
COMPUTING SCIENCE AND TECHNOLOGY
vs. THEORY OF COMPUTATION

Computing Science:
Finds orders, structures, and patterns in useful (effective) compu-
tations.

Example. Each program can be built without goto’s using only if-
then-else, while-do loop, and sequence of statements.

Computing Technology:
Creates computers, languages, and algorithms/software with
desired properties/behaviors using the computing science.

Theory of
Computation

language

software computer

Computing Hypothesis:

All behaviors/properties of living and non-living things can be mod-
eled/analyzed/simulated via computation because there are "pat-
terns" (logic) in those behaviors.

A program represents a potentially infinite set of computations
with certain specific structures or patterns in them.

1.2

EXAMPLE OF A FINITE-STATE MODEL
FOR A SIMPLE PROGRAM

while (not end-of-input-file) do {
read a character;
write that character to output-file;

}

Consider just the operations: read(r) and write(w):

start and
final state

r

w

• r and w occurs alternately, starting with r and ending with w.

• Possible sequences of computations for different input-files:

rw Input file with one character
rwrw Input file with two characters
rwrwrw Input file with three characters

Pattern of computations: rwrw⋅⋅⋅rw = (rw)n for n ≥ 0.

Question:

•? Show the finite-state model and the pattern of computations in the
above program when we also consider the operation t = while-test.

•? Give a program for printing the characters in a text-file in which the
read/write operations form the pattern rnwn, n ≥ 0.

•? What does the FSM below for the operations {open, close, lock,
unlock} on a door say about which operations can be done when?

close

open

lock

unlock

1.3

EXAMPLE QUESTIONS
THAT WE WILL BE ABLE TO ANSWER

1. Consider a robot that only moves east, west, north, and south (but
no rotation). Can we compute the robot’s moves for traversing an
arbitrary convex maze like the one below, using a fixed amount of
memory independent of the maze’s size? (Convex means the
squares along each horizontal and vertical line form a continuous
strip without any gap; see the maze in Problem 2.) Show two dif-
ferent traversals of the maze below by numbering the squares 1, 2,
⋅⋅⋅ in the order they wold be visited; start at the top right corner.
Also, state in English your strategy in each case. Does your strat-
egy work for a non-convex maze (perhaps having holes)?

2. Can we compute a northmost point in a skyline-shaped maze of
arbitrary size using only a fixed amount of memory?

3. How much memory (and arithmetic power) do we need to deter-
mine the divisibility of binary numbers by 3?

101 = 5, not div. by 3 10101 = 21, div by 3
11110 = 30, div by 3

Question: If 3 divides a binary number then does 3 also divide the
binary number for the reverse string? (Can you prove it?)

1.4

KEY ISSUES IN THEORY OF COMPUTATION

Key issues:

• What kinds of things are computable (or non-computable)?

• What is the role of memory in computation?

• How the notion of control differs from memory?

• Can we classify computable things in some way? Are some things
more non-computable than others in some way?

AlgorithmInputs Outputs

Algorithm:

• A finite description of a potentially infinite number of different
computations (resulting from different inputs).

• The common pattern in those computations makes it possible to
describe those computations in the form of a finite algorithm.

Understanding an algorithm means: understanding

• What is computed, i.e., the input-output relationship

• How the input is transformed to the output, in particular, the pattern
in those computations

1.5

HALTING PROBLEM IS NOT COMPUTABLE

Logically meaningful things

HP

Computable things

Only a small part of all logically/mathematically
meaningful things are computable.

Question: Are all computable things logically meaningful?

Halting Problem (P, I): Does program P stop for the input I?

• It is a logically meaningful question, but there is no algorithm to
solve the problem for all (P, I) pairs!

Question:

•? Why can’t we just execute P for the input I?

•? Give details to show the inputs x for which the following program
will (will not) halt.

void DoesItHalt(double x)
{ double y, sum;
for (sum = y = 1.0; sum >= 1.0; sum += y)

y = y*x;
printf("x=%5.3f, sum=%5.3f\n", x, sum);

}

1.6

PATTERN

Is this a pattern − pattern of what?

Is there a pattern of the digits in the decimal form of 1/7?

1/7 = 0.142857142857142857⋅⋅⋅

Is there a pattern among the strings below?

aa, aba, abba, abbba, ⋅⋅⋅

Is there a pattern of digits in the following?

123223131213

We will talk of patterns of symbols in a set of strings.

Question: Why strings when we talk of patterns?

Every thing we think or write
can be expressed as a string.

Question: Can you give an example of a string without a pattern?

1.7

PATTERN IN COMPUTATION

Algorithm
A sequence of

computation steps
an input the output

Computation: The result of activation of an algorithm by an input.

• A finite sequence x = a1a2⋅⋅⋅an (or an infinite sequence x = a1a2⋅⋅⋅)
of atomic operations or steps.†

• Each ai ∈ Σ = {b1, b2, ⋅⋅⋅, bk} and b j’s are the distinct atomic oper-
ations in the computations of an algorithm/program.

Example. Consider the read/write operations (i.e., Σ = {r, w}) in
computations of the program:

while (not end-of-input-file) do {
read a character;
write that character to output-file;

}

• Each computation is a finite string of the operations Σ = {r, w}.

• It has the pattern (form): x = rwrw⋅⋅⋅rw = (rw)n, n ≥ 0.

The computations of each algorithm have a pattern.

Computation Related to (Understanding) a Pattern:

• How to test if a given string fits the pattern.

