underlying test hy-
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pothesis here is that by executing a path once, potential 
faults related to it will be revealed, i.e., it is assumed that 
every input executing a same path will either fail or suc-
ceed (which is not necessarily true, of course).  
Full path coverage is not applicable, because banally every 
program with unbounded loops would yield an infinite 
number of paths. Even limiting the number of iterations 
within program loops, which is the usually practised tactic 
in testing, the number of tests would remain infeasibly 
high. Therefore, all the proposed code-based criteria at-
tempt to realize cost/effective approximations to path cov-
erage, by identifying specific (control-flow or data-flow) 
elements of a program that are deemed to be relevant for 
revealing possible failures, and by requiring that enough 
test cases to cover all such elements be executed.  
The landmark paper in code-based testing is [52], in which 
a family of criteria was introduced, based on both control-
flow and data-flow. A subsumption hierarchy between the 
criteria was derived, based on the inclusion relation such 
that a test suite satisfying the subsuming criterion is guar-
anteed to also satisfy the (transitively) subsumed criterion.  
Statement coverage is the most elementary criterion, requir-
ing that each statement in a program be exercised at least 
once. The already mentioned branch coverage criterion in-
stead requires that each branch in a program be exercised 
(in other words, for every predicate its evaluation to true 
and false should both be tested at least once). Note that 
complete statement coverage does not assure that all 
branches are exercised (empty branches would be left out). 
Branch coverage is also said “decision coverage”, because it 
considers the outcome of a decision predicate. When a 
predicate is composed by the logical combination of several 
conditions, a variation to branch coverage is given by “con-
dition coverage”, which requires instead to test the true and 
false outcome of the individual conditions of predicates. 
Further criteria consider together coverage of decisions and 
conditions under differing assumptions (see, e.g., [25]). 
It must be kept in mind, however, that code-based test se-
lection is a tautology: it looks for potential problems in a 
program by using the program itself as a reference model. 
In this way, for instance, faults of missing functionalities 
could never be found.  
As a consequence, code-based criteria should be more 
properly used as adequacy criteria. In other terms, testers 
should take the measures of coverage reached by the exe-
cuted tests and the signaling of uncovered elements as a 
warning that the set of test cases are ignoring some parts 
(and which ones) of the functionalities or of the design. 
Coverage of unexercised elements should hence be taken as 
an advice for more thought and not as the compelling test 
target.  
A sensible approach is to use another artifact as the refer-
ence model from which the test cases are designed and 
monitor a measure of coverage while tests are executed, so 
to evaluate the thoroughness of the test suite. If some ele-
ments of the code remain uncovered, additional tests to 
exercise them should be found, as it can be a signal that the 
tests do not address some function that is coded.  

A final warning is worth that “exercised” and “tested” are 
not synonymous: an element is really tested only when its 
execution produces an effect on the output; in view of this 
statement, under most existing code-based criteria even 
100% coverage could leave some statement untested.  

5.2 Selection Criteria Based on Specifications 
In specification-based testing, the reference model RM is 
derived in general from the documentation relative to pro-
gram specifications. Depending on how the latter are ex-
pressed, largely different techniques are possible [34]. Early 
approaches [46] looked at the Input/Output relation of the 
program seen as a “black-box” and manually derived: 
• equivalence classes: by partitioning the input domain 

into subdomains of “equivalent” inputs, in the sense 
explained in Section 5 that any input within a subdo-
main can be taken as a representative for the whole 
subset. Hence, each input condition must be separately 
considered to first identify the equivalence classes. The 
second step consists of choosing the test inputs repre-
sentative of each subdomain; it is good practice to take 
both valid and invalid equivalence classes for each 
conditions. The Category Partition method that we de-
scribe below in this section belongs to this approach. 

• boundary conditions: i.e., those combinations of values 
that are “close” (actually on, above and beneath) the 
borders of the equivalence classes identified both in the 
input and the output domains. This test approach is 
based on the intuitive fact, also proved by experience, 
that faults are more likely to be found at the boundaries 
of the input and output subdomains. 

