PUMPING LEMMAs FOR CFL AND RL

These are Only Necessary Conditions:

- The Pumping Lemma for CFL (PL-CFL) is a necessary condition for CFLs, i.e., if \(L \) is a CFL then it satisfies PL-CFL.
- Similarly, for Pumping Lemma for RL (PL-RL), i.e., if \(L \) is a RL, then it satisfies PL-RL.

PL-RL is a more restrictive (special) form of PL-CFL:

- Since each RL is also a CFL, each RL also satisfies PL-CFL.
- Since a CFL may not be a RL, a CFL may not satisfies PL-RL.

Main Uses:

- Show that a language \(L \) is not regular by showing that it does not satisfy PL-RL.
 - \(L_{a^n b^n} \) does not satisfy PL-RL (and hence not an RL).
 - \(L_{has-11} \) satisfies RL-PL (and hence satisfies RL-CFL).
- Show that a language \(L \) is not context-free by showing that it does not satisfy PL-CFL.
 - \(L_{a^n b^n c^n} \) does not satisfy PL-CFL and hence not a CFL.
 - \(L_{a^n b^n} \) satisfies PL-CFL.

Question:

- Which pumping-lemmas will be satisfied by \(L_{sym} \)?
- Which pumping-lemmas will be satisfied by the language of special binary multiplications \(\{10^m \times 10^n = 10^{m+n} : m, n \geq 0\} \)?
- How about \(\{x \times y = z: \text{where } x, y, z \in 1(0+1)^* \text{ and binaryNum}(z) \text{ equals the product of binaryNum}(x) \text{ and binaryNum}(y)\} \)?
PUMPING LEMMA FOR CFL

Observations on CFG:

- We can eliminate all rules of the form \(A \rightarrow B \) from the grammar.
- A parse-tree of depth \(d \) can derive a string of length \(\leq m^d \), where \(m \) = max. length of the right side of a rule.
- If \(L = L(G) \) is infinite, then there are arbitrarily long strings in \(L \) and hence parse-trees of arbitrarily large depth.
- If \(|V(G)| = n \), then a parse-tree of depth > \(n \) will have some variable \(A \) repeating on a path from the root.
- This means we can derive from \(A \) a string of the form \(uAw \), where \(uw \in T^+ \). Such an \(A \) may be called a recursive variable.

Some Important Consequences:

- Replacing the upper \(A \)-subtree by the lower \(A \)-subtree gives \(xvy \in L \).
- Replacing the lower \(A \)-subtree by the upper \(A \)-subtree gives \(xuu-vwwy \in L \). Likewise, \(xu^kvw^k y \in L \) for \(k \geq 1 \).
- No recursion anywhere in the lower \(A \)-subtree means \(|v| \leq m^n \).
- No recursion in the upper \(A \)-subtree, save the one shown, means \(|uw| \leq m^n \).
PUMPING LEMMA FOR CFL

Pumping Lemma (PL-CFL).

- For each CFL \(L \), there exist an integer \(N > 0 \) (which may depend on \(L \)) such that every \(s \in L \) of length \(|s| \geq N \) can be written as \(s = xuvwy \) with the following properties:

 1. \(0 < |uw| < |uvw| \leq N \) (\(v \neq \lambda \) and at least one of \(u \) and \(w \neq \lambda \)).
 2. For all \(k \geq 0 \), \(xu^kvw^k y \in L \).
 3. Either or both of \(x \), \(y \) may be \(\lambda \).

- The decomposition \(s = xuvwy \) may depend on \(L \).
- The location of \(uvw \) in \(s \) may depend on \(s \) and \(L \), and cannot be chosen arbitrarily.
- The pair \(\langle u, w \rangle \) is called the pump; a pump is two sided if \(u \neq \lambda \neq w \).
- Fuiding a pump includes the part \(v \), the context of the pump.

Example 1. \(N = 4 \) works for PL-CFL for \(L = \{a^n b^n : n \geq 1\} \).

- The smallest string \(s \) of length \(\geq 3 \) is \(s = aabb \). Any pump \(uw \) must satisfy the following conditions in order for \(xu^kvw^k y \in L \).

 \(i \) \quad \#(a, uw) = \#(b, uw) \).

 \(ii \) \quad Each of \(u \) and \(w \) should consists of only \(a \)'s or only \(b \)'s in order to avoid mixing of \(a \)'s and \(b \)'s in \(xu^kvw^k y \) for \(k > 1 \).