† Henceforth, a finite computation sequence x will be referred to
as a string. The term sequence or infinite string will be used for
an infinite computation.

1.8

EXERCISE

1. Let L = {(rw)n: n ≥ 0}. Describe the strings which are not in L,
i.e., the strings in Lc = {x: x ∉ L}. Is there a pattern in those
strings? (Hint: write some example strings in Lc and then find a
compact description for Lc.) If you know something about regular
expressions from your Discrete Math class, then write a regular-
expression for L and another regular expression for Lc. Does the
following FSM describe all strings in Lc?

r r
r, w

w

w

2. Suppose you have an algorithm A for testing whether a string x has
a desired pattern or not. How will you compute all strings of a
given length n which have that pattern? Give a brief description of
your algorithm; clearly identify the inputs and the outputs.

A
x Y /N

You can assume that the alphabet is fixed for the moment for both A
and B, and are not being input.

3. Suppose now that you have an algorithm B for computing all
strings of a given length n which have a certain pattern. How will
you test if a string x has that pattern? Give a brief description of
your algorithm.

B
n all strings of length n

having the given pattern

1.9

OUR GOALS

We study:

• The basic notions of finite-state control and memory, and their role
in computation.

• Abstract models (machines) for computation.

Why study these models:

• Computer hardware design (both architecture and technology) have
changed frequently since the first day of computers, The changes
are, however, mostly of "engineering" nature.

• The basic Turing Machine (TM) model for computation has
remained unchanged since its discovery, and it is unlikely that we
will ever need a change this model.

Church-Turing Hypothesis:

A computation method is an algorithm if and only if it can be mod-
eled by a TM.

An algorithm = A Turing machine.

Goals:

• Learn to think in terms of "patterns".

• Classify patterns based on the characteristics of their recognition
algorithms.

• Giv e computable descriptions of patterns that lead to algorithms
form their recognition.

• Form complex machines/algorithms from simpler ones for recogni-
tion of complex patterns.

1.10

ABSTRACT MODELS OF COMPUTATION

• Form the basis of all hardware and software design, covering all
aspects of computation:

− Design of computers

− Design of application and systems programs executed by com-
puters

− Design of compilers to process the programs to generate
executable code

− Design of programming languages to express computa-
tions/algorithms

A simple looking pattern can be
computationally very complex.

‡ The computation of an algorithm may not terminate for all
inputs; such a computation is sometimes called procedural to
distinguish it from computations that always terminate. We are
concerned here with computations that terminate.

1.11

PATTERNS EVERYWHERE

Pattern of begin-end in a program:

begin b b e e b e rlogin
begin (()) () rlogin
end logout

end logout
begin rlogin
end logout

General Form:

• Simplest case: bnen, n ≥ 1 (nesting); b3e3 = bbbe e e.

• More general case: bn1 en1 bn2 en2 ⋅⋅⋅bnk enk , n j ≥ 1, k ≥ 1 (sequencing
of nested parts).

• Most general case: bbbe be ee be bbe e, arbitrary combination of
nesting and sequencing operations.

seq
bbbe be ee be bbe e

nestingbbbe be ee be nesting bbe e

nestingbbe be e

seqbe be

be be

be

1.12

EXERCISE

1. Let s represent any program-statement other than the begin/end
statements and variable declarations. The simplest pattern of state-
ments in a program, when we ignore variable declarations, is bsne,
n ≥ 0. Is the following a valid pattern of statements in a program:

bsbsseebse

How can this be obtained from a valid b/e-pattern? State a general
rule for creating valid pattern of statements in a program from valid
b/e-patterns that would cover the above example.

2. If the answer to Problem 1 does not give the most general pattern of
statements in a program, then find a rule for such patterns starting
from valid b/e-patterns.

1.13

EXERCISE

1. Show that the following definitions of a balanced b/e-string x are
equivalent. (Hint: First, to get a good sense of the matchings in (ii),
write all possible matching for x = bbebee and x = bbebeebe.
Then, show that (ii′) implies that the scheme "match the kth b from
the left to the kth e from the left" gives a matching as in (ii). Can
we use a similar scheme from the right instead of from the left?)

Def. 1. (i) #(b, x) = #(e, x) and
(ii) There is a matching (one-to-one and onto map-

ping) of the b’s and the e’s in x such that each b
is matched with an e to its right.

Def. 2. (i′) #(b, x) = #(e, x) and
(ii′) For each initial part x′ of x, #(b, x′) ≥ #(e, x′).

2. Let N (x) = #(matchings for x as in Def. 1), where x is a balanced
b/e-string. Show the following:

(i) If x1 and x2 are balanced strings and x = x1 x2, then N (x) =
N (x1)N (x2). Verify your answer by showing all possible
matchings for x1 = bbebee, x2 = bbee, and x. (What property
do you observe among the matchings for x and those for x1
and x2?)

(ii) If x cannot be factored into two smaller balanced strings as in
(i), then the last e can be matched with any b. (Similarly, the
first b can be matched with any of the e’s.)

(iii) Let N j = #(b’s to the left of jth e from left). Show that N (x)
= N1(N2 − 1)⋅⋅⋅(Nn − n + 1), where |x| = 2n. Thus, N (x) ≤
n!. Which x’s giv e N (x) = n! and N (x) = 1?

3. Find an algorithm to construct all balanced strings of length 2n.
(Do not construct all possible strings of length 2n over Σ = {b, e}
and then throw away the unbalanced ones.)