• cause-effect graphs: these are combinatorial logic net-
works that can be used to explore in systematic way 
the possible combinations of input conditions. By ana-
lysing the specification, the relevant input conditions, 
or causes, and the consequent transformations and out-
put conditions, the effects, are identified and modelled 
into graphs linking the effects to their causes. A de-
tailed description of this early technique can be found 
in [46]. 

Approaches such as the ones described above all require a 
degree of “creativity” [46]. To make testing more repeat-
able, lot of researchers have tried to automatize the deriva-
tion of test cases from formal or semiformal specifications. 
Early attempts included algebraic specifications [8], VDM 
[21], and Z [26], while a more recent collection of ap-
proaches to formal testing can be found in [27].  
Also in specification based testing a graph model is often 
derived and some coverage criterion is applied on this 
model. A number of methods rely on coverage of specifica-
tions modelled as a Finite State Machine (FSM). A review of 
these approaches is given in [14]. Alternatively, confor-
mance testing can be based on Labelled Transition Systems 
(LTS) models. LTS-based testing has been the subject of 
extensive research [16] and a quite mature theory now ex-
ists. Given the LTS for the specification S and one of its pos-
sible implementations I (the program to be tested), various 
test generation algorithms have been proposed to produce 
sound test suites, i.e., such that programs passing the test 
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correspond to conformant implementations according to a 
defined “conformance relation”. An approach for the 
automatic, on-the-fly generation of test cases has been im-
plemented in the Test Generation and Verification (TGV)  
[54] tool. 
As expectable, specification-based testing nowadays fo-
cuses on testing from UML models. A spectrum of ap-
proaches has been and is being developed, ranging from 
strictly formal testing approaches based on UML state-
charts [43], to approaches trying to overcome UML limita-
tions requiring OCL (Object Constraint Language) [55] ad-
ditional annotations [15], to pragmatic approaches using 
the design documentation as is and proposing automated 
support tools [4]. The recent tool Agedis [24] supports the 
model-driven generation and execution of UML-based test 
suites, built on the above mentioned TGV technology. 

5.3 Other Criteria  
Specification-based and code-based test techniques are of-
ten contrasted as functional vs. structural testing. These two 
approaches to test selection are not to be seen as alternative, 
but rather as complementary; in fact, they use different 
sources of information, and have proved to highlight dif-
ferent kinds of problems. They should be used in combina-
tion, depending on budgetary considerations [34]. More-
over, beyond code or specifications, the derivation of test 
cases can be done starting from other informative sources. 
Some other important strategies for test selection are briefly 
overviewed below. 

• Based on tester’s intuition and experience  
As said, one of the most widely practiced technique based 
on the tester intuition and experience is ad-hoc testing [36] 
techniques in which tests are derived relying on the tester’s 
skill, intuition, and experience with similar programs. Ad 
hoc testing might be useful for identifying special tests, 
those not easily captured by formalized techniques. An-
other emerging technology is Exploratory testing [37], which 
is defined as simultaneous learning, test design, and test 
execution; that is, the tests are not defined in advance in an 
established test plan, but are dynamically designed, exe-
cuted, and modified. The effectiveness of exploratory test-
ing relies on the tester’s knowledge, which can be derived 
from various sources: observed product behavior during 
testing, familiarity with the application, the platform, the 
failure process, the type of possible bugs, the risk associated 
with a particular product, and so on. 

• Fault-based  
With different degrees of formalization, fault-based testing 
techniques devise test cases specifically aimed at revealing 
categories of likely or pre-defined faults. In particular it is 
possible that the RM is given by expected or hypothesized 
faults, such as in error guessing , or mutation testing. Spe-
cifically in error guessing [36] test cases are designed by 
testers trying to figure out the most plausible faults in a 
given program. A good source of information is the history 
of faults discovered in earlier projects, as well as the tester’s 
expertise. In Mutation testing [50], a mutant is a slightly 

modified version of the program under test, differing from 
it by a small, syntactic change. Every test case exercises 
both the original and all generated mutants: If a test case is 
successful in identifying the difference between the pro-
gram and a mutant, the latter is said to be killed. The un-
derlying assumption of mutation testing, the coupling ef-
fect, is that, by looking for simple syntactic faults, more 
complex, but real, faults will be found. For the technique to 
be effective, a high number of mutants must be automati-
cally derived in a systematic way. 

