NON-DETERMINISTIC FSA

Two types of non-determinism:

(1) *Multiple start-states;* start-states $S \subseteq Q$.
 - The language $L(M) = \{ x : x$ takes M from some start-state to some final-state and all of x is processed $\}$.

 The string $x = aac$ is accepted only by starting at state q_1, and $x = aab$ is accepted only by starting state q_2.

 \[
 \begin{array}{c}
 a, b \\
 q_1 \\
 \downarrow \\
 c \\
 \end{array} \\
 Two \text{ start-states } q_1 \text{ and } q_2: \\
 \begin{array}{c}
 a, c \\
 q_2 \\
 \downarrow \\
 b \\
 \end{array} \\
 L(M) = \{ b, c, ab, ac, bc, cb, \ldots \}
 \]

(2) *Non-unique transitions;* $\delta(q_i, a_j)$ is a set of states $\subseteq Q$.
 - The language $L(M) = \{ x : x$ takes M for some choice of successive transitions from the start-state to some final-state and all of x is processed $\}$.

 \[
 \begin{array}{c}
 a, b \\
 q_0 \\
 \downarrow \\
 a \\
 q_1 \\
 \downarrow \\
 b \\
 \end{array} \\
 \delta(q_1, b) = \{ q_1, q_2 \} \\
 x = abbb$ can be fully processed in only 2 ways, and one of them accepts x.

For each NFSA M, there is an equivalent deterministic FSA M' such that $L(M) = L(M')$.
REVERSING AN FSA MAY CREATE A NFSA

\[M; L(M) = b(a + c)^* + c(a + b)^* \]

\[M^r; L(M^r) = (a + c)^*b + (a + b)^*c \]

Reversing an FSA:
- Reverse direction of each transition (may create non-determinism).
- Make the start-state the final-state.
- Make each final-state a start-state (may create non-determinism).

Reverse of a Language \(L \):
- \(L^r = \{ x^r: x \in L \} \), where \(x^r = a_k a_{k-1} \cdots a_2 a_1 \) if \(x = a_1 a_2 \cdots a_{k-1} a_k \).

If \(L \) is regular, then \(L^r \) is also regular.

In \(M \):

\[q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} q_2 \xrightarrow{a_3} \cdots \xrightarrow{a_{k-1}} q_{k-1} \xrightarrow{a_k} q_k \]

In \(M^r \):

\[q_0 \xleftarrow{a_1} q_1 \xleftarrow{a_2} q_2 \xleftarrow{a_3} \cdots \xleftarrow{a_{k-1}} q_{k-1} \xleftarrow{a_k} q_k \]

Question: If \(M \) has an error-state, then what will happen to it in \(M^r \)? Can the reversal process create unreachable states?
MULTIPLE START-STATES ELIMINATION
USING λ-TRANSITIONS

λ-transition:
- An FSA can change state by using a λ-transition and without reading an input symbol.

Elimination of Multiple Start-states:
- Add a new state s and make it the only start-state.
- Add a λ-transition from s to each of the original start-state.
- No change in final-states or other transitions.

(i) Start-states = \{q_1, q_2\}.
(ii) An equivalent FSA with 1 start-state and λ-moves.
(iii) Another equivalent FSA with 1 start-state.

Question:
- Give an example FSA to show that it is not enough to add a new state s, make it the only start-state, and for each a_j add the following transitions at s:
 $\delta(s, a_j) = \bigcup_{q_i} \delta(q_i, a_j)$, union over all start-states in M.
 (We have to make the new start-state s also a final-state if one or more the original start-states is a final-state.)
- Show the resulting FSA when we apply the above construction to the FSA shown at the top left. Does it change the language?
SUBSET-CONSTRUCTION METHOD FOR CONVERTING NFSA TO FSA

- The new FSA M' cannot simulate all alternative paths $\pi(x)$ in the original FSA M for an input string x, because the number of $\pi(x)$ can be exponentially large (in $|x|$) and M' has finitely many states.
- Instead, M' keeps track of the end points $E(x)$ of the paths $\pi(x)$; x is accepted $E(x)$ contains one or more final-states of M.
- The end-points of the paths $\pi(x)$ form a subset of Q in M, and there are only $2^{|Q|}$ many different subsets.
- If $x = a_1a_2\cdots a_j$ and $x' = xa_{j+1}$, then $E(x') = \bigcup_{q_i \in E(x)} \delta(q_i, a_{j+1})$.