1.14

4. Find an algorithm to construct all string x of length 2n over Σ =
{b, e} such that #(b, x) = #(e, x).

5. Consider a balanced b/e string and a matching as in Def. 1 in Prob-
lem 1. For the situation shown below on the left, we say the
matched pairs bi: ei and b j : e j cross each other. We can define a
new matching among {bi , b j , ei , e j} to uncross these b: e pairs as
shown on the right and still satisfy the condition that "each b is
matched with an e to its right". We say that b j : ei is the reduced
pair in the uncrossing operation and bi: e j is the enlarged pair.

⋅⋅⋅ bi ⋅⋅⋅ b j ⋅⋅⋅ ei ⋅⋅⋅ e j ⋅⋅⋅

A crossing pair of matched b: e’s.

⋅⋅⋅ bi ⋅⋅⋅ b j ⋅⋅⋅ ei ⋅⋅⋅ e j ⋅⋅⋅

The result of uncrossing the b: e pairs.

(i) How can we apply the uncrossing in some systematic fashion
and eliminate all crossings?

(ii) Argue now that given any matching satisfying Def. 1, we can
create a matching with no crossing and still satisfying Def. 1.

1.15

PATTERNS EVERYWHERE (contd.)

Pattern in a skyline:

A city skyline: ne ne nne nee ssse ne se ne ne ne see se ssse ne s

Question:

•? Is there a relationship between the skyline-pattern and any of the
patterns seen previously?

•? Are there patterns in shapes of flowers and leaves? Are there pat-
terns in paths followed by storms, cyclones, and rivers?

•? Are there patterns in human thoughts or in computations performed
by programs?

Different things may have closely related patterns
when they are represented with proper abstractions.

Question:

•? How do you describe the pattern of 0’s and 1’s in the binary strings
corresponding to the even integers n ≥ 0?

n = 0: 0 n = 4: 100 n = 8: 1000 ⋅⋅⋅
n = 1: 1 n = 5: 101 n = 9: 1001 ⋅⋅⋅
n = 2: 10 n = 6: 110 n = 10: 1010 ⋅⋅⋅
n = 3: 11 n = 7: 111 n = 11: 1011 ⋅⋅⋅

The string 0 or the strings starting with 1 and ending with 0.

1.16

REGULAR EXPRESSIONS: A POWERFUL
METHOD FOR DESCRIBING PATTERNS

Regular expression description: 0 + 1(0 + 1)*0

+ means (logical) "or"
* means "repeat 0 or more times"

• Regular expressions provide us a way of giving a finite descriptions
for a large variety of infinite sets of strings (which have a reason-
ably simple pattern in them).

Question:

•? What is a regular expression for all binary strings with even number
of 0’s?

{λ, 1, 00, 11, 001, 010, 100, 111, ⋅⋅⋅}

Reg. Exp: 1*(01*01*)*

x = 11010001110101 = 11⋅010⋅00111⋅0101

1.17

POWER OF ABSTRACTION:
A METHOD OF PROBLEM REDUCTION

Divisibility by 3 of a binary number:

(∗) num(s) is divisible by 3 iff num(s′) is divisible by 3,
where s′ is the reverse of a binary string s.

Question:

•? For what kind of s, the property (∗) is easily proved?

•? How can we reduce an arbitrary s to this special form?

Three Reduction/Abstraction Rules (s ≠ 000⋅⋅⋅0):

(1) Remove starting and ending 0’s. (3) Remove "00".
(2) Replace "11" by "00".

Example. Rules used below: (1),(2),(3),(3),(2),(3),(1)

101110010 → 10111001 → 10001001 → 101001 → 1011 → 1000 → 1.

Question:

•? Are there other ways of applying the rules (1)-(3) to 101110010 and
do we still get the same final string 1?

•? Can we replace rule (3) by a combination of rules (2)-(3)? Is this
better than rule (3)?

•? Does the final string depend on how we apply the reduction rules?

•? What is the pattern of fully reduced binary strings?

What remains to show: Prove the following:

(∗∗) num(s) is divisible by 3 iff num(reduction(s)) is divisible by 3 on
each application of rules (1)-(3).

Question: Give a rule which can also be used in reducing an s to the
form (10)*1 but for which the property (∗∗) does not hold.

1.18

PROOF OF (∗∗) AND (∗)

Proof of (∗∗):

• Rule (1):

− If s = x0 (x is not the empty string), then num(s) = 2.num(x)
and thus num(s) is divisible by 3 iff num(x) is divisible by 3.

− If s = 0x, then num(s) = num(x), etc.

• Rule (2):

− If s = x11y, then num(s) = num(x00y) + 3.2|y| and thus both or
none of num(s) and num(x00y) is divisible by 3.

• Rule (3):

− If s = x00y, then

num(s) = num(x).2|y|+2 + num(y)
= 4.[num(x).2|y| + num(y)] − 3.num(y)
= 4.num(xy) − 3.num(y).

Thus 3 divides both or none of num(s) and num(xy).

Coro. If s′ is the fully reduced form of s, then 3 divides both or none
of num(s) and num(s′).

Proof of (∗):

• Follows easily now by induction on length of s and the fact that if s
is fully reduced then s = rev erse(s).

Question: Show the pattern of the binary numbers of the form (10)*1
that are divisible by 3.

1.19

EXERCISE

1. Show the encoding of the following convex-shaped skyline using
the symbols {e, n, s}. In what way the patterns of the encoded
strings for convex-shaped skyline is simpler than those for general
skylines.

2. Shown below are 16 statements formed from the expressions E1 =
"the things he has" and E2 = "the things he wants", by combining
them in different ways with the quantifiers "some" and "every" and
the negation "not". The sentences (e)-(h) are simply the negations
of (a)-(d); similarly for (e′)-(h′) and (a′)-(d ′).

