
FINITE-STATE CONTROL
FOR ROBOT-MOTION

Thin Maze (M):

• A finite, connected set of unit squares on a grid which form a path-
way of unit thickness with branches. For simplicity, assume that the
maze is acyclic, i.e., there are no cycles.

• It may be arbitrarily large, with size = #(unit squares) ≥ 2.

• There is no coordinate system and no numbering of the squares to
identify them individually.

• A maze-square is considered adjacent to its immediate neighbors to
the east, west, north, and south (and thus at most 4 neighbors).

− The squares q and r below are not adjacent.

− The square r has two neighbors {s, t}

Robot (R):

• It has the shape and size of a unit square. It can recognize the pres-
ence/absense of only the neighboring squares of its current position
in the maze, and it can move to one of them by going east, west,
north, or south. (It does not rotate.)

p q
r t
s



copyright@1995 3.2

ROBOT-MOTION CONTROL (CONTD.)

Problem.

• Design a finite-state control (without any final-state) to direct the
movements of R so that the following is true:

− For any thin maze M and any giv en initial position in M , R
repeatedly traverses the whole M , without ever coming to a stop
or being confined in a particular part of M .

− R does not need to know when a traversal of M is completed.

− The output of the finite-state control is the move-direction at
each successive time point.

Input symbols:

• Each input symbol consists of a 4-tuple, which describe the pres-
ence or absence of a neighbor in the east, west, north, and south, in
that order. There are 24 − 1 = 15 possible input symbols.

R
Input symbol
= (e, −, n, s)

R
Input symbol
= (−, −, n, s)

"−" indicates the absense of the corresponding neighbor.

• As the robot moves, the successive input symbols change depend-
ing on the thin maze M and the robot’s motion.

− If R moves south above, the new input becomes (−, −, n, −).

Output symbols:

• The four possible direction {e, w, n, s} of move by R.



copyright@1995 3.3

FINITE-STATE CONTROL GIVES
A SOLUTION ALGORITHM

Strategy to Systematically Visit All of M: Keep to the right.

• Moving around in a haphazard fashion cannot possibly help.

• Not concerned at this point about optimizing the number of moves
needed for a complete traversal of M .

Part of the move
sequence based on
"Keep to the right"
strategy.

Start-point

Implementing the Strategy:

• Need to know most recent move-direction; this forms the finite con-
trol-memory, i.e., the state.

• Need to choose the next move-direction among {e, w, n, s} based
on the local knowledge of M at the current position of R.

state = N , move = e
input = (e,?, ?, ?)

state = N , move = n
input = (−, ?, n, ?)

state = N , move = w
input = (−, w, −, ?)

state = N , move = s
input = (−, −, −, s)

"?" = don’t care (dashed square), and shaded-square = not present



copyright@1995 3.4

PART OF THE STATE-DIAGRAM FOR
KEEP-TO-THE-RIGHT CONTROL STRATEGY

Transitions at state N :

state = N , move = e
input = (e,?, ?, ?)

state = N , move = n
input = (−, ?, n, ?)

state = N , move = w
input = (−, w, −, ?)

state = N , move = s
input = (−, −, −, s)

"?" = don’t care (dashed square), and shaded-square = not present

N

(−,?,n,?)/n

W (−,w,−,?)/w E(e,?,?,?)/e S

(−,−,−,s)/s
Transition-label = input-symbol/move-direction.

Question:

•? Complete the state-diagram; indicate the start-state (there are no
final-states because the robot never stops).

•? Complete the partial move-sequence in the thin maze shown earlier.

•? Prove that keep-to-the-right strategy works for all thin mazes and
all start-positions. (Hint: Find a condition that holds when the robot
returns for the first time to its initial position.

•? Give an example to show that the keep-to-the-right strategy does
not always work if the maze has thickness > 1 in some places.

•? Give another another strategy that works for all mazes and show its
transition-diagram.



copyright@1995 3.5

EXERCISE.

1. Find a finite-state control such that the robot will come to a dead-
end and stop for all thin mazes and all start-positions. (A dead-end
is a square which has only one neighboring square. You do not
need to go to any specific dead-end such as a northmost dead-end.)
Describe in English your general strategy.

2. Consider the following control, which uses no control-memory.
Select move-direction according to the priority: e > n > w > s
irrespective of the preceding move-direction. For example,
select move-direction s only if no other choice is possible.

Show a thin maze M and a start-position for which this strategy
fails, i.e., does not lead to a complete traversal of M . Show the
move-sequence of R based on the above strategy.

3. What can you say about the following strategy:
First visit all squares that are 1 step away from the initial posi-
tion, then visit the squares that are 2 steps away from the initial
position, etc. (The robot may have to return to previously vis-
ited squares in between as it explores more and more distant
squares.)

