
BASIC STRUCTURE OF MACHINES

Finite-state Automata: No output as such.

a1Input =a1a2⋅⋅⋅ak a2 a3 ⋅⋅⋅ a j ⋅⋅⋅ ak

control

read-head

• Control updates "internal memory" =state of the machine as it
reads each input symbola j only once.

• The read-head moves to right after reading a symbol.

Push-down Automata:No output as such.

a1Input =a1a2⋅⋅⋅ak a2 a3 ⋅⋅⋅ a j ⋅⋅⋅ ak

control

read-head

c1 c2 ⋅⋅⋅ cn
External memory

(stack)

read-write head

• Control now also updates the "external memory".

Turing machine: Output = a string, written on input-output tape.

a1Input =a1a2⋅⋅⋅ak a2 a3 ⋅⋅⋅ a j ⋅⋅⋅ ak

control

read-write head

• An input/output-tape symbol may be read/written more than once.

2.2

FSA FOR EVEN NUMBER OF ZEROS
IN BINAR Y STRINGS

string: 1 0 0 1 0 1 0
zero-count: 0 1 2 2 3 3 4

ev en: Y N Y Y N N Y
(before reading symbol)

Key observations for designing the algorithm:

• Initially, the zero-count is even (= zero); we only need to keep track
of odd/even status of the zero-count.

• Reading ’1’ does not change the odd/even status of the zero-count.

• Reading ’0’ changes the odd/even status to the opposite.

• Final desired state is ’even’.

• Suffices to look at each symbol only once, in the left to right order.

Representing the algorithm as a state-diagram:

E

1

M0-div-2: D

1
0

0
L0-div-2 = { λ, 1, 00, 11, 001, 010, 100, 111,⋅⋅⋅}

• State = odd/even status of zero-count

• Start-state indicated by ">"; final-state indicated by thick-circle

• Transitions indicate the input-symbol read and the state-update.

• Eachbad string (x ∉ L0−div−2) ends in a non-final state starting at
the start-state; eachgood string (x ∈ L0−div−2) ends in a final-state.

E E1 D0 D1 D1

2.3

EXERCISE

1. Show that there are 2n−1 strings of lengthn (≥ 1) in L0-div-2 by giv-
ing an 1-1 and onto mappingf (x) from {x ∈ L0-div-2: |x| = n} to { y
∈ {0, 1}*: | y| = n − 1}.

2. Give the state-diagram for an FSAM0-div-3 which accepts the binary
strings L0-div-3 = { x ∈ {0, 1}*: #(0, x) is divisible by 3}. (Hint:
First, write down some of the strings inL0-div-3.)

3. Show the state-diagram of an FSA which accepts the complement
languageLc

0-div-3.

4. Show the state-diagrams of all FSA’s with input alphabetΣ = {0,
1}, two states (both must be reachable from the start-state), and at
least one final-state.Give an English descriptions of the set of
strings accepted by each FSA.

2.4

BINARY STRINGS WITH EVEN #(0, x):
A COMPUTABLE PATTERN

Pattern-description: Binary strings with even number of zeros.

• This is a mathematically good description; it states a precise condi-
tion (a property) that a string must satisfy.

• It does not say how to go about in verifying the required condition
(property) for a given string x.

• Some possible methods:

(1) Count#(0, x), divide it by 2, and verify that the remainder is
zero. (Also,check that each symbol inx is 0 or 1.)

(2) Find|x|, count #(1,x), subtract it from |x| to get #(0,x), etc.

Computational-description: The finite-state automatonM0-div-2.

• It describesan algorithm to verify the required property.

− Where/how to start (set initial count = even, i.e., position your-
self at the start-state and at the first input symbol).

− When to stop (at the end of input string).

− What to do at each step (what to read, where to find it, how to
update the state).

• The description is finite: the finite alphabet, the finite number of
states (and the transitions), the start-state, and the final-states.

• How doesM0-div-2 describe infinitely many strings in a finite way?

− Via thedynamics of FSA: successive applications of transitions.
Longer strings give longer chains of transitions.

2.5

FORMAL DEFINITION OF AN FSA

M = (Q, q0, F , Σ, δ), where

• Static-part:

Q = A finite, non-empty set of states
q0 = The start-state;q0 ∈ Q
F = The set of final-state(s)⊆ Q
Σ = A finite, non-empty input alphabet

δ(qi, a j) = qk , the next-state after reading the input symbola j in
stateqi; δ is called thetransition function. We some-
times writeδ(qi, a j) = qk as the triplet (qi, a j , qk).

• Dynamic-part: For input x = a1a2⋅⋅⋅ak , apply the transitions suc-
cessively as indicated below:

q0 q1
a1 q2

a2 ⋅⋅⋅a3 ak
ak

E

1

Example: M0-div-2: D

1
0

0
Q = { E, D}, q0 = E, F = { E}, Σ = {0, 1},

Transitions = {(E, 0, D), (E, 1, E), (D, 0, E), (D, 1, D)}

• An input stringx = a1a2⋅⋅⋅ak is accepted by M if the state reached
after reading/processingall of x is a final-state.

Language defined byM : L(M) = { x ∈ Σ∗: x accepted byM}.

L(M0−div−2) = { λ, 1, 00, 11, 001,⋅⋅⋅}

Question: What is the language if both statesE and D were final-
states inM0−div−2?

2.6

SOME OTHER FSA FOR L0-div-2

• A variant of M0-div-2.

− StateD′ is aduplicate of D in the sense thatδ(D, a) = δ(D′, a)
for a = 0, 1.

− D′ does not participate in accepting any input string since it is
not reachable from the start-state.(Changingδ(D′, a) for any
of a = 0, 1 does not alter the language accepted either.)