(a) He has every thing that he wants. (a′) He wants every thing that he has.
(b) He has some thing(s) that he wants. (b′) He wants some thing that he has.
(c) He has every thing that he does not want. (c′) He wants every thing that he does not have.
(d) He has some thing that he does not want. (d′) He wants some thing that he does not have.

(e) He does not have every thing that he wants. (e′) He does not want every thing that he has.
(f) He does not have some thing that he wants. (f′) He does not want some thing that he has.
(g) He does not have every thing that he does not want. (g′) He does not want every thing that he does not have.
(h) He does not have some thing that he does not want. (h′) He does not want some thing that he does not have.

Express each of the statements (a)-(h′) using H = the set of
things he has, W = the set of things he wants, and Ω = the set
of things under consideration (the universe). For example, (a)
corresponds to W ⊆ H and (b) corresponds to H∩W ≠ ∅.
Av oid the use of set-complementation, as much as possible, in
order to facilitate answering Problem 2 below.

3. Pair each statement in the group (a)-(h) in Problem 2 with an
equivalent statement (with the same meaning) in the group
(a′)-(h′). No two statements within the same group are equiv-
alent.

1.20

4. Which of the statements (a)-(h) in Problem 2 can be combined
to express that H = W? Show such a combination.

5. Which of the following is a stronger statement (and hence is
less likely to be true in a given situation)?

(a) Some student got full-marks for each homework in
CSC-4890.

(b) For each homework in CSC-4890, some student got full-
marks for it.

6. Consider a class of CSC-4890 with 3 students {S1, S2, S3} and
4 homeworks {H1, H2, H3, H4}. Draw lines between them to
indicate who received full-marks for which homework(s) in
such a way that only one of the above statements (i.e., the
weaker one) holds.

S1

H1

S2

H2

S3

H3

H4

1.21

COUNTABLE AND UNCOUNTABLE SET

Finite: The set is empty, or its elements can be listed as e1,
e2, ⋅⋅⋅, en for some n ≥ 1.

Countable: The set is infinite, but all its elements can be listed
in some order as first, second, etc: e1, e2, e3, ⋅⋅⋅.
To show that a set S is countable, you must find a
way of listing all items of S exactly once.

Uncountable: Infinite, but not countable; cannot be list its items
as first, second, etc.

Example 1. If Σ = {a}, then Σ* = the set of all strings over Σ =
{λ, a, aa, aaa, ⋅⋅⋅} is countable.

Example 2. If Σ = {a, b}, then Σ* is countable:

λ, a, b, aa, ab, ba, bb, ⋅⋅⋅
1 2 3 4 5 6 7

length=0 length=1 length=2

Question:
•? Consider the set of all possible keywords, other special symbols

(’;’, ’(’, ’{’, etc.), and the names of identifiers in a programming
language. Is this set finite, countable, or uncountable?

•? If S is countable, show that S2 = {(s1, s2): each si ∈ S} is
countable by giving a systematic listing of all elements of S2.
(A similar argument shows that Sn is countable for n ≥ 2.)

•? Show that S1∪S2 is countable if S1 and S2 are countable.

•? Show that the number of programs in a programming language
is countable.

1.22

AN UNCOUNTABLE SET

The set I of all infinite sequences over Σ = {a, b} is uncountable.

• I is clearly an infinite set because we have the distinct
sequences: xn = anbbb⋅⋅⋅, n ≥ 1.

• If possible, suppose y1, y2, ⋅⋅⋅ is a listing of all sequences in I ,
and let

y1 = a11a12⋅⋅⋅
y2 = a21a22⋅⋅⋅ (each aij = a or b)
y3 = a31a32⋅⋅⋅
⋅⋅⋅

The sequence z = a11 a22 ⋅⋅⋅, where akk =




a, if akk = b

b, if akk = a
differs from yk in position k for each k. Thus, the listing y1, y2,
⋅⋅⋅ cannot be a complete listing of the sequences in I .

A similar argument shows that the infinite sequences over any
alphabet of size ≥ 2 is uncountable.

Question:

•? If yk = ak bbb⋅⋅⋅ for k ≥ 1, then what is the sequence z con-
structed above? (Is z ≠ yk for each yk?)

•? How many infinite sequences are there over Σ = {a}?

•? Will z = a11 a21 a31 ⋅⋅⋅ or z = a12 a21 a34 a43 ⋅⋅⋅ work in the
above proof? Are there finitely or countably or uncountably
many sequences that are not included in the listing y1, y2, ⋅⋅⋅
above?

1.23

EXERCISE
1. One way to show that two finite sets S1 and S2 have the same

size is to find an one-one and onto mapping from S1 to S2. Use
this method to show that the number of binary strings of length
2k − 1 with even number of 0’s is the same as the number of
binary strings of length 2k − 1 with odd number of 0’s. (State
in English what the mapping does to a string of length 2k − 1
with even number of 0’s, and illustrate the mapping for the
strings of length 2k − 1 = 3.)

The same property also holds for strings of length 2k, but the
proof requires a different kind of mapping. Find such a map-
ping in this case also. (Hint: one possible approach is to reduce
the problem to strings of length 2k − 1 based on the leftmost bit
being 0 or 1. There are other simple ways also.) Illustrate your
mappings for k = 2.

(An alternate method of showing this is to show that for all m ≥
1, one has Cm

0 + Cm
2 + ⋅⋅⋅ = Cm

1 + Cm
3 + ⋅⋅⋅.)