Show a possible sequence of squares (say, for 15 moves or so) vis-
ited by this strategy for the following maze using the numbering of
squares as indictated; only show the new squares visited (ignoring
repeated visits to any square). Assume the initial position to be 1.
What could be a potential problem in implementing this strategy by
a finite control?



copyright@1995 3.6

10 11 12 13 14 15 16
9

2 3 4 5 6 7 8
1

4. Consider a fixed general maze M , which maybe a region (convex or
non-convex) and which may have cycles and holes, in particular.
Given a starting position s in M , we can consider all possible move
sequences in M from s, and represent these move sequences using
the symbols in Σ = {e, w, n, s}. The empty string λ will represent
the empty move-sequence. Let L(M , s) denote the language of
these move-sequences over the alphabet Σ.

(i) Consider the following maze and the starting position s = 1.

1 23

What is the language L(M , s)? Give an English description
of the language?

(ii) Show that L(M , s) is regular for all M and arbitrary position
s in M . Illustrate your answer by designing an FSA for the
language in (i); the number of states may depend on M .
Keep your design simple, name your states properly, and
draw your state diagram in a way that shows its relationship
to M ; don’t forget to specify the final-states. You do not need
to show the error state. Also show your FSA for each of the



copyright@1995 3.7

following mazes, with the start-position 1 in each case.

1 2 34

1 2 34
5 6

(iii) What does the quotient language L(M , s)/x corresponds to
(in the general case)? Illustrate your answer for the second
maze in (ii) and the strings x = ewwn and x = ewww.

(iv) Given two mazes M1 and M2, and the associated starting
positions s1 and s2 in them, under what conditions will we
have L(M1, s1) = L(M2, s2)?

(v) Suppose we define L(M) =
all-s
∪ L(M , s). Show that L(M) is a

regular language for all M . Under what condition, will we
have L(M1) = L(M2)?

(vi) Could we use the observation in (v) to design a method (algo-
rithm) to test M1 = M2 for any two giv en mazes? Can we
represent (the computations in) your method by an FSM?
(What are its inputs and outputs?)

(vii) Which of your conclusions/observations in (i)-(vi) will not be
valid if M is an infinite maze (still connected in one piece)?

5. Consider a variation of the FSM for traversing a maze using the
"keep to the right" policy, where the robot comes to a stop when it
reaches a dead-end. Now we present to the robot all L-shaped
mazes shown below with k + 2 (k ≥ 1) squares in the horizontal-
chain and k + 1 squares in the vertical-chain. The start-position of



copyright@1995 3.8

the robot is next to the leftmost square in the horizontal-chain.

1 1
k = 1 k = 2

The language of move-sequences produced by all such mazes is

L = {ek nk : k ≥ 1}, which is non-regular.

How is it that the underlying FSM in the robot is responsible for
generating a non-regular language?

6. A maze is said to be h-convex (’h’ for "horizontal") if the follow-
ing condition holds:

If A and B are any two squares in the maze that
are in the same horizontal row, then all squares
between them are also in the maze. (See the
squares marked 1 and 3 below.)

The notion of v-convexity (’v’ for "vertical") is defined similarly.
Finally, a maze is convex if it is both h-convex and v-convex.
Shown below is an an example of a convex maze. In particular,
the maze is not just a thin pathway any more, it has thickness;
also, the thickness may be different in different places. If we
remove any of the squares 1, 2, and 3, the maze still remains con-
vex; howev er, removal of the square 4 destroys both h-convexity
and v-convexity.

Design an FSM which finds (and stops) at a (any) northmost
square in a convex maze irrespective of where it is placed



copyright@1995 3.9

4

1 3

2

initially. State in English the general "strategy" used by your
FSM.

Submit the run of the program using the above maze for each of
the starting positions marked 1, 2, 3, and 4. Also, mark the path
(on your paper submission) taken by the robot in reaching the
final position in each case.

7. Design a finite-state control which will visit all squares of a con-
vex maze repeatedly without ever stopping. (Hint: use the "hori-
zontal sweeps" strategy, where the robot visits each horizontal
strip all the way to the left and to the right before it moves to the
next strip up. When it cannot go up any more, then it repeats the
process, going down and visiting each horizontal strip completely
on the way before stepping down to the next horizontal strip.)

Show the program output, including your transitions, for the con-
vex maze shown in Problem 8.

8. Consider an arbitrary (finite and connected) region such as shown
below, with possibly one or more holes. Design an finite-state
control so that the robot will traverse along the outer-boundary of



copyright@1995 3.10

the region, say, in the anti-clockwise direction, when initially
placed at a northmost position. The dashed curve below shows
such a boundary traversal; several internal squares in G are not
visited in this traversal.

What problems would arise in designing a finite-state control if
the initial position is only known to be a boundary position?
(Certain animals, such as shrews, rats, etc., often use variations
of boundary traversal in searching for food and exploring general
areas, staying close to a boundary. An FSC for boundary traver-
sal can be combined with other FSC’s to solve many interesting
traversal problems. For example, consider the following general-
ization of a convex region, where every square is visible − hori-
zontally or vertically − from some boundary square. The region
shown above has this property. Many famous gardens, where the
holes correspond to areas covered by large bushes or trees, are
designed with this property so that one can walk around the
boundary of the garden and still be able to see all the flower-beds
in the garden from at least one position.)


