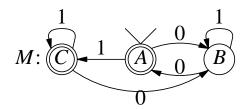
EQUIVALENCE OF STATES AND STATE-MINIMIZATION OF AN FSA

The "future" Language of a State:

- $L_{q_i}(M) = \{x: x \text{ takes } M \text{ from } q_i \text{ to a final-state}\}; \text{ in short, } L_{q_i}.$
- $L_{q_i}(M)$ captures the notion "future" of state q_i .
- $L_{start-state}(M) = L(M)$.

Example. $L_B(M) = \{0, 01, 10, 000, 011, 101, 110, \dots\} = L_{0-odd}$



Equivalence of Two States q_i and q_j of an FSA:

• q_i is equivalent to q_j (in short, $q_i \approx q_j$) if $L_{q_i} = L_{q_i}$.

Question:

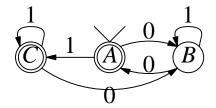
•? How to determine the equivalence of q_i and q_j in an FSA M? (Here, the problem is that $L_{q_i}(M)$ and $L_{q_j}(M)$ can be infinite!)

m-equivalence: A finite form of "≈"

- $L_{q_i}^{(m)} = \{x : x \in L_{q_i} \text{ and } |x| = m\}, \text{ a finite subset of } \subseteq L_{q_i}.$
 - $L_{q_i}(0) = {\lambda}$, if q_i is a final-state; otherwise, = \emptyset .
 - $L_{q_i}^{(k)} \cap L_{q_i}^{(m)} = \emptyset \text{ for } k \neq m \text{ and } \bigcup_{m \geq 0} L_{q_i}^{(m)} = L_{q_i}.$
- q_i is m-equivalent to q_j (in short, $q_i \approx_m q_j$) if $L_{q_i}^{(m)} = L_{q_i}^{(m)}$.

Question: What is $L_B^{(3)}$ for the FSA above?

m-EQUIVALENCE



$\overline{L_{q_i}^{(m)}}$	m = 0	m = 1	m=2	m = 3	•••
$q_i = A$	$\{\lambda\}$	{1}	$\{00, 11\}$	001, 010, 100, 111	•••
$q_i = B$	Ø	{0}	$\{01, 10\}$	000, 011, 101, 110	•••
$q_i = C$	$\{\lambda\}$	{1}	$\{00, 11\}$	001, 010, 100, 111	•••

- (1) The states A and C are m-equivalent for each $m \ge 0$.
- (2) The states A and B are not m-equivalent for any $m \ge 0$.

0-equivalence: For any FSA,

• All final states are 0-equivalent to each other, and all non-final states are 0-equivalent to each other.

copyright@1995 6.3

STATE-MINIMIZATION ALGORITHM

Algorithm-1 (using $L_{q_i}^{(m)}$):

1. Begin with two groups of states: F (the final-states) and Q - F (the non-final states), corresponding to the 0-equivalence classes.

2. For each $m = 1, 2, \cdots$ do the following until you reach a stage where no state-group is split up.

Decompose each state-group into two or more groups, if necessary, based on $L_{q_i}^{(m)}$, i.e., if q_i and q_j are presently in the same group and $L_{q_i}^{(m)} \neq L_{q_j}^{(m)}$, then separate them into different groups. (At this point, q_i and q_j are in the same group if and only if $q_i \approx_k$ for all $k \leq m$.)

3. The minimum-state FSA is obtained by merging the states in each group into a single state.

Algorithm-2 (*without* using $L_{q_i}^{(m)}$):

- 1. Begin with two groups of states: F (the final-states) and Q F (the non-final states).
- 2. For each $m=1, 2, \cdots$ do step (3) until you reach a stage where no group is split up.
- 3. Repeat the following for each input symbol $a_k \in \mathbb{Z}$.
 - (i) Compute $\delta(q_i, a_k)$ for all states.
 - (ii) Decompose each group into two or more groups, if necessary, based on $\delta(q_i, a_k)$ as follows:

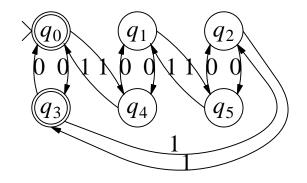
If q_i and q_j are presently in the same group and $\delta(q_i, a_k)$ and $\delta(q_j, a_k)$ are not in the same group, then separate them into two different groups.

4. The minimum-state FSA is obtained by merging the states in each group into a single state.

copyright@1995 6.4

ILLUSTRATION OF ALGORITHM-1

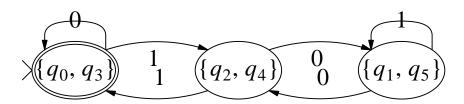
State (p, r): $p = \text{odd/even parity of number of binary bits read and } r = \text{remainder}(n_j, 3)$, where $n_j = \text{binary number read}$.



$$q_0$$
 = (even, 0)
 q_1 = (even, 1)
 q_2 = (even, 2)
and so on q_5 = (odd, 2)

State	$Lq_i^{\ (m)}$					
	m = 0	m=1	m=2	m=3		
$\overline{q_0}$	{λ}	{0}	{00, 11}	{000, 011, 110}		
q_3	$\{\lambda\}$	{0}	{00, 11}	{000, 011, 110}		
q_1	Ø	Ø	{01}	{010, 101}		
q_2	Ø	{1}	{10}	{001, 100, 111}		
q_4	Ø	{1}	{10}	{001, 100, 111}		
q_5	Ø	Ø	{01}	{010, 101}		
	$\{q_0, q_3\}$	$\{q_0, q_3\}$	No change	No need		
	$\{q_1, q_2, q_3, q_4\}$	$\{q_1, q_5\}$	in any	to consider		
		$\{q_2, q_4\}$	group.	this.		

