PUMPING LEMMAS FOR CFL AND RL

These are Only Necessary Conditions:

- The Pumping Lemma for CFL (PL-CFL) is a *necessary* condition for CFLs, i.e., if L is a CFL then it satisfies PL-CFL.
- Similarly, for Pumping Lemma for RL (PL-RL), i.e., if *L* is a RL, then it satisfies PL-RL.

PL-RL is a more restrictive (special) form of PL-CFL:

- Since each RL is also a CFL, each RL also satisfies PL-CFL.
- Since a CFL may not be a RL, a CFL may not satisfies PL-RL.

Main Uses:

- Show that a language L is not regular by showing that it does not satisfy PL-RL.
 - $L_{a^nb^n}$ does not satisfy PL-RL (and hence not an RL).
 - L_{has-11} satisfies RL-PL (and hence satisfies RL-CFL).
- Show that a language L is not context-free by showing that it does not satisfy PL-CFL.
 - $L_{a^nb^nc^n}$ does not satisfy PL-CFL and hence not a CFL.
 - $L_{a^nb^n}$ satisfies PL-CFL.

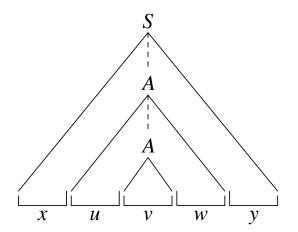
Question:

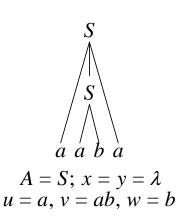
- •? Which pumping-lemmas will be satisfied by L_{sym} ?
- •? Which pumping-lemmas will be satisfied by the language of special binary multiplications $\{10^m \times 10^n = 10^{m+n} : m, n \ge 0\}$?
- •? How about $\{x \times y = z : \text{ where } x, y, z \in 1(0+1)^* \text{ and binaryNum}(z) \text{ equals the product of binaryNum}(x) \text{ and binaryNum}(y)\}?$

PUMPING LEMMA FOR CFL

Observations on CFG:

- We can eliminate all rules of the form $A \rightarrow B$ from the grammar.
- A parse-tree of depth d can derive a string of length $\leq m^d$, where m = max. length of the right side of a rule.
- If L = L(G) is infinite, then there are arbitrarily long strings in L and hence parse-trees of arbitrarily large depth.
- If |V(G)| = n, then a parse-tree of depth > n will have some variable A repeating on a path from the root.
- This means we can derive from A a string of the form uAw, where $uw \in T^+$. Such an A may be called a *recursive* variable.





Some Important Consequences:

- Replacing the upper A-subtree by the lower A-subtree gives $xvy \in L$.
- Replacing the lower A-subtree by the upper A-subtree gives $xuu-vwwy \in L$. Likewise, $xu^kvw^ky \in L$ for $k \ge 1$.
- No recursion anywhere in the lower A-subtree means $|v| \le m^n$.
- No recursion in the upper A-subtree, save the one shown, means $|uw| \le m^n$.

PUMPING LEMMA FOR CFL

Pumping Lemma (PL-CFL).

• For each CFL L, there exist an integer N > 0 (which may depend on L) such that every $s \in L$ of length $|s| \ge N$ can be written as s = xuvwy with the following properties:

- (1) $0 < |uw| < |uvw| \le N$ $(v \ne \lambda \text{ and at least one of } u \text{ and } w \ne \lambda).$
- (2) For all $k \ge 0$, $xu^k vw^k y \in L$.
- (3) Either or both of x, y may be λ .
- The decomposition s = xuvwy may depend on L.
- The location of *uvw* in *s* may depend on *s* and *L*, and cannot be chosen arbitrarily.
- The pair $\langle u, w \rangle$ is called the *pump*; a pump is two sided if $u \neq \lambda \neq w$.
- Fuiding a pump includes the part v, the context of the pump.

Example 1. N = 4 works for PL-CFL for $L = \{a^n b^n : n \ge 1\}$.

- The smallest string s of length ≥ 3 is s = aabb. Any pump uw must satisfy the following conditions in order for $xu^kvw^ky \in L$.
 - (i) #(a, uw) = #(b, uw).
 - (ii) Each of u and w should consists of only a's or only b's in order to avoid mixing of a's and b's in xu^kvw^ky for k > 1.
- From (i)-(ii), we get $u = a^m$ and $w = b^m$ for some $m \ge 1$.
- $u = a^2$ and $w = b^2$ does not work because $s = aabb = \lambda.u.\lambda.w.\lambda$ is a bad (becasue $v = \lambda$) and only decompostion; also, $xvy = \lambda \notin L$.
- u = a and w = b works. For any $s = a^n b^n$, $n \ge 2$, the decomposition $s = a^{n-2}$. $a. ab. b. b^{n-2}$ satisfies the conditions in PL-CFL.
- N = 2 does not work; there is no pump in $s = ab \in L$.