- From (i)-(ii), we get \(u = a^m \) and \(w = b^m \) for some \(m \geq 1 \).
- \(u = a^2 \) and \(w = b^2 \) does not work because \(s = aabb = \lambda . u . \lambda . w . \lambda \) is a bad (because \(v = \lambda \)) and only decomposition; also, \(xvy = \lambda \notin L \).
- \(u = a \) and \(w = b \) works. For any \(s = a^n b^n \), \(n \geq 2 \), the decomposition \(s = a^{n-2} . a . ab . b . b^{n-2} \) satisfies the conditions in PL-CFL.
- \(N = 2 \) does not work; there is no pump in \(s = ab \in L \).
MORE EXAMPLES OF PUMP IN CFL

- For $L_{a^n b^n}$, $N = 3$ also works, with a slightly different decomposition.

\[a^n b^n = a^{n-1} \cdot a \cdot b \cdot b^{n-2}, \quad \text{with } u = a \text{ and } v = w = b. \]

This decomposition is related to the following CFG for $L_{a^n b^n}$:

\[S \rightarrow aB, \quad B \rightarrow aBb | b. \]

Another similar decomposition is $a^n b^n = a^{n-2} \cdot a \cdot a \cdot b \cdot b^{n-1}$, with $u = a = v$ and $w = b$.

- For $L_{a^m b^n} = \{ a^m b^n : m \geq n \geq 1 \}$, the smallest string in the language is ab and $N = 4$ works.

\[a^m b = a^{m-1} \cdot a \cdot b \cdot \lambda \cdot \lambda \text{ for } m > 1 \]
\[a^m b^n = a^{m-1} \cdot a \cdot b \cdot \lambda \cdot b^{n-1}, \text{ when } m > n \]
\[a^m b^m = a^{m-1} \cdot a \cdot a \cdot b \cdot b^{m-1}, \text{ for } m \geq 2 \]

This corresponds to the following CFG for $L_{a^m b^n}$:

\[S \rightarrow ab | aSb | aAb, \quad A \rightarrow aA | a \]

- For $L_{a^m b^n c^{m+n}}$, the smallest string in the language is $abcc$ and $N = 6$ works (there is no string of length 5 in the language).

\[a^m bc^{m+1} = a^{m-1} \cdot a \cdot b \cdot c^m \text{ (} m > 1 \text{)} \]
\[a^m b^n c^{n+1} = a^m b^{n-2} \cdot b \cdot bc \cdot c^{m+n-2}, \text{ for } n > 1 \]
NON-CFL LANGUAGE

- If a language L does not satisfy PL-CFL, i.e., there is no N for which the pumping conditions (1)-(3) hold for all string $s \in L$ with $|s| \geq N$, then L is not CFL (hence not a regular language either).

Example 2. $L = \{a^n b^n c^n : n \geq 1\}$ is not a CFL.
- We first show that $N = 6$ does not work; the same argument shows that no N works, i.e., L does not satisfy PL-CFL and hence L is not a CFL.
- Let $s = aabbc$ \in L, $|s| \geq 6$. If possible, let $s = xuvw$ be a proper decomposition that satisfies the conditions in PL-CFL. Then,
 (i) The number of a‘s, b‘s, and c‘s are the same in uw.
 (ii) Each of u and w is made of just one symbol from $\{a, b, c\}$.
- The condition (ii) means that u should consist of a‘s and w should consist of b‘s, but then (i) cannot be satisfied.
- Thus, there is no decomposition $s = xuvw$ as desired.

Question:

- Show that the language of binary multiplications of the form $2^m \times 2^n = 2^{m+n}$, i.e, the language $\{10^m \times 10^n = 10^{m+n} : m, n \geq 0\}$ satisfies PL-CFL. Does this mean this language is a CFL?
- Show that $\{x \times y = z :$ where $x, y, z \in 1(0 + 1)^*$ and binaryNum(z) equals the product of binaryNum(x) and binaryNum(y)$\}$ does not satisfy PL-CFL. What does that say about this language? (Hint: consider multiplication of numbers of the form 2^m and $2^{2^m - 2^m}$.)
PUMPING LEMMA FOR REGULAR LANGUAGES

Pumping Lemma (PL-RL).

- For each regular language L, there exists an integer $N > 0$ (which may depend on L) such that every $s \in L$ of length $|s| \geq N$ can be written as $s = xuy$ with the following properties:

 (1) $0 < |u| \leq N$ (actually, one can say that $0 < |u| \leq |xu| \leq N$)

 (2) For all $k \geq 0$, $xu^k y \in L$.

