PRESBURGER ARIHMETIC AND FSA

FSA for Solutions of Linear Integer Inequalities:

- Example: $x + 3y \ge 10$ or $3x 2y \ge 10$.
- 3x 2y = 10 is equivalent to 2 inequalities:

$$3x - 2y \ge 10$$
 and $3x - 2y \le 10$ (or, $-3x + 2y \ge 10$)

- All variable are non-negative integers.
- Input alphabet = $\{b_0, b_1, b_2, b_3\}$ for inequalities of two variables, and a value-pair (x, y) = (17, 5) is encoded as shown below, with low-order bits represented on the right in the input string.

$$\binom{17}{5} = \binom{1}{0} \binom{0}{1} \binom{0}{0} \binom{1}{1} = b_2 b_1 b_0 b_3; \text{ input} = b_3 b_0 b_1 b_2.$$

• The FSA should accept exactly the string which represent solutions for the inequalities.

Example. We show the method for finding an FSA for solutions of $3x + 5 \ge 24$, i.e., $x \ge 7$. The method generalizes directly to multiple inequalities involving multiple variables.

Processing rightmost bit of x		New inequality
$\overline{x=x'0};$	x = 2x'	$2x' \ge 7$, i.e., $x' \ge 4$
x = x'1;	x = 2x' + 1	$2x' + 1 \ge 6$, i.e., $x' \ge 3$

Question: Show the FSA for $x + 3y \ge 10$ and $3x - 2y \ge 2$.