• Based on operational usage 
In testing for reliability evaluation, the test environment 
must reproduce the operational environment of the soft-
ware as closely as possible (operational profile ) [34], [44], 
[51]. The idea is to infer, from the observed test results, the 
future reliability of the software when in actual use. To do 
this, inputs are assigned a probability distribution, or pro-
file, according to their occurrence in actual operation. In 
particular the Software Reliability Engineered Testing 
(SRET) [44] is a testing methodology encompassing the 
whole development process, whereby testing is “designed 
and guided by reliability objectives and expected relative 
usage and criticality of different functions in the field.” 

6. TEST DESIGN  
We have seen that there exist various test objectives, many 
test selection strategies and differing stages of the lifecycle 
of a product at which testing can be applied. Before actually 
commencing any test derivation and execution, all these 
aspects must be organized into a coherent framework. In-
deed, software testing itself consists of a compound proc-
ess, for which different models can be adopted.  
A traditional test process includes subsequent phases, 
namely test planning, test design, test execution and test 
results evaluation.  
Test planning is the very first phase and outlines the scope 
of testing activities, focusing in particular on the objectives, 
resources and schedule, i.e., it covers more the managerial 
aspects of testing, rather than the detail of techniques and 
the specific test cases. A test plan can be already prepared 
during the requirements specification phase. 
Test design is a crucial phase of software testing, in which 
the objectives and the features to be tested and the test 
suites associated to each of them are defined [7], [29], [30], 
[51]. Also the levels of test are planned. Then, it is decided 
what kind of approach will be adopted at each level and for 
each feature to be tested. This also includes deciding a 
stopping rule for testing. Due to time or budget constraints, 
at this point it can be decided that testing will concentrate 
on some more critical parts. 
An emerging and quite different practice for testing is test 
driven development, also called Test-First programming, 
which focuses on the derivation of (unit and acceptance) 
tests before coding. This approach is a key practice of mod-
ern Agile development approaches such as Extreme Pro-
gramming (XP) and Rapid Application Development 
(RAD) [6]. The leading principle of such approaches is to 
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make development more lightweight by keeping design 
simple and reducing as much as possible the rules and the 
activities of traditional processes felt by developers as 
overwhelming and unproductive, for instance devoted to 
documentation, formalized communication, or ahead plan-
ning of rigid milestones. Therefore a traditional test design 
phase as described above does no longer exist, but new 
tests are continuously created, as opposed to a vision of 
designing test suites up front. In the XP way, the leading 
principle is to “code a little, test a little, …” so that develop-
ers and customers can get immediate feedbacks. 

7. TEST EXECUTION 
Executing the test cases specified in test design may entail 
various difficulties. Below we discuss the various activities 
implied in launching the tests, and deciding the test out-
come. We also hint at tools for automating testing activities. 

7.1 Launching the tests 
Forcing the execution of the test cases (manually or auto-
matically) derived according to one of the criteria presented 
in Section 5 might not be so obvious.  
If a code-based criterion is followed, it provides us with 
entry-exit paths over the flowgraph that must be taken, and 
test inputs that execute the corresponding program paths 
need be found. Actually, as already said, code-based should 
be better used as an adequacy criterion, hence in principle 
we should not look for inputs ad hoc to execute the not 
covered entities, but rather use the coverage analysis results 
to understand the weaknesses in the executed test cases. 
However, in the cycle of testing, monitoring unexecuted 
elements, finding additional test cases, often conducted 
under pressure, finding those test cases that increase cover-
age can be very difficult. 
If a specification-based criterion is adopted, the test cases 
correspond to sequences of events, which are specified at 
the abstraction level of the specifications; more precisely, 
they are labels within the signature of the adopted specifi-
cation language. To derive concrete test cases, these labels 
must be translated into corresponding labels at code level 
(e.g., method invocations), and eventually into execution 
statements to be launched on the User Interface of the used 
test tool. 