#(paths $\pi(x)$ for processing $x = abab^n$) = $n+2$.

Use the subsets of Q as the states of the new FSA.
THE SUBSET-CONSTRUCTION

Avoid construction of unreachable states:

(1) Choose the set of all start-states in M as the start-state S_0 of the new FSA M'.

(2) While there is a state S_j for which the transitions have not been determined, do the following:

For each input symbol $a \in \Sigma$ in M,

(i) Let $S = \bigcup_{q_i \in S_j} \delta(q_i, a)$. (It may happen that $S = \emptyset$.)

(ii) If S is not already a state in M', then add it as a new state.

(iii) Add the transition $\delta(S_j, a) = S$ in M'.

(3) Make each state S_j in M' a final-state if it contains one or more final-states of M

An NFSA

The FSA obtained by the subset-construction

Note: If we did not have the dead-state 4 in the above example, then 4 would be removed from all states in the new FSA; the state {4} would now become \emptyset.
EXERCISE

1. Complete the partial description of the state A in the finite-state automaton M_{has-11} below for the language L_{has-11} (= the binary strings containing "11"), based on the descriptions of states B and C, to justify the transitions to and from A. Note that each state-description is in terms of the "past", i.e., the part of the input which is processed to arrive at the state.

\[M_{has-11}: \]

\[A \xrightarrow{0} 1 \]
\[B \]
\[C \xrightarrow{1} 0 \]

- $A = \text{have not seen "11" and \ldots}$
- $B = \text{have not seen "11" and just seen 1}$
- $C = \text{seen "11"}$

Let M^r_{has-11} be the non-deterministic automaton obtained by applying the reversal-operation to M_{has-11}; $L(M^r_{has-11}) = L^r_{has-11} = L_{has-11}$.

(a) Give a suitable description in English for the states of M^r_{has-11} that would justify its transitions. What is the connection between these descriptions and the previous descriptions?

(b) Show the FSA obtained from M^r_{has-11} by the subset-construction. Also describe the states of the new FSA in simple English in terms of the descriptions in (a).

2. Remove the redundant state 4 in the NFSA in page 6.4 and then apply the subset-construction. How does the result differ from the FSA shown above; do they accept the same language?

3. Apply the subset-construction for the NFSAs in page 6.1.

4. Consider a deterministic FSA for verifying multiplication of binary numbers by 3, with the usual least significant bit on the right. Also, consider a similar FSA for verifying multiplication by 2. The input alphabet for these machines should be \{b_0, b_1, b_2, b_3\}. Now, obtain a non-deterministic FSA for verifying multiplication by either of 2 and 3; convert it to a deterministic form.
PROJECTION OF A LANGUAGE AND \(\lambda\)-TRANSITION IN AN FSM

Projection:
- If \(x = x_1cx_2cx_3\cdots cx_k\), where some of \(x_i\)'s can be \(\lambda\), none of \(x_i\) contains \(c\), and \(k \geq 1\), then the projection \(\Pi_c(x) = x_1x_2\cdots x_k\), which is simply \(x\) minus all occurrences of \(c\).
- \(\Pi_c(L) = \{\Pi_c(x): x \in L\}\).

Theorem:
- For any language \(L\) and the symbols \(a \neq b\), \(\Pi_a(\Pi_b(L))) = \Pi_b(\Pi_a(L))\).
- If \(L\) is a regular language, then there is NFSM for \(\Pi_c(L)\) containing \(\lambda\)-transitions.