- The pump u can depend on s and on L. The pump u relates to a cycle (loop) in the FSA or NFSA for L. Thus, N can be taken to be the minimum number of states in (N)FSA for L.

Notes:

- The conditions (1)-(2) above are obtained by putting $w = \lambda$ in the conditions (1)-(2) for the pumping lemma for CFL.
- Unlike CFL, we can assure that the pump u is not far from the beginning of the string s.
- Since the reverse of a regular language is also regular, we also get a pump close to the end of s. Thus, for $|s| \geq 2N$, there will be a pump which is towards the beginning of s and a disjoint pump (without any overlap with the pump on the left) towards the end of s.
- One can actually get a regular pump on any part of a large string s in a regular language in the following sense. For any string $s = xyz \in L$, where $|s| \geq |y| \geq N$, we can write $y = uvw$ such that $0 < |v| \leq N$ and $xuv^k wz \in L$ for all $k \geq 0$.

Similarities between PL-CFL and PL-RL:

- If $N = N_0$ works for the PL-CFL for an L, then any $N > N_0$ also works for that L. The same is true for PL-RL.
EXAMPLE OF PUMPS IN AN RL

- Let \(L = a^+b^+ = \{ab, aab, abb, aaab, aabb, abbbi, \ldots\} \).
 - Here, \(N = 3 \) works and there are two kinds of pumps depending on \(s \in L \) as shown below. (\(N \) must be larger than the length of the smallest string in \(L \).)
 - For \(s = ab^n \) and \(n \geq 2 \), \(s = a \cdot b \cdot b^{n-1} \) is a valid decomposition.
 - For \(s = a^m b^n \) and \(m \geq 2 \), \(s = \lambda \cdot a \cdot a^{m-1} b^n \) is a valid decomposition.

Each pump corresponds to a cycle or loop in this NFSA for \(a^+b^+ \).

- The valid decompositions look slightly different in terms of the (min-state) FSA for \(a^+b^+ \).

 For \(s = ab^n \) and \(n \geq 2 \): \(s = ab \cdot b \cdot b^{n-2} \).
 For \(s = a^m b^n \) and \(m \geq 2 \): \(s = a \cdot a \cdot a^{m-2} b^n \).

Each pump corresponds to a cycle or loop in this FSA for \(a^+b^+ \).

- There are many other valid decomposition of the form \(s = xuy \), with \(|u| \leq N \), if we do not insist on \(|xu| \leq N \).
- It is easy to see that \(a^+b^+ \) satisfies PL-CFL, and that \(L_{a^nb^n} \) does not satisfy PL-RL.
EXERCISE.

1. Find the smallest N which satisfies PL-CFL for $L_{bal-par}$. Repeat the exercise for L_{sym}.

2. Find the smallest N which satisfies PL-CFL for the following language $L_{m \geq n} = \{ a^m b^n : m \geq n \geq 1 \}$. Note that the pumps look different for different $s \in L_{m \geq n}$. Repeat the exercise for $L_{m \neq n} = \{ a^m b^n : m \neq n, m \geq 1 \text{ and } n \geq 1 \}$. (Do you notice any thing special about how the pumps change whether $m > n$ or $m < n$?)

3. Show that the language $L_{m,n,m+n} = \{ a^m b^n c^{m+n} : m, n \geq 1 \}$ satisfies PL-CFL. (You will need different pumps depending on whether n is large or small; you need to describe the nature of the pump in each situation.)

4. Consider the languages $L_{m,n} = \{ a^m b^n c^n : m \geq 1, n \geq 1 \}$ and $L_{m,n,n} = \{ a^m b^n c^n : m \geq 1, n \geq 1 \}$. For $s = a^2 b^2 c^2 \in L_{m,m,n} \cap L_{m,n,n}$, compare the pumps for s computed with respect to $L_{m,m,n}$ and $L_{m,n,n}$, respectively. After generalizing the observation to $a^j b^j c^j$ (why do we need to generalize it to $j > 2$), argue that $L_{m,m,n} \cap L_{m,n,n} = L_{n,n,n} = \{ a^n b^n c^n : n \geq 1 \}$ is not context-free.

5. Show that the binary additions presented as a language over the alphabet $\{0, 1, +, =\}$ is not a CFL.

6. Does the strings of the form $10^n + 0^n 1 = 10^{n-1} 1$ satisfy CFL-pumping lemma? How about the strings of the form $10^n + 1 = 10^{n-1} 1$?

