HOMOMORPHISM: A SPECIAL FORM OF ENCODING

Homomorphism:

- A particular kind of mapping from languages to languages, which is based on a mapping of individual symbols.
- For a given mapping $h: \Sigma_1 \to \Sigma_2^*$ and a language $L_1 \subseteq \Sigma_1^*$,
- we extend $h: \Sigma_1^* \to \Sigma_2^*$ as follows:
 - For $x = a_1 a_2 \cdots a_k \in \Sigma_1^*$, $h(x) = h(a_1)h(a_2)\cdots h(a_k)$; $h\lambda) = \lambda$.
 - Then, $h(L_1) = \{h(x): x \in L_1\}$; h(x) is encoding of x.

Example. For $\Sigma_1 * = \{0, 1\}$, h(0) = a, h(1) = ab, and $L_1 = L_{has-11} = \{11, 011, 110, 111, 0011, \cdots\}$.

 $h(L_1) = \{abab, aabab, ababa, ababab, aaabab, \cdots\}.$

copyright@1995 7.2

TRANSFORMING AN FSA BY A HOMOMORRPHISM

- The label a_i on each transition is replaced by $h(a_i)$.
- If $h(a_i) = \lambda$, then it gives a λ -transition.
- h(M) maybe non-deterministic, when the transition-diagram is converted to an FSA by addition of new states.

If L_1 is regular, then $h(L_1)$ is regular for any h.

EXERCISE

- 1. Let $L_{verify-bin-mult-by-3} \subseteq (b_0+b_1+b_2+b_3)^*$ be the language where the bottom bit-string for an input x represents the multiplication by 3 of the top bit-string corresponding to x. First, obtain an FSA (with three states) for the reverse language of $L_{verify-bin-mult-by-3}$, and then obtain an FSA for $L_{verify-bin-mult-by-3}$ itself. Finally, find an homomorphism h such that $h(L_{verify-bin-mult-by-3}) = L(M_{3n})$; here, both languages contains λ . Apply the construction of h(M) to $M_{verify-bin-mult-by-3}$.
- 2. Is there a homomorphism h such that $h(L_{0-even}) = (0+1)^*$?

copyright@1995 7.3

INVERSE HOMOMORPHISM AND $h^{-1}(M)$

- For $z \in \Sigma_2^*$, $h^{-1}(z) = \{x: h(x) = z\}$; $h^{-1}(z)$ maybe \emptyset .
- For $L_2 \subseteq \Sigma_2^*$, $h^{-1}(L_2) = \{x : h(x) \in L_2\} = \bigcup_{z \in L_2} h^{-1}(z)$.

Part of Σ_2^* that has no strings of the form h(x)

Part of L_2 that has no strings of the form h(x)

Example. For $\Sigma_1 = \{a, b, c, d\}$, $\Sigma_2 = \{0, 1\}$, and h(a) = 0 = h(b), h(c) = 00, and h(d) = 11:

$$h^{-1}(\lambda) = \{\lambda\} \qquad h^{-1}(00) = \{aa, ab, ba, bb, c\}$$

$$h^{-1}(0) = \{a, b\} \qquad h^{-1}(01) = \emptyset = h^{-1}(10)$$

$$h^{-1}(1) = \emptyset \qquad h^{-1}(11) = \{d\}$$

$$h^{-1}(000) = \{aaa, \dots, bbb, ac, bc, ca, cb\}$$

 $h^{-1}(L_{has-11}) = \{d, ad, bd, cd, da, db, aad, abd, bad, \dots\}.$

- The NFSA $h^{-1}(M)$ has the same start and final states as M.
- It has a transition $\delta(q_i, a_j) = q_k$ if $h(a_j)$ takes q_i in M to q_k .

If L_2 is regular, then $h^{-1}(L_2)$ is regular for any h.

copyright@1995 7.4

EXERCISE

1. What is the relationship between L_2 and $h[h^{-1}(L_2)]$, and that between L_1 and $h^{-1}[h(L_1)]$?

2. Let r = (10+0) * 11(0+1) * be a regular expression for the regular language L and let h(0) = ab and h(1) = ba a homomorphism. What is a regular expression for h(L)? How about $h^{-1}(L')$ if L' is given by the regular expression r' = (ab + a) * bb(a + b) *?