7.2 Test Oracles 
An important component of testing is the oracle. Indeed, a 
test is meaningful only if it is possible to decide about its 
outcome. The difficulties inherent to this task, often over-
simplified, had been early articulated in [57]. 
Ideally, an oracle is any (human or mechanical) agent that 
decides whether the program behaved correctly on a given 
test. The oracle is specified to output a reject verdict if it 
observes a failure (or even an error, for smarter oracles), 
and approve otherwise. Not always the oracle can reach a 
decision: in these cases the test output is classified as incon-
clusive. 
In a scenario in which a limited number of test cases is exe-
cuted, sometimes even derived manually, the oracle can be 

the tester himself/herself, who can either inspect a poste-
rior the test log, or even decide a priori, during test plan-
ning, the conditions that make a test successful and code 
these conditions into the employed test driver. 
When the tests cases are automatically derived, or also 
when their number is quite high, in the order of thousands, 
or millions, a manual log inspection or codification is not 
thinkable. Automated oracles must then be implemented. 
But, of course, if we had available a mechanism that knows 
in advance and infallibly the correct results, it would not be 
necessary to develop the system under test: we could use 
the oracle instead! Hence the need of approximate solu-
tions. 
Different approaches can be taken [2]: assertions could be 
embedded into the program so to provide run-time check-
ing capability; conditions expressly specified to be used as 
test oracles could be developed, in contrast with using the 
same specifications (i.e., written to model the system behav-
ior and not for run-time checking); the produced execution 
traces could be logged and analyzed.  
In some cases, the oracle can be an earlier version of the 
system that we are going to replace with the one under test. 
A particular instance of this situation is regression testing, 
in which the test outcome is compared with earlier version 
executions (which however in turn had to be judged passed 
or failed). Generally speaking, an oracle is derived from a 
specification of the expected behavior. Thus, in principle, 
automated derivation of test cases from specifications have 
the advantage that by this same task we get an abstract ora-
cle specification as well. However, the gap between the ab-
stract level of specifications and the concrete level of exe-
cuted tests only allows for partial oracles implementations, 
i.e., only necessary (but not sufficient) conditions for cor-
rectness can be derived. 
In view of these considerations, it should be evident that 
the oracle might not always judge correctly. So the notion 
of coverage2 of an oracle is introduced to measure its accu-
racy. It could be measured for instance by the probability 
that the oracle rejects a test (on an input chosen at random 
from a given probability distribution of inputs), given that 
it should reject it [12], whereby a perfect oracle exhibits a 
100% coverage, while a less than perfect oracle may yield 
different measures of accuracy. 

7.3 Test Tools 
Testing requires fulfilling many labor-intensive tasks, run-
ning numerous executions, and handling a great amount of 
information. The usage of appropriate tools can therefore 
alleviate the burden of clerical, tedious operations, and 
make them less error-prone, while increasing testing effi-
ciency and effectiveness. Reference [33] lists suitable char-
acteristics for testing tools used for verification and valida-
tion. In the following of this section we present a repertoire 
of typologies of most commonly used test tools, and refer 
to[7], [33], [44], [50], [51] for a more complete survey.  

 

2 It is just an unfortunate coincidence the usage with a quite different mean-
ing of the same term adopted for test criteria. 
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• Test harness (drivers, stubs): provides a controlled envi-
ronment in which tests can be launched and the test 
outputs can be logged. In order to execute parts of a 
system, drivers and stubs are provided to simulate 
caller and called modules, respectively; 

• Test generators: provide assistance in the generation of 
tests. The generation can be random, pathwise (based 
on the flowgraph) or functional (based on the formal 
specifications); 

• Capture/Replay: this tool automatically re-executes, or 
replays, previously run tests, of which it recorded in-
puts and outputs (e.g., screens). 

• Oracle/file comparators/assertion checking: these kinds of 
tools assist in deciding whether a test outcome is suc-
cessful or faulty; 

• Coverage analyzer/Instrumenter: a coverage analyzer as-
sesses which and how many entities of the program 
flowgraph have been exercised amongst all those re-
quired by the selected coverage testing criterion. The 
analysis can be done thanks to program instrumenters, 
that insert probes into the code.  

