
NON-DETERMINISTIC FSA

Tw o types of non-determinism:

(1) Multiple start-states; start-states S ⊆ Q.

• The language L(M) = {x: x takes M from some start-state to
some final-state and all of x is processed}.

The string x = aac is accepted only by starting at state q1, and x
= aab is accepted only by starting state q2.

q1

a, b

q2

a, c q3

c

b

Tw o start-states
q1 and q2:

L(M) = { b, c,
ab, ac, bc, cb,
⋅⋅⋅}

(2) Non-unique transitions; δ(qi , a j) is a set of states ⊆ Q.

• The language L(M) = {x: x takes M for some choice of suc-
cessive transitions from the start-state to some final-state and
all of x is processed}.

q0 q1

a, b
a q2

bδ(q1, b)
= {q1, q2}

x = abb can be fully
processed in only 2
ways, and one of
them accepts x.

For each NFSA M , there is an equivalent
deterministic FSA M ′ such that L(M) = L(M ′).

copyright@1995 6.2

REVERSING AN FSA MAY CREATE A NFSA

A

a, b

B

a, c C
c

b

M ; L(M) =
b(a + c)* + c(a + b)*

A

a, b

B

a, c C
c

b

M r ; L(M r) =
(a + c)*b + (a + b)*c

Reversing an FSA:

• Rev erse direction of each transition (may create non-determinism).

• Make the start-state the final-state.

• Make each final-state a start-state (may create non-determinism).

Reverse of a Language L:

• Lr = {xr : x ∈ L}, where xr = ak ak−1⋅⋅⋅a2a1 if x = a1a2⋅⋅⋅ak−1ak .

If L is regular, then Lr is also regular.

q0In M : q1
a1 q2

a2 ⋅⋅⋅a3 qk−1
ak−1 qk

ak

q0In M r : q1
a1 q2

a2 ⋅⋅⋅a3 qk−1
ak−1 qk

ak

Question: If M has an error-state, then what will happen to it in M r?
Can the reversal process create unreachable states?

copyright@1995 6.3

MULTIPLE START-STATES ELIMINATION
USING λ-TRANSITIONS

λ-transition:

• An FSA can change state by using a λ-transition and without read-
ing an input symbol.

Elimination of Multiple Start-states:

• Add a new state s and make it the only start-state.

• Add a λ-transition from s to each of the original start-state.

• No change in final-states or other transitions.

q1

a, b

q2

a, c

q3

c

b

(i) Start-states =
{q1, q2}.

s

q1λ

a, b

q3

c

q2
λ b

a, c
(ii) An equivalent FSA with

1 start-state and λ-moves.

s

q1a, b

a, b

q3

c
b, c

q2
a, c b

a, c
(iii) Another equivalent
FSA with 1 start-state.

Question:

•? Give an example FSA to show that it is not enough to add a new
state s, make it the only start-state, and for each a j add the follow-
ing transitions at s:

δ(s, a j) =
qi

∪ δ (qi, a j), union over all start-states in M .

(We hav e to make the new start-state s also a final-state if one or more
the original start-states is a final-state.)

•? Show the resulting FSA when we apply the above construction to
the FSA shown at the top left. Does it change the language?

copyright@1995 6.4

SUBSET-CONSTRUCTION METHOD FOR
CONVERTING NFSA TO FSA

• The new FSA M ′ cannot simulate all alternative paths π (x) in the
original FSA M for an input string x, because the number of π (x)
can be exponentially large (in |x|) and M ′ has finitely many states.

• Instead, M ′ keeps track of the end points E(x) of the paths π (x); x
is accepted E(x) contains one or more final-states of M .

• The end-points of the paths π (x) form a subset of Q in M , and there
are only 2|Q| many different subsets.

• If x = a1a2⋅⋅⋅a j and x′ = xa j+1, then E(x′) =
qi ∈ E(x)

∪ δ (qi , a j+1).

1

2

a, b
a

3

b

4
b a, b

a, b

1

2
a

2
b

3
b

2
a

4
a

2
b

3
b

4
b

#(paths π (x) for processing x = aba bn) = n+2.

{1} {2}a {2,3}b {2,4}a {2,3,4}b {2,3,4}b

Use the subsets of Q as the states of the new FSA.

copyright@1995 6.5

THE SUBSET-CONSTRUCTION

Av oid construction of unreachable states:

(1) Choose the set of all start-states in M as the start-state S0 of the
new FSA M ′.

(2) While there is a state S j for which the transitions have not been
determined, do the following:
For each input symbol a ∈ Σ in M ,

(i) Let S =
qi ∈ S j

∪ δ (qi , a). (It may happen that S = ∅.)

(ii) If S is not already a state in M ′, then add it as a new state.

(iii) Add the transition δ(S j , a) = S in M ′.

(3) Make each state S j in M ′ a final-state if it contains one or more
final-states of M

1

2

a, b
a

3

b

4
b a, b

a, b
{1}

{2}

a

a

{4}
b

a, b

{2,3}b

{2,4} a
a

{2,3,4} b
b

b a

The FSA obtained by the subset-constructionAn NFSA

Note: If we did not have the dead-state 4 in the above example, then 4
would be removed from all states in the new FSA; the state {4}
would now become ∅.

copyright@1995 6.6

EXERCISE

1. Complete the partial description of the state A in the finite-state au-
tomaton Mhas-11 below for the language Lhas-11 (= the binary strings
containing "11"), based on the descriptions of states B and C, to
justify the transitions to and from A. Note that each state-descrip-
tion is in terms of the "past", i.e., the part of the input which is pro-
cessed to arrive at the state.