2. Let Σ = {a, b, +, −}, and L = {x ∈ Σ*: the symbols ’+’ and ’−’
always appear paired-up as + − or as − +, with no a or b in
between the ’+’ and ’−’ of a pair}. Let f (n) = #(strings in L of
length n). Show all strings of length 3. Prove or disprove that
f (n + 2) = 2[f (n + 1) + f (n)].

3. Consider the countable set N = {1, 2, 3, ⋅⋅⋅}, and let S be the set
of all non-empty finite subsets of N . Find a one-to-one and
onto mapping between the elements of S and the set of all
binary strings ending in 1. Then, argue that S is countable.
(Hint: First represent each subsets of a set of n elements by a
binary string of length n. Some of these strings can be replaced
by their initial parts without loosing any information.)

1.24

4. Suppose f : S1 → S2 is an one-to-one and onto mapping
between the sets S1 and S2. Is it true that either both S1 and S2
are finite or both are countable or both are uncountable?

5. If S1 and S2 are two disjoint set, then what can you say about
S1∪S2 in each of the following cases?

(i) Both S1 and S2 are finite.

(ii) S1 is countable and S2 is finite.

(iii) Both S1 and S2 are countable.

(iv) S1 is countable and S2 is uncountable.

(v) Both S1 and S2 are uncountable.

6. The following listing shows that Q(0, 1) = the set of all rational
numbers in the interval (0, 1) is countable (here, m and n have
no common factor in m/n):

1/2, 1/3, 2/3, 1/4, 3/4, 1/5, 2/5, 3/5, 4/5, 1/6, 5/6, ⋅⋅⋅
What is wrong in the following listing as an attempt to show
that Q(0, 1) is countable?

0.1, 0.2, 0.3, ⋅⋅⋅, 0.9,
0.01, 0.02, 0.03, ⋅⋅⋅, 0.09,
0.11, 0.12, 0.13, ⋅⋅⋅, 0.19,
0.21, 0.22, 0.23, ⋅⋅⋅, 0.29,
0.31, 0.32, 0.33, ⋅⋅⋅, 0.39,
⋅⋅⋅
0.91, 0.92, 0.93, ⋅⋅⋅, 0.99,
⋅⋅⋅

How can you modify it to show that Q(0, 1) is countable?

1.25

STRINGS AND LANGUAGES

(Finite) Alphabet:
• Σ = A finite (non-empty) set of symbols; e.g., Σ = {0, 1}

(Finite) string:
• x = a1a2⋅⋅⋅an, each ai ∈ Σ.

• x = 110 (= 6 in binary form); both x = 11 and x = 011 equal 3.

Notations:
• |x| = length of x; |a1a2⋅⋅⋅an | = n and |λ| = 0.

• Σ* = The set of all strings over Σ.

From An Infinite Sequence X = a1a2a3⋅⋅⋅ to A Set of Strings:
• A countable set of finite strings: LX = {a1, a1a2, a1a2a3, ⋅⋅⋅}.

• For any x, y ∈ LX , one is an initial part (prefix) of the other.

Question:
•? Show LX for X = 101101110⋅⋅⋅.
•? How can we get back X from LX for any X?

•? Give another way of converting an X into a countable set of
finite strings so that we can get back X from LX . Also, give a
conversion method that does not always work.

An infinite string X can be analyzed
by analyzing the infinite language LX .

Language: A subset of Σ∗ for some Σ.

Question: Can we have an uncountable language?

1.26

EXERCISE
1. What goes wrong if we associate with the sequence X =

a1a2a3⋅⋅⋅ the set {a1, a2, a3, ⋅⋅⋅}, i.e., the set of distinct symbols
in X?

2. How can we associate with each finite set S of strings over an
alphabet Σ a single infinite string X(S) in an one-to-one fashion
(so that we can get back S from X(S))? (Hint: use a larger
alphabet Σ′ to construct X(S).)

3. Repeat Problem 2 when |Σ| ≥ 2 using only the symbols of Σ in
X(S). Explain your answer for S = {10, 01, 101, 1001}.

4. Using your solution to Problem 3, argue that one can do the
same for a countable set S when |Σ| ≥ 2.

1.27

LANGUAGES OVER Σ

• Each subset L ⊆ Σ∗ is a language over Σ.

Σ∗

L1

L2

1.28

COUNTABLE NUMBER OF FINITE LANGUAGES

1. For non-empty and finite Σ, Σ* is countable: x1, x2, x3, ⋅⋅⋅
2. For each n > 0, we can list all finite subsets of Σ* which are of

size n as illustrated below for n = 1 and n = 2.

n = 1: {x1}, {x2}, {x3}, ⋅⋅⋅
n = 2: {x1, x2}, {x1, x3}, {x2, x3}, {x1, x4}, {x2, x4}, ⋅⋅⋅

Question:
•? Describe the method used in listing the subsets for n = 2.

•? Why is the following listing not valid for n = 2?

{x1, x2}, {x1, x3}, {x1, x4}, ⋅⋅⋅, {x2, x3}, {x2, x4}, ⋅⋅⋅, ⋅⋅⋅

3. For n = 3, we first list all subsets of size n which uses items xn
= x3 and those preceding it, then we list all subsets of size n
which uses xn+1 = x4 and those preceding it, and so on.

