
RELATION AND
RELATIONAL OPERATIONS

Relation:

• A table with a distinct name for each column (attribute).

• Each attribute Ai has associated with it a domain Di of possible
values that may appear in that column.

• Each row of the table is a tuple of attribute values, one per col-
umn.†

Example. STUDENT-GRADES relation.

S# Sname C# Grade
12 John c1 A
12 John c2 B
12 John c3 A
15 Bill c1 A
15 Bill c2 A
27 Linda c1 A
27 Linda c2 B
31 Betty c1 A

• There is no ordering of the columns or the rows, i.e., a change
in either (or both) does not change the relation.

† Unlike a vector, the tuple items can be of different types.

2

OPERATIONS ON A RELATION

Tw o Dimensions of Relations: Horizontal and vertical.

• The schema gives the columns (horizontal dimension) or the
intension.

STUDENT-GRADES(S#, Sname, C#, Grade).

• The rows (vertical dimension) form the extension or value of
the relation schema.

• The extension may change over time as rows are added or
deleted or updated. The schema of a relation remains fixed.

Operations: Tw o types for the two dimensions.

• Operations that modify the extension (vertical dimension).

Adds rows: Union
Subtracts rows: Intersection, Difference,

Subset formation (selection)

• Operations that modify intention (and maybe extension also):

Add columns: Cartesian product, Join
Subtract columns: Projection, Division

3

SET THEORETIC OPERATIONS: TYPE-I

• The two operands (relation instance) in each of union, intersec-
tion, and difference operation must have the same schema.

Example. Consider the schema STUDENT(S#, Sname).

extension R1 extension R2

S# Sname S# Sname

12 John 12 John
27 Linda 27 Linda
31 Betty 32 Linda
44 Steve

Union:

• R1 ∪ R2 = the set of all tuples which belong to one or both of
R1 and R2; |R1∪R2| ≤ |R1| + |R2|.

R1 ∪ R2

S# Sname
12 John
27 Linda
31 Betty
44 Steve
32 Linda

4

extension R1 extension R2

S# Sname S# Sname

12 John 12 John
27 Linda 27 Linda
31 Betty 32 Linda
44 Steve

Intersection:

• R1 ∩ R2 = the set tuples in both R1 and R2; |R1∩R2| ≤
min(|R1|, |R2|).

S# Sname
12 John
27 Linda

Difference:

• R1 − R2 = the set of tuples in R1 but not in R2; |R1 − R2| ≤ |R1|.

S# Sname
31 Betty
44 Steve

Selection:

• σ P(R1) = the set of tuples in R1 which satisfy the predicate P;
|σ P(R1)| ≤ |R1|. Let P = "ev en S#".

S# Sname
12 John
44 Steve

5

OTHER OPERATIONS: TYPE II

Cartesian product:

• R1×R2 = all combinations of tuples of R1 and tuples of R2;
|R1×R2| = |R1| × |R2|.

STUDENT COURSE

S# Sname C# Cname

12 John c1 Database
27 Linda c2 Compiler
31 Betty c3 Pascal

c4 Cobol

STUDENT × COURSE
S# Sname C# Cname
12 John c1 Database
12 John c2 Compiler
12 John c3 Pascal
12 John c4 Cobol
27 Linda c1 Database
27 Linda c2 Compiler
27 Linda c3 Pascal
27 Linda c4 Cobol

... ...

• What is R1(A, B, C)×R2(A, D), where attribute A is common?

The result relation has attrbuites (A(1), B, C, A(2), D), where
A(1) and A2 captures attribute A in R1 and A2, respectively.
(Note that A in R1 may have a different meaning than A in R2.)

6

Projection:

• ΠA(R) = from each tuple in R take only the values in the set of
columns in A (eliminate any duplicate rows that may be gener-
ated in the process); |ΠA(R)| ≤ |R|.

• Projection can be taken on a set of attributes.

STUDENT
S# Sname
12 John
15 Bill
27 Linda
32 Linda

ΠSname(STUDENT) ΠS#(STUDENT)

Sname S#

John 12
Bill 15
Linda 27

32

7

Natural Join:

• R1⊗R2 = the tuples of R1×R2 for which the values in the com-
mon columns of R1 and R2 are identical; |R1⊗R2| ≤ |R1| × |R2|.

• Only one set of the common columns are kept.

