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Abstract

Photographs taken of the same scene often look very dif-
ferent, due to various conditions such as the time of day,
the camera characteristics, and subsequent processing of
the image. Prime examples are the countless photographs
of urban centers taken throughout history. In this paper we
present an approach to match the appearance between pho-
tographs that removes effects such as different camera set-
tings, illumination, fading ink and paper discoloration over
time, and digitization artifacts. Global histogram matching
techniques are inadequate for appearance matching of com-
plex scenes where background, light, and shadow can vary
drastically, making correspondence a difficult problem. We
alleviate this correspondence problem by registering pho-
tographs to 3D models of the scene. In addition, by estimat-
ing the calendar date and time of day, we can additionally
remove the effect of drastic lighting and shadow differences
between the photographs. We present results for the case
of urban scenes, and show that our method allows for re-
alistic visualizations by blending information from multiple
photographs without color-matching artifacts.

1. Introduction
We are interested in color-matching images of urban

scenes for the purpose of visualizing them across space and
time. In the urban context, where there is a richness of his-
torical images, we are specifically interested in the visual-
ization of both large and small temporal changes in a city
from any chosen viewpoint. Examples include observing
the changes of the evolving cityscape over many decades,
and observing a cityscape changing from sunrise to sunset
on an arbitrary day.

Modeling and interactively visualizing large-scale 3D
urban scenes from images has been a very successful ap-
proach, as evidenced by commercial programs such as
Google Earth and Microsoft’s Virtual Earth, which speak to
the public imagination. The Facade project by Debevec et
al. [4] introduced view-dependent texture mapping for vir-
tual view synthesis, while Photo Tourism [14] successfully

Figure 1. We want to visualize urban scenes evolving over time,
given a collection of images taken by different cameras from dif-
ferent viewpoints at different times. In the above example scene,
not only have the images been captured under different conditions,
but the geometry has also changed over the years 1966 to 1978.

applied structure from motion to recover camera poses and
a 3D point cloud from 2D images correspondences. Most
recently, Schindler et al. [13] expanded the scope towards
modeling time-varying 3D structures from historical pho-
tographs in the 4D Cities project.

Unfortunately, visualizing an urban scene using images
taken with different cameras at different times of day, at
different times of the year, and in different historical eras
is challenging due to many photometric inconsistencies be-
tween images. Figure 1 shows an example of five such
images1, illustrating the difficulties. In traditional image-
based rendering, the scene is relatively well controlled and
the image collections are structured, which means the scene
is captured densely by a set of images that are uniformly
distributed around the scene in a relatively short period of
time [3, 18, 17, 6]. Most previous work assumes constant
scene brightness and small geometry changes over a short
time, which can hardly be applied to large-scale dynamic
scenes like cities over a hundred years.

1Historic images are from atlanta history center.



In order to visualize a scene at any time from an arbi-
trary viewpoint, we would like to recover the reflectance
properties (e.g. albedo) of structures in the scene. This
task is made difficult by changes in illumination, shadow-
ing, 3D structure, and camera color properties. When deal-
ing with a limited number of historical images captured by
dramatically different cameras at unknown dates and times,
it is especially hard to infer the photometry of the scene.
Our goal is to recover a uniformly-shaded, shadow-free and
photometrically-consistent scene albedo from all the im-
ages. To achieve our goal, the underlying geometry and
sun position for each image are needed to efficiently extract
and combine textures from images.

In this paper, to visualize a scene from an entire collec-
tion of images, we select one photo as the target color tone,
and perform color matching of all the other photos to this
target, using scene geometry to find corresponding facades
across multiple images for local color matching, and using
of an estimated sun position for each photo to correct for
the varying amounts of sunlight that fall on each facade.

We first address the color matching problem in section
2, where we find that global color matching methods are
insufficient. In our urban scene application, where sky ap-
pears in most of the outdoor images, global color mapping
over the entire image can not transfer the local object col-
ors consistently between images. Instead we perform local
color mapping by identifying facades of the same building
that are similarly lit in both images. Thus, we introduce
the geometry model in section 3, which we use in our local
color matching technique.

Based on the scene geometry, we propose a novel
method to estimate sun position from images with unknown
time stamps in section 4. Furthermore, we can estimate the
date and time of an image if we know the approximate ge-
ographical position of the scene in the image. And then
in section 5, with the estimated sun position for each im-
age, we can identify the shading and shadow information in
the images and generate a consistent set of object albedos.
This information also allows us to match object reflectances
between photos, which lets us perform better color transfer
between images. Finally in section 6, by adding the shading
and shadow information from a virtual sun, we can visualize
the scene from an arbitrary view at an arbitrary time.

2. Color Matching Using Color Statistics
We are interested in performing color matching between

images for the purpose of visualizing a 4D urban scene from
historical images. Color transfer is a widely used method
applied to images or videos to make the color tone of one
image look like the other. Some techniques [12] transfer
global color image statistics (mean and variance) between
two images, while others [15] segment the images into sev-
eral color clusters and then transfer color independently

(a) Source Image (b) Target Image

(c) Global Statistics (d) Local Statistics

Figure 2. First Row: Left: source image (through red filter), Right:
target image (no filter). Bottom row: Left: color matching based
on global color statistics, which does not transfer local color cor-
rectly. Right: color matching based on local color checker corre-
spondences.

across each corresponding region. A third approach [10],
used in the video conferencing domain, learns a color map-
ping function for human faces and then applies this map-
ping to the whole image. Some other approaches [2, 7, 16]
learn an consistent color from multiple images or multiple
parts of an image for 3D scenes. In addition, the problem of
learning a good color mapping function from a large image
database [9] has been studied outside the 4D scene visual-
ization context.

The simplest method of performing color transfer is his-
togram matching using global image statistics in each color
channel. This method matches the mean and variance of the
source image S to those of the target image D in each color
channel c. For each channel, let (mS,σS) denote the mean
and variance of the source image S and (mD,σD) for the tar-
get image D. The color value is normalize ranging from 0
to 1. The color transferring function f (x), which map the
pixel value x of the source image S towards target image D
in each channel c should satisfy these constraints:

f (mS) = f (mD)

f
′
(mS) = σD/σS (1)

The simplest such mapping is the linear mapping [12]:

f (x) =
σD

σS
(x−mS)+mD (2)

When portions of the scene are very dark or overly bright,
the linear mapping will lead to saturation at lower and upper
intensities. To avoid this, we fit a piecewise cubic spline
function that satisfy the constrains in 1. In addition, we
limit f (0) = 0, f (1) = 1 and constrain the derivatives of the



Figure 3. Facades of the same albedo that are lit in both images
share histograms of similar shape, the color statistics of which can
be used to form the color mapping function. Top image: Left:
facade in shadow, Right: facade lit. Bottom image: Left: facade
lit, Right: facade in shadow. Each histogram shows red, green, and
blue channel information (from top to bottom) for the individual
facade regions.

two ends in a way similarly to [10]:

f
′
(0) = 0.5∗ mD

mS
, f

′
(1) = 0.5∗ 1−mD

1−mS
(3)

However, using global image statistics cannot transfer
local color correctly when background and lighting vary
drastically between images. To illustrate the problem, we
captured a scene containing a color checker with a cam-
era using different color filters, and performed histogram
matching between the images. