FINITE-STATE MODELING OF SOFTWARE

Why Make a Finite-State Model:

- FSM is a *finite* description of a potentially *infinite* number of behavior-sequences (similar to a program).
- It is programming language independent.
- Can generate semi-automated code from the FSM.
- Can easily build subsystem-models and higher level (architecture) models from FSM.

Remarks:

(1) Converting a program P to an FSM $M(P)$ can be automated.

(2) Building an FSM from the problem-statement or requirements, without the software, cannot be fully automated, and remains very much a human-centered activity.
AN EXAMPLE

- Shown below is a simple FSM for the borrow-return operations of a library book; it shows that
 1. the two operations must alternate, and
 2. the start-operation is borrow.

![FSM Diagram]

Question: What makes "borrow" the start-operation?

- A modified FSM to include the renew-operation.

![Modified FSM Diagram]

Questions

- What distinguishes renew-operation from return-operation and how is it reflected/captured in the FSM?
- Do you see any shortcoming in this model?
- What would be the new FSM if we assume that one can renew the book at most 2 times? (Is there a need for such a restriction?)
- How to model the fact that the person borrowing the book is the person renewing it? (Is this restriction necessary?)
GOING FROM A PROGRAM TO ITS FINITE-STATE MODLE

The WordCharCount program:

```c
#include <stdio.h>
define WORDLEN 20

void WordCharCount(FILE *inFile)
{
int i;
char word[WORDLEN+1]; //1 for end of string

wordCount = charCount = 0;
while (fscanf(inFile, "%s", word) > 0) {
    wordCount++;
    for (i=0; i<=WORDLEN; i++)
        if ('\0' == word[i]) break;
    else charCount++;
}
}
```

Example Input And Activities:

```
inFile: □□□□a b c d □□□□e f...
    |    |  |  |  |  |  |  |
    |    |  |  |  |  |  |  |
wordCount=charCount=0          wordCount++; i=0
wordCount++; i=0                charCount++; i++
wordCount++; i=0                charCount++; i++
```
FLOWCHART OF WordCharCount

```
WordCharCount(inFile)
A1 wordCount = charCount = 0
D1 fscanf(..., word) > 0
   T
      wordCount++; i=0 A2
      i ≤ WORDLEN D2
         T
            \0 == word[i] D3
               T
                   \0 == word[i] D3
               F
                   charCount++; i++ A3
   F
      end

Decision to decision path (DD-path):
The "chunk" of activities, if any, between two consecutive branch-points on a path from start to end.

- Start → A1 (→ D1)
- D1 → A2 (→ D2); D1 → end;
- D2 (→ D1); D2 (→ D3)

Question: What is the relationship between the #(DD-paths) and #(decision-points) in the program? (Assume that each decision is two-way: true and false.)
FINITE-STATE MODEL
FROM DD-PATHS

```
inFile ≠ NULL
 / (wordCount = 0; charCount = 0)

fscanf(inFile, ⋅⋅⋅) = 0
 / −

fscanf(inFile, ⋅⋅⋅) > 0
 / (wordCount++; i=0)

\'\0' = word[i] / −

i > WORDLEN / −

i ≤ WORDLEN / −

\'\0' ≠ word[i]
 / (charCount++; i++)
```
SOME SIMPLIFICATIONS

Elimination of unused transition: "i > WORDLENG/—"

- The condition "i ≤ WORDLEN" becomes "T" (true).

Elimination of the transition with Condition "T":

- This affects both (D3, D2) and (D3, D1).

On loop termination:  \( i = \text{length}(\text{word}) \)
LOOP ELIMINATION

Loop Elimination:

```
start

D1

fscanf(inFile, ...) = 0
(fscanf(inFile, ...) > 0
(wordCount = 0; charCount = 0)

D2

end
```

Elimination of Variable i:

```
start

D1

fscanf(inFile, ...) = 0
(wordCount = 0; charCount = 0)

D2

end
```

Simplified Code:

```c
void WordCharCount(FILE *inFile)
{
 char word[WORDLEN+1]; //1 for end of string

 wordCount = charCount = 0;
 while (fscanf(inFile, "%s", word) > 0) {
 wordCount++;
 charCount += length(word);
 }
}
```
SUMMARY

All computations can be modeled, at any desired level, by FSMs using condition-guards on the transitions.

Remarks:

- This is basically a restatement of the Church-Turing hypothesis:
  
  Each computation/algorithm can be modeled by a Turing Machine.

- Construction of an FSM, without having a program in hand, is often a non-trivial task.
MORE EXAMPLES OF FSM

Window with a Lock:

- Four operations: open, close, lock, and unlock.
- Constraints:
  - can be opened only if it closed and unlocked.
  - can be closed only if it opened.
  - can be locked only if it is closed and unlocked.
  - can be unlocked only if it is locked.
- Initially closed and unlocked.

Proper state-names help us to easily identify the applicable actions at a state.

- There are no condition-guards for the transitions here (why?).
- There are no final states here because the operations can be continued for ever, without termination.
- We allow transitions to the start-state to keep the number of states small.
MORE EXAMPLES OF FSM

Door With Two-sided Lock:

- Eight operations: openFromIn, closeFromIn, lockFromIn, and unlockFromIn, and similar operations from out.

Imagine a person moving in and out of the room when the door is open; the person’s moves are not modeled.

- Initially, the door is closed from out and unlocked.

- Constraints:
  - Similar to those for the window for the operations from in and for the operations from out.
  - "Inside" operations can occur only after the operation openFromOut, and likewise for "outside" operations.

- The door can be closed/locked from one side at a time.

EXERCISE

1. Show the new FSM after we add the operations goIn and goOut to model the person’s move.
THE CHOICE OF OPERATION-NAMES CAN AFFECT THE FSM

- Imagine a single lock-function that takes into account the state of the door-with-two-sided-lock and performs the appropriate operation lockFrIn or lockFrOut as needed.
- Similarly for the unlock-function.

Cannot use the same name "close" for both closeFrIn and closeFrOut because it causes non-determinism.
EXERCISE

1. Show the new FSM when we use "close" both for closeFrIn and closeFrOut and similarly for open, but keep different names lockFrIn and lockFrOut. (Hint: you may need more states; following FSM is no good - why?)

![State Diagram]

2. How many ways a state-diagram can fail to represent a proper FSM?

3. How many FSM’s are possible with $n$ states and $m$ actions/events if we do not use guards and have no final states? (Remember that there may not be a transition for every state-event pair.)
DECOMPOSING AN FSM

The FSM for Door With Two-sided Lock:

![FSM Diagram]

- CO: closed from out
- CI: closed from in
- O: open
- LO: Locked from out
- LI: Locked from in

Decomposition into Two FSMs:

- We use guards to coordinate the interaction between them.
- The composition $M(D) \times M(L)$ gives the original FSM.

![Decomposed FSM Diagrams]

The finite-state model $M(D)$ for door.

The finite-state model $M(L)$ for two-sided-lock.

**Question:** What do the states in $M(D)$ and $M(L)$ look like in terms of the states in the original FSM?
FORMING THE COMPOSITION $M(D) \times M(L)$

Starting FSMs $M(D)$ and $M(L)$:

$M(D)$ for door. $M(L)$ for two-sided-lock.

Composition $M(D) \times M(L)$:

- The dashed transitions are not present due to guards.
- The shaded states are not there because they are not reachable from the start-state $D_0L_0$. 