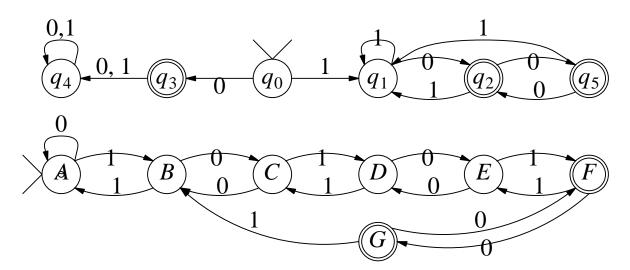
After Merging Equivalent Classes of States:



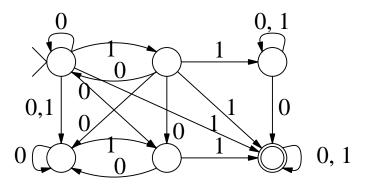
The minimum-state form of the above FSA.

EXERCISE

1. Apply Algorithm-1 to each FSA below and show all details.



2. Apply the minimization algorithm to the NFSA below (which has some important connection with M_{has-11}).



- 3. Is it true that all error states in an arbitrary FSA will be merged into a single state in the minimization process (why)?
- 4. Give an example FSA to show that all unreachable states in an arbitrary FSA may not get merged into a single state.
- 5. First, use the table on page 4 to verify the following formula for m=3 and the state $q=q_0$: $L_q^{(m)}=\bigcup a_j L_{\delta(q,\,a_j)}^{(m-1)}$ (union over all $a_j\in\Sigma$). Then, prove that the formula holds for FSA. Finally, argue that $q\approx q'$ implies $\delta(q,\,a)\approx\delta(q',\,a)$ for all $a\in\Sigma$.

WHAT IS A STATE OF AN FSA

Importance of Answering This Question:

- It explains why certain languages like L_{sym} and $L_{a^nb^n}$ are are not acceptable by any FSA,
 - There is an FSA for a language L, i.e., L is regular if and only if it has only a fi nitely many quotient languagess.

States of the optimal FSA for L are the quotient languages of L.

 The optimal FSA (which has the smallest number of states) for a language is unique; its states correspond to the quotient languages of L. copyright@1995 6.7

QUOTIENT LANGUAGES

Quotient of *L*:

• For any string x, $L/x = \{y: xy \in L\}$. Here, y are the "futures" (to do) after x.

• $L/\lambda = L$, for any L and (L/x)/y = L/(xy).

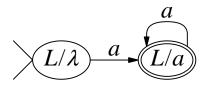
Example.

• For $L = \{a, ab, aab, b\},\$

• For $L = \{a, aa, aaa, \dots\} = a^+,$

$$\overline{L/a = \{\lambda, a, aa, \dots\} = a^* \supset L} \qquad L/aa = L/a
L/b = \emptyset \qquad L/ab = \emptyset$$

States of $M(a^+)$ vs. Quotients of a^+ :



Question:

•? For $L = \{a, ab, aab, b\}$, show the states M(L) in terms of the quotients of L.

REGULAR LANGUAGES AND QUOTIENT LANGUAGES

L is regular \Leftrightarrow L has fi nitely many quotient languages.

Example. Let $L = \{a^n b^n : n \ge 1\} = \{ab, aabb, aaabbb, \cdots\}.$

$$L/\lambda = L$$

 $L/a = \{b, abb, aabbb, \dots\}$ $= \{a^n b^{n+1} : n \ge 0\}$
 $L/aa = (L/a)/a = \{bb, abbb, \dots\}$ $= \{a^n b^{n+2} : n \ge 0\}$
 $L/aaa = (L/aa)/a = \{bbb, abbbb, \dots\}$ $= \{a^n b^{n+3} : n \ge 0\}$
...

 These quotient-languages are distinct (they differ in the smallest string in them).

• The quotients $L/b = L/bb = \cdots = \emptyset$, and they are different from the ones above. (Are there still other quotients of L?)

EXERCISE

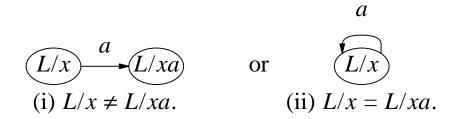
- 1. Find the quotient languages of L_{has-11} .
- 2. Let $L = \{a^m b^n : m, n \ge 1\} \subseteq (a+b)^*$. Give a rgular expression for each of the distinct quotient languages of L.
- 3. Give a clear argument to show that $L_{sym} = \{x \in (a+b)^+: x \text{ is symmetric, i.e., } x = x^r\} = \{\lambda, a, b, aa, bb, aaa, aba, bab, bbb, \cdots\}$ has infinitely many quotient languages.
- 4. Let $L_{left\text{-}shift} = \{x \in \{b_0, b_1, b_2, b_3\}^* : \text{ the lower part of } x \text{ is the left-shift of the top part} \}$. Explain whether $L_{left\text{-}shift}$ is regular or not.

$$x = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = b_2 b_1 b_3 b_2 \in L_{left\text{-}shift}.$$

5. If L_1 and L_2 are two languages over the alphabet Σ and $L_1/x = L_2/x$ for all $x \in \Sigma^+$, then prove that $L_1 = L_2$.

UNIQUENESS OF MINIMUM FSA FOR A REGULAR LANGUAGE L

- States have the form L/x.
- Start-state = $L/\lambda = L$.
- The state L/x is final if $x \in L$, i.e., L/x contains λ .
- The transitions are of the form shown below for each $a \in \Sigma$:



• The state L/x is an error-state (dead-state) if $L/x = \emptyset$.