MORE EXAMPLES OF PUMP IN CFL

• For $L_{a^nb^n}$, N=3 also works, with a slightly different decomposition.

$$a^{n}b^{n} = a^{n-1}$$
. a. b. b. b^{n-2} , with $u = a$ and $v = w = b$.

This decompostion is related to the following CFG for $L_{a^nb^n}$:

$$S \rightarrow aB, B \rightarrow aBb \mid b.$$

Another similar decompostion is $a^n b^n = a^{n-2}$. $a. a. b. b^{n-1}$, with u = a = v and w = b.

• For $L_{a^mb^n} = \{a^mb^n : m \ge n \ge 1\}$, the smallest string in the language is ab and N = 4 works.

$$a^{m}b = a^{m-1}$$
. $a. b. \lambda. \lambda$ for $m > 1$
 $a^{m}b^{n} = a^{m-1}$. $a. b. \lambda. b^{n-1}$, when $m > n$
 $a^{m}b^{m} = a^{m-1}$. $a. ab. b. b^{m-1}$, $m \ge 2$

This corresponds to the following CFG for $L_{a^mb^n}$:

$$S \rightarrow ab \mid aSb \mid aAb, A \rightarrow aA \mid a$$

• For $L_{a^mb^nc^{m+n}}$, the samllest string in the language is *abcc* and N=6 works (there is no string of length 5 in the language).

$$a^{m}bc^{m+1} = a^{m-1}. a. b. c. c^{m} (m > 1)$$

 $a^{m}b^{n}c^{n+1} = a^{m}b^{n-2}. b. bc. c. c^{m+n-2}$, for $n > 1$

NON-CFL LANGUAGE

• If a language L does not satisfy PL-CFL, i.e., there is no N for which the pumping conditions (1)-(3) hold for all string $s \in L$ with $|s| \ge N$, then L is not CFL (hence not a regular language either).

Example 2. $L = \{a^n b^n c^n : n \ge 1\}$ is not a CFL.

- We first show that N = 6 does not work; the same argument shows that no N works, i.e., L does not satisfy PL-CFL and hence L is not a CFL.
- Let $s = aabbcc \in L$, $|s| \ge 6$. If possible, let s = xuvwy be a proper decomposition that satisfies the conditions in PL-CFL. Then,
 - (i) The number of a's, b's, and c's are the same in uw.
 - (ii) Each of u and w is made of just one symbol from $\{a, b, c\}$.
- The condition (ii) means that *u* should consists of *a*'s and *w* should consist of *b*'s, but then (i) cannot be satisfied.
- Thus, there is no decomposition s = xuvwy as desired.

Question:

- •? Show that the language of binary multiplications of the form $2^m \times 2^n = 2^{m+n}$, i.e, the language $\{10^m \times 10^n = 10^{m+n} : m, n \ge 0\}$ satisfies PL-CFL. Does this mean this language is a CFL?
- •? Show that $\{x \times y = z : \text{ where } x, y, z \in 1(0+1)^* \text{ and binaryNum}(z) \text{ equals the product of binaryNum}(x) \text{ and binaryNum}(y) } \text{ does not satisfy PL-CFL. What does that say about this language? (Hint: consider multiplication of numbers of the form <math>2^m$ and $2^{2m} 2^m$.)

PUMPING LEMMA FOR REGULAR LANGUAGES

Pumping Lemma (PL-RL).

• For each regular language L, there exists an integer N > 0 (which may depend on L) such that every $s \in L$ of length $|s| \ge N$ can be written as s = xuy with the following properties:

- (1) $0 < |u| \le N$ (actually, one can say that $0 < |u| \le |xu| \le N$)
- (2) For all $k \ge 0$, $xu^k y \in L$.
- The pump *u* can depend on *s* and on *L*. The pump *u* relates to a cycle (loop) in the FSA or NFSA for *L*. Thus, *N* can be taken to be the minimum number of states in (N)FSA for *L*.