• Tracers: trace the history of execution of a program; 
• Reliability evaluation tools: support test results analysis 

and graphical visualization in order to assess reliability 
related measures according to selected models.  

8. TEST DOCUMENTATION 
Documentation is an integral part of the formalization of 
the test process, which contributes to the coordination and 
control of the testing phase. Several types of documents-
may be associated to the testing activities [51], [29]: Test 
Plan, Test Design Specification, Test Case Specification, Test 
Procedure Specification, Test Log, and Test Incident or 
Problem Report. We outline a brief description of each of 
them, referring to IEEE Standard for Software Test Docu-
mentation [29] for a complete description of test documents 
and of their relationship with one another and with the test-
ing process. 
Test Plan: defines test items, features to be or not to be 
tested, approach to be followed (activities, techniques and 
tool to be used), pass/fail criteria, the delivered documents, 
task to be performed during the testing phase, environ-
mental needs, (hardware, communication and software 
facilities), people and staff responsible for managing de-
signing, preparing, executing the tasks, staffing needs, 
schedule (including milestones, estimation of time required 
to do each task, period of use of each testing resources). 
Test Design Specification: describes the features to be 
tested and their associated test set. 
Test Case Specification: defines the input/output required 
for executing and a test case as well as any special con-
straints or intercase dependencies. A skeleton is depicted in 
Fig. 2.  
 
 
 
 

 
Fig. 2.  Scheme of a possible test case  

Test Procedure Specification: specifies the steps and the 
special requirements that are necessary for executing a set 
of test case. 
Test Log: documents the result of a test execution, includ-
ing: the occurred failures (if any); the information needed 
for reproducing them and locating and fixing the 
corresponding faults; the information necessary for 
establishing whether the project is complete; any 
anomalous events. See a summary in Fig. 3. 
Test Incident or Problem Report: provides a description of 
the incidents including inputs, expected and obtained re-
sults, anomalies, date and time, procedure steps, environ-
ment, attempts to repeat the tests, observations and refer-
ence to the test case and procedure specification and test 
log.  
 

 
Fig. 3. Scheme of a possible test log 

9. TEST MANAGEMENT  
The management processes for software development con-
cern different activities mainly summarized into [32]: initia-
tion and scope definition, planning, execution and control, 
review and evaluation, closure. These activities also con-
cern the management of the test process even though with 
some specific characterizations.  
In the testing phase in fact a very important component of 
successful testing is a collaborative attitude towards testing 
and quality assurance activities. Managers have a key role 
in fostering a generally favorable reception towards failure 
discovery during development; for instance, by preventing 

Test log ID The unique identifier associated with the test log
Items tested Details of the items tested including environmental attributes 

Events the list of the events occurred including:

the start and end date and time of each event
ID of the test procedures executed

personnel who executed the procedures
description of test procedures results

environmental details
Description of the anomalous events occurred 

Test Log

Test case ID The unique identifier associated with the test case

Test items and purpose The items and features exercised

Input data The explicit list of the inputs required for 
executing the test case (values, files database etc)

Test case behaviour Description of the expected test case behaviour
Output data The list of the outputs admitted for each feature involved 

in the test case, possibly associated with tolerance values

Environmental set-up The hardware/software configurations required 
Specific procedural reqs The constraints and the special procedures required.

Test cases dependencies The IDs of the test cases that must be executed prior
 this test case

Test Case Specification



 11 

a mindset of code ownership among programmers, so that 
they will not feel responsible for failures revealed by their 
code. Moreover the testing phases could be guided by vari-
ous aims, for example: in risk-based testing, which uses the 
product risks to prioritize and focus the test strategy; or in 
scenario-based testing, in which test cases are defined 
based on spec ified system scenarios. 
Test management can be conducted at different levels 
therefore it must be organized, together with people, tools, 
policies, and measurements, into a well-defined process 
which is an integral part to the life cycle3.  
In the testing context the main manager’s activities can be 
summarized as [[7], [36], [50], [51]: 

• Scheduling the timely completion of tasks 
• Estimation of the effort and the resources needed to 

execute the tasks: An important task in test plan-
ning is the estimation of resources required which 
means organizing not only hardware and software 
tools but also people. Thus the formalization of the 
test process also requires putting together a test 
team, which can involve internal as well as external 
staff members. The decision will be determined by 
consideration of costs, schedule, maturity level of 
the involved organization and the criticality of the 
application.  