A

0

Mhas-11: B1
0 C

0, 1

1 A =
B =
C =

have not seen "11" and ⋅⋅⋅
have not seen "11" and just seen 1
seen "11"

Let M r
has-11 be the non-deterministic automaton obtained by apply-

ing the reversal-operation to Mhas-11; L(M r
has-11) = Lr

has-11 = Lhas-11.

(a) Give a suitable description in English for the states of M r
has-11

that would justify its transitions. What is the connection
between these descriptions and the previous descriptions?

(b) Show the FSA obtained from M r
has-11 by the subset-construc-

tion. Also describe the states of the new FSA in simple
English in terms of the descriptions in (a).

2. Remove the redundant state 4 in the NFSA in page 6.4 and then
apply the subset-construction. How does the result differ from the
FSA shown above; do they accept the same language?

3. Apply the subset-construction for the NFSAs in page 6.1.

4. Consider a deterministic FSA for verifying multiplication of binary
numbers by 3, with the usual least significant bit on the right. Also,
consider a similar FSA for verifying multiplication by 2. The input
alphabet for these machines should be {b0, b1, b2, b3}. Now,
obtain a non-deterministic FSA for verifying multiplication by
either of 2 and 3; convert it to a deterministic form.

copyright@1995 6.7

PROJECTION OF A LANGUAGE AND
λ-TRANSITION IN AN FSM

Projection:

• If x = x1cx2cx3⋅⋅⋅cxk , where some of xi’s can be λ, none of xi con-
tains c, and k ≥ 1, then the projection Πc(x) = x1 x2⋅⋅⋅xk , which is
simply x minus all occurrences of c.

• Πc(L) = {Πc(x): x ∈ L}.

Theorem:

• For any language L and the symbols a ≠ b, Πa(Πb(L))) =
Πb(Πa(L))).

• If L is a regular language, then there is NFSM for Πc(L) containing
λ-transitions.

Example.

1M : 2

c
a
d 3a, b

d

1Πd (M): 2

c
a
λ 3a, b

λ

copyright@1995 6.8

ELIMINATION OF λ-TRANSITIONS

λ-transition:

• The FSA can change its state without reading an input symbol.

1M : 2

c
a
λ 3a, b

λ

1a ∈ L(M): 2λ 3a

1bb ∈ L(M): 2λ 3b 2λ 3b

Elimination of λ-moves in M gives possibly an NFSA M ′:
• M and M ′ have the same states, and the same final-states.

• M ′ may have multiple start-states (due to λ-transitions from start-
state of M) and non-deterministic transitions.

Define: λ(qi) = {q j : q j is reachable from qi by zero or more λ-transi-
tions}; qi ∈ λ(qi).

Algorithm:

(1) Make each state in λ(q0) a start-state in M ′.
(2) For each δ(qi , a j) = qk in M for a j ≠ λ, let δ(qi , a j) = λ(qk) in M ′.

Example. For above M , λ(1) = {1, 2}, λ(2) = {2}, and λ(3) = {2, 3}.

1M ′: 2

a, b, c
a 3a, b

copyright@1995 6.9

THE EFFECT OF INTRODUCING ERRORS
IN A REGULAR LANGUAGE

Language L modified by one replacement error:

• RE1(L) = {x: x differs from some y ∈ L in one position}.

• L and RE1(L) hav e the same alphabet.

If L is regular, then RE1(L) is also regular.

Example. If L = L0-div-2 = L0-even, then RE1(L) = L0-odd .

L0-even = {λ, 1, 00, 11, 001, 010, 100, 111, ⋅⋅⋅}
L0-odd = { 0, 01, 10, 000, 011, 101, 110, ⋅⋅⋅}

Building an M(RE1(L)) from M(L):

• The construction below applies to any FSA.

A

M0−even

1

B

1
0

0
A

1

B

1

0
0

error-transitions

transitions before error

transitions after error

NFSA for RE1(L0-div-2)

A′

1

0 1

B′

1

0
0

1 0

{A, B′}

1

{A′, B}

1

0
0

A
1 0

M(RE1(L0-even)):

1 1
0

0

reduced M(RE1(L0-even)):

(A merged with AB′)

copyright@1995 6.10

EXERCISE

1. Apply the above method to obtain an FSA for RE1(Lhas-11). Show
all details of coversion of NFSA to FSA and the details of state-
minimization.

2. How will you generalize the above construction for exactly k (≥ 2)
replacement errors? Illustrate the construction using k = 2 and
M0-div-2. (The generalization to ≥1 errors is also easy.)

3. Show that REL′(L) = {uv′w: v′ ∈ L′, |v| = |v′|, and uvw ∈ L} is
regular if both L and L′ are regular. Note that v may equal v′.
(Hint: an NFSA for REL′(L) will have three phases: for the part u
(before the error), v′, and w (after the error).)

4. Let DE1(L) = {xy: xay ∈ L for some x, a, and y} = the set of
strings obtained by deletion of a symbol from strings in L. One
can show that DE1(L) is regular by giving a method for the con-
struction of a NFSA for DE1(L) from an FSA for L where the
deletion operation is modeled by λ-transitions. Illustrate your
method by using Mhas-11 as an example; show the NFSA after the
introduction of λ-transitions (keep the states "before deletion" dis-
tinct from those "after deletion" similar to that for the case of
RE1(L)).

5. A similar result holds for the insertion error. State the result
clearly.