{x1, x2, x3}, {x1, x2, x4}, {x1, x3, x4}, {x2, x3, x4}, ⋅⋅⋅

4. The same idea works for all n ≥ 2.

5. Now we first write the subsets of various sizes n ≥ 0 as follows;
for each n ≥1 we hav e a countable many subsets of size n.

n = 0: S01 (=∅)
n = 1: S11, S12, S13, ⋅⋅⋅
n = 2: S21, S22, S23, ⋅⋅⋅
n = 3: S31, S32, S33, ⋅⋅⋅

⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅

Finally, we list all Sij’s as follows: list all Sij for a given i + j =
m ≥1, for successive values of m.

S01, S11, S12, S21, S13, S22, S31, S14, S23, S32, S41, ⋅⋅⋅

1.29

EXERCISE
1. What goes wrong if we try to apply the diagonal argument to

show that the finite languages are uncountable by first associat-
ing an infinite binary sequence with each finite subset as illus-
trated below (where we take the ith term in the sequence to be 1
if xi belonging to the subset and 0 otherwise)? Note that these
sequences has only a finite number of 1’s.

{x1, x2, x6}: 1100010000⋅⋅⋅
{x2, x5, x6, x8}: 0100110100⋅⋅⋅

Show that a similar problem arises if we apply the diagonal
argument to the infinite languages.

2. Show that the set of all infinite languages over Σ are uncount-
able.

1.30

UNCOUNTABLE NUMBER OF LANGUAGES

• Let x1, x2, ⋅⋅⋅ be the strings in Σ*, in some order, for an alphabet
Σ.

• Giv en a language L over Σ, let B(L) = b1b2b3⋅⋅⋅ be the associ-
ated binary sequence, defined by

bi =




1, if xi ∈ L

0, otherwise
.

L B(L)
1. L1 = ∅ (empty language) B(L1) = 000⋅⋅⋅
2. L2 = Σ∗ B(L2) = 111⋅⋅⋅
3. L3 = {a, aaa}, B(L3) = 0101000⋅⋅⋅

with xn = an−1 (n ≥ 1) and Σ = {a}
4. L4 = {a, aaa}, B(L4) = 01000001000⋅⋅⋅

with Σ = {a, b} and x1 = λ, x2 = a, (Although L4 = L3, B(L4) ≠
x3 = b, x4 = aa, ⋅⋅⋅ B(L3) because of different Σ.)

Question: What is B(L) for L = {anbn: n ≥ 1}, Σ = {a, b}, and
the standard dictionary order listing of the strings in Σ∗.

Σ∗

L

All binary sequences

•B(L)one-to-one
onto

UncountableCountable

There are uncountably many languages for any Σ.

1.31

COUNTABLE NUMBER OF
LANGUAGES OF COMPUTATIONS

A progra-
mming

language

P1 •• Q1

P2 •• Q2

P3 •• Q3

⋅⋅⋅⋅⋅⋅

Defines a
countable

set of
programs

Subset of
programs

which
terminate

for all inputs

Other
programs

L1

L2

L3

⋅⋅⋅

Languages
of strings of

computations
of programs Pi

• Not all Li are distinct, and thus there are at most countably
many distinct computation languages.

• Indeed, there are countably many distinct Li’s of the form {pn},
n ≥ 1 for programs which simply prints the integer 1 some fixed
n times (p = "print 1").

• The number of computation languages of programs is count-
able.

Most languages of the finite computation strings
do not correspond to any program.

1.32

EXERCISE
1. Consider a program whose input consists of a non-empty string

over Σ = {d , w}, where each d represents a deposit request of a
unit amount and each w represents an withdraw request of a
unit amount. The program outputs ’+’ for each successful
deposit request and ’−’ for each successful withdraw request.
Also, it prints ’0’ if a withdraw request fails because of unavail-
ability of funds. Assume that there is no upper limit on the
amount that can be deposited and that initial amount is 0.
Which of the following are valid outputs:

++-+
++---
++--0-
++--0+
-

Give a description of all output strings of the program; it should
describe all outputs and only those. (Hint: Find a relationship
with the valid b/e patterns.)

2. Consider the following variation of Problem 1. Assume that
there is an upper limit of 3 for the amount held in deposit. Also,
that the program outputs ’1’ for a failed deposit request. Is
there a simple description of all output strings of the program?

It is not possible, in general, to determine if two
patterns-descriptions give the same set of strings.

1.33

COMBINATION OF PROGRAMS AND
THEIR COMPUTATION PATTERNS

• Programs P and Q take integer inputs: 1, 2, ⋅⋅⋅ and we assume
that each of them terminates for each input.

• P produces the computation-strings x1, x2, ⋅⋅⋅ corresponding to
the inputs 1, 2, ⋅⋅⋅ in particular, the xi’s need not be distinct.

• Q produces likewise the computation-strings y1, y2, ⋅⋅⋅.

Sequential Combination : P: Q with inputs m: n
The parts m and n are processed by P and Q in that order.

P

Q

m

n
input
m: n

P: Q

P: Q has computation-strings x1 y1, x1 y2, x2 y1, x1 y3, ⋅⋅⋅.

x1 y1 x1 y2 x1 y3 ⋅⋅⋅
x2 y1 x2 y2 x2 y3 ⋅⋅⋅
x3 y1 x3 y2 x3 y3 ⋅⋅⋅

1.34

EXERCISE
1. Consider the or-combination P|Q of P and Q, where the inputs

are m: n and m = 1 or 2. For m = 1, the part n is processed by
P and for m = 2 the part n is processed by Q.