Notes:

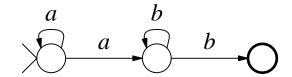
- The coditions (1)-(2) above are obtained by putting $w = \lambda$ in the conditions (1)-(2) for the pumping lemma for CFL.
- Unlike CFL, we can assure that the pump *u* is not far from the beginning of the string *s*.
- Since the reverse of a regular language is also regular, we also get a pump close to the end of s. Thus, for $|s| \ge 2N$, there will be a pump which is towards the beginning of s and a disjoint pump (without any overlap with the pump on the left) towards the end of s.
- One can actually get a regular pump on any part of a large string s in a regular language in the following sense. For any string $s = xyz \in L$, where $|s| \ge |y| \ge N$, we can write y = uvw such that $0 < |v| \le N$ and $xuv^k wz \in L$ for all $k \ge 0$.

Similarities between PL-CFL and PL-RL:

• If $N = N_0$ works for the PL-CFL for an L, then any $N > N_0$ also works for that L. The same is true for PL-RL.

EXAMPLE OF PUMPS IN AN RL

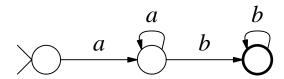
- Let $L = a^+b^+ = \{ab, aab, abb, aaab, aabb, abbbi, \dots\}$.
 - Here, N = 3 works and there are two kinds of pumps depending on $s \in L$ as shown below. (N must be larger than the length of the smallest string in L.)
 - For $s = ab^n$ and $n \ge 2$, $s = a.b.b^{n-1}$ is a valid decomposition.
 - For $s = a^m b^n$ and $m \ge 2$, $s = \lambda$. $a \cdot a^{m-1} b^n$ is a valid decomposition.



Each pump corresponds to a cycle or loop in this NFSA for a^+b^+ .

- The valid decompositions look slightly different in terms of the (min-state) FSA for a^+b^+ .

For $s = ab^n$ and $n \ge 2$: $s = ab. b. b^{n-2}$. For $s = a^m b^n$ and $m \ge 2$: $s = a. a. a^{m-2} b^n$.



Each pump corresponds to a cycle or loop in this FSA for a^+b^+ .

- There are many other valid decomposition of the form s = xuy, with $|u| \le N$, if we do not insist on $|xu| \le N$.
- It is easy to see that a^+b^+ satisfies PL-CFL, and that $L_{a^nb^n}$ does not satisfy PL-RL.

EXERCISE.

1. Find the smallest N which satisfies PL-CFL for $L_{bal-par}$. Repeat the exercise for L_{sym} .

- 2. Find the smallest N which satisfi es PL-CFL for the following language $L_{m \ge n} = \{a^m b^n \colon m \ge n \ge 1\}$. Note that the pumps look different for different $s \in L_{m \ge n}$. Repeat the exercise for $L_{m \ne n} = \{a^m b^n \colon m \ne n, m \ge 1 \text{ and } n \ge 1\}$. (Do you notice any thing special about how the pumps change whether m > n or m < n?)
- 3. Show that the language $L_{m,n,m+n} = \{a^m b^n c^{m+n} : m, n \ge 1\}$ satisfies PL-CFL. (You will need different pumps depending on whether n is large or small; you need to describe the nature of the pump in each situation.)
- 4. Consider the languages $L_{m,m,n} = \{a^m b^m c^n : m \ge 1, n \ge 1\}$ and $L_{m,n,n} = \{a^m b^n c^n : m \ge 1, n \ge 1\}$. For $s = a^2 b^2 c^2 \in L_{m,m,n} \cap L_{m,n,n}$, compare the pumps for s computed with respect to $L_{m,m,n}$ and $L_{m,n,n}$, respectively. After generalizing the observation to $a^j b^j c^j$ (why do we need to generalize it to j > 2), argue that $L_{m,m,n} \cap L_{m,n,n} = L_{n,n,n} = \{a^n b^n c^n : n \ge 1\}$ is not context-free.
- 5. Show that the binary additions presented as a language over the alphabet $\{0, 1, +, =\}$ is not a CFL.
- 6. Does the strings of the form $10^n+0^n1=10^{n-1}1$ satisfy CFL-pumping lemma? How about the strings of the form $10^n+1=10^{n-1}1$?
- 7. Show that the binary multiplication language over the alphabet of binary triplets $\{t_0, t_1, \dots, t_7\}$ does not satisfy CFL-pumping lemma. (Hint: exploit the special role of t_6 which cannot be part of any pump.)
- 8. What is wrong with the following statement for the pumping lemma for CFL:

There exists an integer $N \ge 1$ such that every string of the form $xzy \in L$, with $0 < |z| \le N$, one can decompose z as z = uvw such that |uw| > 0, |v| > 0, and $xu^k vw^k y \in L$ for all k

 ≥ 0 .