7. Show that the binary multiplication language over the alphabet of binary triplets $\{ t_0, t_1, \ldots, t_7 \}$ does not satisfy CFL-pumping lemma. (Hint: exploit the special role of t_6 which cannot be part of any pump.)

8. What is wrong with the following statement for the pumping lemma for CFL:

 There exists an integer $N \geq 1$ such that every string of the form $xzy \in L$, with $0 < |z| \leq N$, one can decompose z as $z = uvw$ such that $|uw| > 0$, $|v| > 0$, and $xu^k v w^k y \in L$ for all k
Give an example of CFL that does not satisfy the above statement.

9. What is wrong with the following statement for the condition that \(L \) does not satisfy the Pumping Lemma for CFL?

\(L \) has strings of the form \(|xuvw| \geq N, N \geq 1\), such that \(uw \neq \lambda \neq v \) and \(|uvw| \leq N\) such that \(xu^kvw^ky \notin L \) for all \(k \neq 1 \).

Give a correct form of the above.

10. Show that \(L_{bal-sym} \), the balanced parenthetical strings which are symmetric, do not form a context-free language; \(L_{bal-sym} = \{ab, aabb, abab, aaabbb, aababb, ababab, \cdots\} = L_{bal} \cap L_{sym} \).

11. Show that none of the languages \(\{a^k b^m c^n : k \geq m \geq n \geq 1\} \) and \(\{a^m b^n c^{m+n} : m \geq n \geq 1\} \) satisfies the pumping lemma for CFL.
SEMI-LINEAR SETS

Semi-linear Set on line: More general than arithmatic progression.

• Simple form: \(\{m + k \cdot n: k \geq 0\} \), where \(m, n \) are fixed integers \(\geq 0 \).
• More general: \(\{m + k_1 \cdot n_1 + k_2 \cdot n_2 + \cdots + k_p \cdot n_p: \text{each } k_i \geq 0\} \), where \(m \) and \(n_i \)'s are fixed integers \(\geq 0 \).

Example. \(m = 2, n = 3, \) and \(p = 1 \) give the set \(\{2, 5, 8, 11, 14, \ldots\} \).

Semi-linear Set on the Plane:

• \(\{m + k_1 \cdot n + k_2 \cdot n_2 + \cdots + k_p \cdot n_p: \text{each } k_i \geq 0\} \), where \(m = (m_1, m_2) \) and \(n_i = (n_i_1, n_i_2)'s \) are fixed integer vectors with coordinates \(\geq 0 \).

Example. For \(m = (2,1), n_1 = (3,0), n_2 = (1,1), n_3 = (0,1) \), and \(p = 3 \) give the set shown below.

Generalization to Dimensions \(\geq 3 \): Similar.
SEMI-LINEAR SETS AND CFLs

CountSet(L): Let $\Sigma = \{a_1, a_2, \ldots, a_n\}$, the alphabet of L.
- CountVector(x) = $\{(\#(a_1, x), \#(a_2, x), \ldots, \#(a_n, x))\}$, for $x \in L$.
- CountSet(L) = \{CountVector(x): $x \in L$\}.

Example. Each of the following is a semi-linear set.
- For $L = L_{a^n b^n}$, CountSet(L) = \{(1,1), (2,2), (3,3), \ldots\}.
- For $L = L_{bal}$, CountSet(L) = \{(1,1), (2,2), (3,3), \ldots\}.
- For $L = L_{#a=#b}$, CountSet(L) = \{(1,1), (2,2), (3,3), \ldots\}.
- For $L = L_{a^n+1 b^n}$, CountSet(L) = \{(2,1), (3,2), (4,3), \ldots\}.

Parikh’s Mapping:
- x \to CountVector(x), a many-to-one mapping from strings to non-negative integer-vectors.
- L \to CountSet(L), a many-to-one mapping from languages to sets of non-negative integer-vectors.

Theorem (Parikh, 1966):
- For each CFL L, CountSet(L) is a finite union of semi-linear sets.

Question:
- Why do we need "union" in the above theorem?
- If L_1 and L_2 are two languages with the same alphabet and both CountSet(L_1) and CountSet(L_2) are semi-linear, then is CountSet($L_1 L_2$) also semi-linear? How about CountSet($L_1 \cup L_2$) and CountSet(L_1^*)? How about CountSet(L) if L is a finite language?