P

Q

n

n

input
m: n

m=1
m=2

P|Q

Argue that P|Q has the computation-strings x1, y1, x2, y2, ⋅⋅⋅.
2. Consider a program P whose computation language consists of

the strings {bm: m ≥ 1}. You can think of P being a loop,
where the loop-body performs the operation b; the number m
can be thought of as the input to P. Let Q be another program
whose computation language consists of the strings {ancn: n ≥
1}. You can think of Q as having two loops, one loop following
the other, with the loop bodies performing the operations a and
c. The number n can be thought of as the input to Q; each loop
in Q involves n iterations of its loop-body. What is the compu-
tation language of the program where the body of the loop in P
is replaced by Q (i.e., Q replaces the operation b in P)? What
does an input for the new program consist of?

3. Let C(P) = the language of computations of a program P.
What difficulties might arise in finding a program Q such that
C(Q) is the complement of C(P)?

4. Can you think of combining two programs P and Q in some
other ways to produce different combinations of C(P) and
C(Q)?

1.35

DIFFERENT VIEWS OF AN
ALGORITHM/COMPUTATION

AlgorithmInput = x Output = f (x)

View of a Mathematician (non-computational):

• What is the nature of a functional relationship x ↔ f (x)?

− He is not so concerned with how to compute the value f (x) for
a giv en x.

View of a Programmer (too low):

• How to compute f (x)? What are the best choices for data-
structures, subroutines and their parameters, organization of
data files, etc. in reducing the computation time and memory
space (perhaps reduce one by using more of the other)?

• How to improve readability of the program.

− He is not so concerned with what sort of general "computing
power" is really necessary to solve the problem. (A program-
mer uses whatever is available.)

1.36

CONTD.

AlgorithmInput = x Output = f (x)

Our view (focus on abstract/essential aspects of computation):

• Does it matter whether we read the input string from left to right
vs. right to left?

• Can we compute f (x) without looking at any part of the input x
more than once?

• Can we avoid saving some of the intermediate results in the
computation, perhaps by using extra computation time, if neces-
sary?

• If we must save the results of intermediate computations, is
there any particular order in which we might use those results to
our advantage?

• Can we put limits on the number of intermediate results saved
in terms of the size of the input and/or output?

• Can we distinguish between different "phases" in the computa-
tion? What would constitute such a phase? How many such
phases are needed?

• Can we classify computation problems in some way based on
the above issues? What are some typical problems in the vari-
ous classes? How do we show which class a particular prob-
lems belongs to?

1.37

COMPLEXITY OF
ORDINARY MULTIPLICATION METHOD

• Requires(1) repeated reading of parts of input, and (2) saving all
intermediate results.

5 1 9 3 (m = 4 digits)
2 2 7 (n = 3 digits)

3 6 3 5 1
1 0 3 8 6 (≤ (m+1)n = mn + n digits)

1 0 3 8 6
1 1 7 8 8 1 1 (≤ m + n digits)

Question:
•? Can we avoid saving some of the intermediate results, say, by

computing one row at a time after the first row and adding that
row to the first row? Will it affect the computation time?

•? Is there a way to compute the successive digits of the final result
from right to left without computing the intermediate rows (as
was done above)?

1.38

WHAT CAN OR CANNOT BE COMPUTED?

• Is the number of 0’s in a binary string even?

100101 no
10011 yes

As we examine each symbol from left to right, say, we ignore
the 1’s and pair up the 0’s. If there is an unpaired zero at the
end, then the number of zero’s is odd; otherwise, it is even.

E
ev en

1

D
odd

1

Question: What must be remembered from the symbols
already seen?

• A slightly more complex problem: Are there more 0’s than 1’s
in a given binary string? This cannot be done by FSM, but can
be done using a push-down automata(PDA).

Question: How much memory do we need?
It depends on the length of the input string; longer
the input string, more we need to remember, unlike
problem (1) above.

1.39

COMPUTING AN ANSWER vs.
VERIFYING A PROPOSED ANSWER

The addition problem: 3 7 3 7
1 2 1 2

? ? (compute) 4 9 (verify)

• Both the computation and the verification of a given sum are
easily done from right to left. (An FSM can do it.)

• The only memory needed is the "carry" and the table of the sum
of two digits. The size of memory is not dependent of the input
size.

• It is not possible to compute the sum from left to right. A
"carry" generated some place arbitrarily far to the right might
require modification of sum-digits computed earlier in left-to-
right fashion, and these digits must be remembered.

1 9 9 9 9
1 0 0 0 1
3 0 0 0 0

• It is, however, possible to verify the correctness of a proposed
sum in the left-to-right direction. We need only to remember
whether a carry is to be generated.

An alternative form: 37+12=49 (verify a given sum)
37+12=? (compute sum)

• No FSM or PDA can handle two arbitrary integers in this form,
either for computing the sum or for verifying a given sum.

• One must go back and forth to "pair up" the corresponding dig-
its to the left and to the right of the ’+’ symbol to compute the
sum-digits.

1.40

IMPORTANCE OF
PROBLEM REPRESENTATION

• A change in the representation of a problem may make it more
difficult to solve or even unsolvable.

• Two main tasks in a computation,

(1) Which pieces of information are to be combined at any
stage of a computation; this is part of algorithm design.

(2) How to locate the required information at each stage of
computation; doing it efficiently is data-structure design.

and both can depend on problem-representation.

1.41

EXAMPLES OF INPUT-OUTPUT ALPHABETS

• Σ1 = Input alphabet; Σ2 = Output alphabet

• An alphabet symbol = unit of information that can be processed
(input and output).