Example.

\[
M: \quad \begin{array}{c}
1 \quad a \quad d \quad 2 \quad a, b \quad d \quad 3
\end{array}
\]

\[
\Pi_d(M): \quad \begin{array}{c}
1 \quad a \quad \lambda \quad 2 \quad a, b \quad \lambda
\end{array}
\]
ELIMINATION OF λ-TRANSITIONS

λ-transition:
- The FSA can change its state without reading an input symbol.

$$
M: \begin{array}{c}
1 & \xrightarrow{a} & 2 \\
\lambda & \xrightarrow{c} & 3
\end{array}
$$

$$a \in L(M): \begin{array}{c}
1 & \xrightarrow{\lambda} & 2 & \xrightarrow{a} & 3
\end{array}$$

$$bb \in L(M): \begin{array}{c}
1 & \xrightarrow{\lambda} & 2 & \xrightarrow{b} & 3 & \xrightarrow{\lambda} & 2 & \xrightarrow{b} & 3
\end{array}$$

Elimination of λ-moves in M gives possibly an NFSA M':
- M and M' have the same states, and the same final-states.
- M' may have multiple start-states (due to λ-transitions from start-state of M) and non-deterministic transitions.

Define: $\lambda(q_i) = \{ q_j : q_j \text{ is reachable from } q_i \text{ by zero or more } \lambda\text{-transitions} \}; \ q_i \in \lambda(q_i).$

Algorithm:
1. Make each state in $\lambda(q_0)$ a start-state in M'.
2. For each $\delta(q_i, a_j) = q_k$ in M for $a_j \neq \lambda$, let $\delta(q_i, a_j) = \lambda(q_k)$ in M'.

Example. For above M, $\lambda(1) = \{1, 2\}$, $\lambda(2) = \{2\}$, and $\lambda(3) = \{2, 3\}$.
THE EFFECT OF INTRODUCING ERRORS IN A REGULAR LANGUAGE

Language L modified by one replacement error:
- $RE_1(L) = \{ x: x \text{ differs from some } y \in L \text{ in one position} \}$.
- L and $RE_1(L)$ have the same alphabet.

If L is regular, then $RE_1(L)$ is also regular.

Example. If $L = L_{0-\text{div-2}} = L_{0-\text{even}}$, then $RE_1(L) = L_{0-\text{odd}}$.

$L_{0-\text{even}} = \{ \lambda, 1, 00, 11, 001, 010, 100, 111, \ldots \}$
$L_{0-\text{odd}} = \{ 0, 01, 10, 000, 011, 101, 110, \ldots \}$

Building an $M(RE_1(L))$ from $M(L)$:
- The construction below applies to any FSA.

$M(L_{0-\text{even}})$:

$M(RE_1(L_{0-\text{even}}))$:

$M(RE_1(L_{0-\text{odd}}))$:

(A merged with AB')
EXERCISE

1. Apply the above method to obtain an FSA for $RE_1(L_{has-11})$. Show all details of conversion of NFSA to FSA and the details of state-minimization.

2. How will you generalize the above construction for exactly $k \geq 2$ replacement errors? Illustrate the construction using $k = 2$ and $M_{0-div-2}$. (The generalization to ≥ 1 errors is also easy.)

3. Show that $RE_{L'}(L) = \{uv'w : v' \in L', |v| = |v'|, \text{ and } uvw \in L\}$ is regular if both L and L' are regular. Note that v may equal v'. (Hint: an NFSA for $RE_{L'}(L)$ will have three phases: for the part u (before the error), v', and w (after the error).)

4. Let $DE_1(L) = \{xy : xay \in L \text{ for some } x, a, \text{ and } y\}$ = the set of strings obtained by deletion of a symbol from strings in L. One can show that $DE_1(L)$ is regular by giving a method for the construction of a NFSA for $DE_1(L)$ from an FSA for L where the deletion operation is modeled by λ-transitions. Illustrate your method by using M_{has-11} as an example; show the NFSA after the introduction of λ-transitions (keep the states "before deletion" distinct from those "after deletion" similar to that for the case of $RE_1(L)$).

5. A similar result holds for the insertion error. State the result clearly.