• Quantification of the risk associated with the tasks 
• Effort/Cost estimation: The testing phase is a criti-

cal step in process development, often responsible 
for the high costs and effort required for product 
release. The effort can be evaluated for example in 
terms of person-days, months or years necessary 
for the realization of each project. For cost estima-
tion it is possible to use two kinds of models: static 
and dynamic multivariate models. The former use 
historical data to derive empirical relationships, the 
latter project resource requirements as a function of 
time. In particular, these test measures can be re-
lated to the number of tests executed or the number 
of tests failed. Finally to carry out testing or main-
tenance in an organized and cost/effective way, the 
means used to test each part of the system should 
be reused systematically. This repository of test ma-
terials must be configuration-controlled, so that 
changes to system requirements or design can be 
reflected in changes to the scope of the tests con-
ducted. The test solutions adopted for testing some 
application types under certain circumstances, with 
the motivations behind the decisions taken, form a 
test pattern which can itself be documented for 
later reuse in similar projects.  

• Quality control measures to be employed: several 
measures relative to the resources spent on testing, 
as well as to the relative fault-finding effectiveness 
of the various test phases, are used by managers to 
control and improve the test process. These test  

3 In [32], testing is not described as a stand-alone process, but principles 
for testing activities are included along with both the five primary life cycle 
processes, and the supporting process. In [31], testing is grouped with other 
evaluation activities as integral to development throughout the lifecycle. 

measures may cover such aspects as: number of test 
cases specified, number of test cases executed, 
number of test cases passed, and number of test 
cases failed, among others. Evaluation of test prob-
lem reports can be combined with root-cause 
analysis to evaluate test process effectiveness in 
finding faults as early as possible. Such an evalua-
tion could be associated with the analysis of risks. 
Moreover, the resources that are worth spending 
on testing should be commensurate with the 
use/criticality of the application: specifically a de-
cision must be made as to how much testing is 
enough and when a test stage can be terminated. 
Thoroughness measures, such as achieved code 
coverage or functional completeness, as well as es-
timates of fault density or of operational reliability, 
provide useful support, but are not sufficient in 
themselves. The decision also involves considera-
tions about the costs and risks incurred by potential 
for remaining failures, as opposed to the costs im-
plied by continuing to test. We detail better this 
topic in the next section. 

10. TEST MEASUREMENTS 
Measurements are nowadays applied in every scientific 
field for quantitatively evaluating parameters of interest, 
understanding the effectiveness of techniques or tools, the 
productivity of development activities (such as testing or 
configuration management), the quality of products, and 
more. In particular, in the software engineering context 
they are used for generating quantitative descriptions of 
key processes and products, and consequently controlling 
software behavior and results. But these are not the only 
reasons for using measurement; it can permit definition of a 
baseline for understanding the nature and impact of pro-
posed changes. Moreover, as seen in the previous section, 
measurement allows managers and developers to monitor 
the effects of activities and changes on all aspects of devel-
opment. In this way actions to check whether the final out-
come differs significantly from plans can be taken as early 
as possible[23]. 
We have already hinted at useful test measures throughout 
the chapter. It can be useful to briefly summarize them al-
together. Considering the testing phase, measurement can 
be applied to evaluate the program under test, or the se-
lected test set, or even for monitoring the testing process 
itself [9].  

10.1 Evaluation of the Program Under Test 
For evaluating the program under test the following meas-
urements can be applied:  
Program measurement to aid in test planning and design: con-
sidering the program under test, three different categories 
of measurement can be applied as reported in [7]:  
• Linguistic measures: these are based on proprieties of 

the program or of the specification text. This category 
includes for instance the measurement of: Sources 



12    

Lines of Code (LOC), the statements, the number of 
unique operands or operators, and the function points. 