1. For the addition-computation problem in the form: 13182+57

Σ1 = {0, 1, 2, ⋅⋅⋅, 9, +}; |Σ1| = 11
and Σ2 = {0, 1, 2, ⋅⋅⋅, 9}; |Σ2| = 10

2. For the addition-verification problem in the form:
13182+57=13239

Σ1 = {0, 1, 2, ⋅⋅⋅, 9, +, =}; |Σ1| = 12
and Σ2 = {y, n}; |Σ2| = 2

3. For the addition-computation problem in the form:


1

0





3

0





1

0





8

5





2

7



Σ1 = {(i, j): 0 ≤ i, j ≤ 9}; |Σ1| = 100
and Σ2 = {0, 1, 2, ⋅⋅⋅, 9}; |Σ2| = 10

4. For the addition-verification problem in the form (the third
item in the triplets give the sum-digits):





1

0

1









3

0

3









1

0

2









8

5

3









2

7

9





Σ1 = {(i, j, k): 0 ≤ i, j, k ≤ 9}; |Σ1| = 1000
and Σ2 = {y, n}; |Σ2| = 2

1.42

THREE MAIN COMPUTATION MODELS

Restrictions on external memory
size and accessMachines

Finite-state Automata (FSA), Zero external memory
the simplest model

Push-down Automata (PDA), Linearly bounded (in input
intermediate between FSA length) and restricted access
and TM

Turing machine (TM), Unrestricted size and access
most general model

N-FSM = FSM

PDA

N-PDA

N-TM = TM

N = non-deterministic

1.43

UNIVERSAL TURING MACHINE
(PROGRAMMABLE MACHINE)

• A computer program P (in any programming language) is sim-
ply a description of a Turing machine MP .

• A computer is a special machine, which can simulate (behave)
like machine MP given the description P.

The computer itself is a very special TM, called a universal
TM; it is actually a practical approximation, limited by its finite
memory size, of an abstract universal TM.

• There is no other machine (screw-driver, telescope, automobile,
spaceship) built/conceived by man or observed in nature having
this sort of "universal" property.

Code of P
Universal TM

Input
x

Output
y = fP(x)

MP
Input

x
Output
y = fP(x)

• This universal nature of a computer allows us to use it in every
application:

− Robotics, manufacturing, chemical process control

− Automobile, aircraft design

− Design of genetically engineered bacteria and drugs

− Te xt/document processing

− Communications, etc.

1.44

EXERCISE
1. Can a universal TM solve the Halting Problem?

2. Does the following program halt for all inputs m ≥ 0.

1. n = 1;
2. read(m);

Repeat the following:
3. n = n+1;
4. m = m/n; //integer division
5. m = m*n;
6. until m = 0;

3. Show that for each k ≥ 1, there is some m = mk such that the
program has exactly k iterations of the loop; do this by giving
an algorithm to compute the smallest mk . Illustrate your algo-
rithm for the case of k = 13. Give a lower bound for the number
of loop-iterations if m = k!; what is the connection between this
result and the existence of mk for each k ≥ 1 in terms of which
result implies the other?

4. Explain the statement "Computation, i.e., its result can be
thought of as a transformation of strings to strings".

1.45

OPERATIONS ON LANGUAGES

Set-Theoretic Operations:
• Set-union L1 ∪ L2 = {x: x ∈ L1 or x ∈ L2}.

• Set-intersection L1∩L2 = {x: x ∈ L1 and x ∈ L2}

• Set-complementation Lc = {x ∈ Σ*: x ∉ L}.

String-based Operations:
• Concatenation x. y (or simply, xy) of two strings x and y.

− For x = 101, y = 1011, and z = 011, xy = 1011011 = yz.

− For any x, x.λ = x = λ.x; λ.λ = λ.

− Associativity: (xy)z = x(yz) for any x, y, and z.

− Non-commutativty: 10⋅11 = 11⋅10.

• For two languages L1 and L2, L1 L2 = {x1 x2: x1 ∈ L1 and x2 ∈
L2}. Clearly, L1{λ} = L1 = {λ}L1.

− Associativity: (L1 L2)L3 = L1(L2 L3) = {x1 x2 x3: xi ∈ Li}.

− Short notations: Lx = L{x}, xL = {x}, L2 = LL, L3 = LLL,
etc.

• Kleene-star L * = {x1 x2⋅⋅⋅xk : k ≥ 0 and each x j ∈ L} = {λ} ∪
L ∪ L2 ∪ L3 ∪ ⋅⋅⋅
For Σ = {a, b}, Σ∗ = {λ, a, b, aa, ab, ba, bb, aaa, aab, ⋅⋅⋅} =
{λ} ∪ Σ ∪ Σ2 ∪ ⋅⋅⋅

• Reverse of x = a1a2⋅⋅⋅ak is the string xr = ak ak−1⋅⋅⋅a1; λ r = λ.
Reverse of L, Lr = {xr : x ∈ L}.

• There are many other operations on languages, some of which
will be seen later.

1.46

EXERCISE
1. What can you say about y in terms of x and z if xy = yz? What

can you say about x and y if xy = yx?

2. Which of the following are true: (a) L∗ is infinite if L ≠ ∅. (b)
(L∗)∗ = L∗

3. Let L = {aa, bab}. Show that L∗ ≠ {xn: x ∈ L and n ≥ 0}.

4. Find two non-trivial (other than ∅ and Σ*) languages L1 ≠ L2
over the alphabet Σ = {a, b} such that L1.L2 ⊂ L2.

5. Does L∗
1 = L∗

2 imply L1 = L2?