STUDENT GRADE

S# Sname S# C# Grade

12 John 12 c1 A
27 Linda 12 c2 B
31 Betty 27 c1 B
44 Steve 31 c2 A

STUDENT ⊗S# GRADE
S# Sname C# Grade
12 John c1 A
12 John c2 B
27 Linda c1 B
31 Betty c2 A

• The join-relation shows all students and their course grades.

• Since Steve has no grades (has not taken any courses), his infor-
mation is lost.

• The join STUDENT ⊗S# GRADE can be expressed in terms of
selection and projection as

Π(S#,Sname,C#,Grade)


σ STUDENT .S#=GRADE.S#(STUDENT ×GRADE)



8

Division:

• R1/R2, where Attrb(R2) ⊂ Attrb(R1). The result relation has
attributes Attrb(R1) − Attrb(R2).

(1) First obtain the projection of R1 on the columns other than
those in R2.

(2) Then, select those rows of the projection whose cartesian
product with R2 is contained in R1.

R1 = STUDENT_GRADE R2 = GRADE R1/R2

S# Sname C# Grade C# Grade S# Sname

12 John c1 A c1 A 12 John
12 John c2 B c2 B 27 Linda
12 John c3 A
15 Bill c1 B
15 Bill c2 B
15 Bill c3 A
27 Linda c1 A
27 Linda c2 B
31 Betty c1 A

• R1/R2 gives (S#, Sname) of those students who received grade
A in course c1 and grade B in course c2.

• No single row in R1 = STUDENT_GRADE can give the infor-
mation about both (c1, A) and (c2, B) in GRADE.

• The division operator is used when several rows have to be
evaluated together with separate criteria applied to each of those
rows. We can express R1/R2 above using projection and selec-
tions operations as follows

Π(S#,Sname)σ (C#=c1)∧(Grade=A)(R1) ∩ Π(S#,Sname)σ (C#=c2)∧(Grade=B)(R1)

9

EXERCISE

1. How can you obtain (S#, Sname) of STUDENTs who satisfy
the criteria P: "(A in c1) or (B in c2)"? For the relation given
on the previous page, you should get the following final answer.

S# Sname
12 John
15 Bill
27 Linda
31 Betty

2. Find the expression involving division and other operations to
determine (S#, Sname) of students who had taken at least the
courses c1 and c2 and received at least one A (may be in a
course different c1 and c2). Keep the number of relational-
operations performed as small as possible. (Note that finding
(S#, Sname) for students who received at least two A’s is more
complex.)

3. Which of (R1/R2)×R2 ⊆ R1 and (R1/R2)×R2 ⊇ R1 is true for
abitrary R1 and R2 with Attrb(R2) ⊂ Attrb(R1)?

4. Is it better to have a relation COURSE-GRADE(S#, C#, Grade)
for all courses or have sev eral relations like DAT ABASE-
GRADE(S#, Grade), THEORY-GRADE(S#, Grade), etc, one
relation for each course? Which form requires less total storage
to represent a given collection of course-grade information?

10

DECOMPOSITION OF A RELATION

• For disjoint sets of attributes X, Y, and Z, a relation R(X,Y,Z) is
decomposable if R = ΠXY R ⊗Y ΠYZ R.

Example:

• For the example R(A, B, C) below R ≠ ΠABR ⊗B ΠBCR. The
tuple (a1, b1, c2) is in the join but not in R.

A B C A B B C

a1 b1 c1 a1 b1 b1 c1
a1 b2 c2 ≠ a1 b2 ⊗ b2 c2
a2 b3 c1 a2 b3 b3 c1
a2 b1 c2 a2 b1 b1 c2

• R ≠ ΠXY R ⊗Y ΠYZ R means the facts described by (X,Y,Z) do
not consists of independent facts described by (X,Y) and (Y,Z).

• If A = Person, B = Project, and C = Hours-worked, then the
decomposition holds if each person in a project works the same
number of hours. That is, c1 = c2 = the hours for project b1.

A B C A B B C

a1 b1 c1 a1 b1 b1 c1
a1 b2 c2 = a1 b2 ⊗ b2 c2
a2 b3 c1 a2 b3 b3 c1
a2 b1 c1 a2 b1

11

DECOMPOSITION THEOREM

Theorem.

• If Y → Z is a functional dependency, then R(X, Y, Z) = ΠXY R
⊗Y ΠYZ R.

EXERCISE

1. If we impose B → A instead, what changes we need to make in
the fourth tuple in R(A,B,C). Show R(A, B) and R(B, C) after
making the change and verify R(A, B, C) = R(A, B) ⊗ R(B, C).