• Structural measures: these are based on structural rela-
tions between objects in the program and comprise 
control flow or data flow complexity. These can include 
measurements relative to the structuring of program 
modules, e.g., in terms of the frequency with which 
modules call each other.  

• Hybrid measures: these may result from the combina-
tion of structural and linguistic properties. 

Fault density: This is a widely used measure in industrial 
contexts and foresees the counting of the discovered faults 
and their classification by their type. For each fault class, 
fault density is measured by the ratio between the number 
of faults found and the size of the program [50].. 
Life testing, reliability evaluation:  By applying the operational 
testing for a specific product it is possible either to evaluate 
its reliability and decide if testing can be stopped or to 
achieve an established level of reliability. In particular Reli-
ability Growth models can be used for predicting the prod-
uct reliability[44].  

10.2 Evaluation of the Test Performed 
For evaluating the set of test cases implemented the follow-
ing measures can be applied:  
Coverage/thoroughness measure: Some adequacy criteria re-
quire exercising a set of elements identified in the program 
or in the specification by testing.  
Effectiveness: In general a notion of effectiveness must be as-
sociated with a test case or an entire test suite, but test effec-
tiveness does not yield a universal interpretation. 

10.3 Measures for monitoring the testing process 
We have already mentioned that one intuitive and diffuse 
practice is to count the number of failures or faults de-
tected. The test criterion that found the highest number 
could be deemed the most useful. Even this measure has 
drawbacks:  as tests are gathered and more and more faults 
are removed, what can we infer about the resulting quality 
of the tested program? for instance, if we continue testing 
and no new faults are found for a while, what does this 
imply? that the program is “correct”, or that the tests are 
ineffective?  
It is possible that several different failures are caused by a 
single fault, as well as that a same failure is caused by dif-
ferent faults. What should be better estimated then in a pro-
gram, its number of contained “faults” or how many 
“failures” it exposed? Either estimate taken alone can be 
tricky: if failures are counted it is possible to end up the 
testing with a pessimistic estimate of program “integrity”, 
as one fault may produce multiple failures. On the other 
hand, if faults are considered, we could evaluate at the 
same level harmful faults that produce frequent failures, 
and inoffensive faults that would remain hidden for years 
of operation. It is hence clear that the two estimates are 
both important during development and are produced by 
different (complementary) types of analysis. 
The most objective measure is a statistical one: if the exe-
cuted tests can be taken as a representative sample of pro-

gram behavior, than we can make a statistical prediction of 
what would happen for the next tests, should we continue 
to use the program in the same way. This reasoning is at the 
basis of software reliability.  
Documentation and analysis of test results require disc i-
pline and effort, but form an important resource of a com-
pany for product maintenance and for improving future 
projects. 

11. CONCLUSIONS 
We have presented a comprehensive overview of software 
testing concepts, techniques and processes. In compiling 
the survey we have tried to be comprehensive  to the best of 
our knowledge, as matured in years of research and study 
of this fascinating topic The approaches overviewed in-
clude more traditional techniques, e.g., code-based criteria, 
as well as more modern ones, such as model checking or 
the recent XP approach.  
Two are the main contributions we intended to offer to the 
readers: on one side, by putting into a coherent framework 
all the many topics and tasks concerning the software test-
ing discipline, we hope to have demonstrated that software 
testing is a very complex activity deserving a first-class role 
in software development, in terms of both resources and 
intellectual requirements.  On the other side, by hinting at 
relevant issues and open questions, we hope to attract fur-
ther interest from academy and industry in contributing to 
evolve the state of the art on the many still remaining open 
issues. 
In the years, software testing has evolved from an “art” [46] 
to an engineering discipline, as the standards, techniques 
and tools cited throughout the chapter demonstrate. How-
ever test practice inherently still remains a trial-and-error 
methodology. We will never find a test approach that is 
guaranteed to deliver a “perfect” product, whichever is the 
effort we employ. However, what we can and must pursue 
is to transform testing from “trial-and-error” to a system-
atic, cost-effective and predictable  engineering discipline.  
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