Give an example of CFL that does not satisfy the above statement.

9. What is wrong with the following statement for the condition that *L* does not satisfy the Pumping Lemma for CFL?

L has strings of the form $|xuvwy| \ge N$, $N \ge 1$, such that $uw \ne \lambda \ne v$ and $|uvw| \le N$ such that $xu^k vw^k y \notin L$ for all $k \ne 1$. Give a correct form of the above.

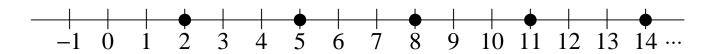
- 10. Show that $L_{bal-sym}$, the balanced parenthetical strings which are symmetric, do not form a context-free language; $L_{bal-sym} = \{ab, aabb, abab, aaabbb, aababb, ababab, \dots\} = L_{bal} \cap L_{sym}$.
- 11. Show that none of the languages $\{a^k b^m c^n : k \ge m \ge n \ge 1\}$ and $\{a^m b^n c^{m+n} : m \ge n \ge 1\}$ satisfies the pumping lemma for CFL.

SEMI-LINEAR SETS

Semi-linear Set on line: More general than arithmatic progression.

- Simple form: $\{m + k . n : k \ge 0\}$, where m, n are fixed integers ≥ 0 .
- More general: $\{m + k_1, n_1 + k_2, n_2 + \dots + k_p, n_p : \text{ each } k_i \ge 0\}$, where m and n_i 's are fixed integers ≥ 0 .

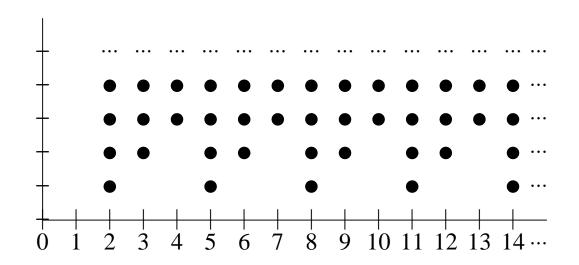
Example. m = 2, n = 3, and p = 1 give the set $\{2, 5, 8, 11, 14, \cdots\}$.



Semi-linear Set on the Plane:

• $\{m + k_1, n + k_2, n_2 + \dots + k_p, n_p : \text{ each } k_i \ge 0\}$, where $m = (m_1, m_2)$ and $n_i = (n_{i1}, n_{i2})$'s are fixed integer vectors with coordinates ≥ 0 .

Example. For m = (2,1), $n_1 = (3,0)$, $n_2 = (1,1)$, $n_3 = (0,1)$, and p = 3 give the set shown below.



Generalization to Dimensions \geq **3:** Similar.

SEMI-LINEAR SETS AND CFLs

CountSet(L): Let $\Sigma = \{a_1, a_2, \dots, a_n\}$, the alphabet of L.

- CountVector(x) = ($\#(a_1, x), \#(a_2, x), \dots, \#(a_n, x)$), for $x \in L$.
- CountSet(L) = {CountVector(x): $x \in L$ }.

Example. Each of the following is a semi-linear set.

- For $L = L_{a^n b^n}$, CountSet $(L) = \{(1,1), (2,2), (3,3), \dots\}$.
- For $L = L_{bal}$, CountSet $(L) = \{(1,1), (2,2), (3,3), \dots\}$.
- For $L = L_{\#a=\#b}$, CountSet(L) = {(1,1), (2,2), (3,3), ...}.
- For $L = L_{a^{n+1}b^n}$, CountSet $(L) = \{(2,1), (3,2), (4,3), \dots\}$.

Parikh's Mapping:

- $x \to \text{CountVector}(x)$, a many-to-one mapping from strings to non-negative integer-vectors.
- $L \to \text{CountSet}(L)$, a many-to-one mapping from languages to sets of non-negative integer-vectors.

Theorem (Parikh, 1966):

• For each CFL L, CountSet(L) is a fi nite union of semi-linear sets.

Question:

- •? Why do we need "union" in the above theorem?
- •? If L_1 and L_2 are two languages with the same alphabet and both CountSet(L_1) and CountSet(L_2) are semi-linear, then is CountSet(L_1L_2) also semi-linear? How about CountSet($L_1\cup L_2$) and CountSet(L_1^*)? How about CountSet(L) if L is a finite language?