E

1

D

1

0
0

D′
0 1

− To make D′ reachable from the start-statewithout changing the
language, we can change one or more transitions going toD
(from E or D) to go to D′, making sure that this does not make
D itself unreachable. This can be done in three ways:

E

1

D

1

0

D′
0 1

0

E

1

D0
0

D′
0 1

1

E

1

D0

D′
0 1

10

Both D andD′ correspond to "odd number of 0’s".

• There are countably many different FSAs forL0-div-2.

• M0-div-2 is the only one with thesmallest number of states among all
of them.

2.7

EXERCISE

1. Considerduplicating the stateE in M0-div-2 and making sure that
the new state E′ (and all other states) is reachable from the start-
state. Carefullydetermine whether the new state E′ should be a
final-state since the original stateE is a final-state.(We should not
have two start-states, however.) Show the state-diagram of your
new FSA(s).

2. Modify the originalM0-div-2 so thatλ is not accepted but all other
strings inL0-div-2 are accepted.(Hint: Its start-state should be simi-
lar to the stateE in M0-div-2, but it should not be a final-state.)

2.8

FSA FOR BINARY STRINGS CONTAINING "11"

Lhas-11 = { 11, 011, 110, 111,
0011, 0110, 1100, 0111, 1011, 1101, 1111,⋅⋅⋅}

Key Steps:

• Write down systematically some of the strings in the language.

• Determine what is to be remembered as you process each symbol in
an input string in order to decide if the part processed so far is
"good" or "bad". The things remembered must not grow arbitrarily
large as more and more input symbols are processed.

• Determine the initial and the final value(s) of the thing being
remembered. Thefinal value(s) for good strings must be different
from those for the bad strings.

• Determine how this memory (= thecontrol memory) is updated as
each input symbol is processed.

For Lhas-11:

• The memory has three possible values: No part of "11" is seen, the
first 1 in a possible "11" is seen, and the second 1 in an "11" is seen.
We can represent them as "λ", "1", and "11".

• Initial value =λ; final value = 11.

• The update rules for the memory are the transitions below.

λ

0

1
1

0
11

0, 1
1Mhas-11:

Question: How to modify Mhas-11 so that it accepts the complement
languageLc

has-11?

2.9

EXERCISE

1. Let f (n) = the number of strings of lengthn which are inLhas-11
and g(n) = the number of strings of lengthn which are not in
Lhas-11. Then show that g(n) = g(n − 1) + g(n − 2) for n ≥ 2, and
f (n) = 2n − g(n).

2. Deletethe transition from state ’1’ to the state ’λ’ (labeled by the
input symbol ’0’) from each ofMhas-11 and M c

has-11 above, and call
the new automatonsM1 and M2. Then verify that the following is
false: L(M2) = L(M1)c.

3. Describein English the languageL(M1). Then, modify M1 to
make it completely defined, without changing its language and
show the complement FSA for the modifiedM1.

2.10

COMPLETEL Y DEFINED FSA

Complete Definition:

For eash stateq ∈ Q and each input sysmbola ∈ Σ, giv e the transi-
tion δ (q, a) for the next-state.

Example. For L = { (rw)n: n ≥ 0}, the completely defined FSA is

r
w

dead/error state

r w

w, r

We often avoid writing dead/error states and transitions
to/from them to simplify the state-diagram:

r
w

2.11

PAST- AND FUTURE-BASED
STATE DESCRIPTIONS

Past(q): The property of inputsx = a1a2⋅⋅⋅an thatbrings the FSA to
the stateq, i.e., when do we arrive at q.

Future(q): The property of inputsx = a1a2⋅⋅⋅an that takes the FSM
from q to a final state, i.e., what remains to do atq to reach
a finite state.

E

1

M0-div-2: D

1
0

0
L0-div-2 = { λ, 1, 00, 11, 001, 010, 100,⋅⋅⋅}

State Past-based description Future-based description
E Have seen even many 0’s Need to see even many 0’s
D Have seen odd many 0’s Need to see odd many 0’s

qλ

0

q1

1

0
q11

0, 1

1Mhas-11: Lhas-11 = {11, 011, 110, 111,⋅⋅⋅}

State Past-based description Future-based description
qλ Have not seen any part of "11" Need to see "11"
q1 Have only seen "1", or the Need to see an immediate 1

last two symbols seen are "01" or a future "11"
q11 Have seen "11" Any thing is fine

Question: What is wrong with Past(q1) = Hav eseen ’1’?

Future-based state descriptions are often more useful.

2.12

EXERCISE

1. Show an FSA for Lbin−even = { x: x ∈ {0, 1}* represents a binary
ev en number}. Then,give the past and future based descriptions of
its states.

2. Give the past and future descriptions of the states of the FSA below.

E

1

D
0

0
D′

1

1

0

3. Give the future based state descriptions for each of the three alter-
native FSA (with 3 states in each) shown earlier forM0-div-2.

2.13

A PROBLEM INVOLVING COUNTING
IS SOLVED WITHOUT COUNTING

Problem:

• Consider the language {x: x is a binary string with equal number of
"01" and "10"}.

Examples of Good Strings of Length 4:

0000 (y) 0100 (y) 1000 (n) 1100 (n)
0001 (n) 0101 (n) 1001 (y) 1101 (y)
0010 (y) 0110 (y) 1010 (n) 1110 (n)
0011 (n) 0111 (n) 1011 (y) 1111 (y)

Equivalent Property:

• The binary stringx begins and ends with the same symbol.

An FSA:

A

B
0

0

C
1
0

1

D
1

1

C
0
1

1

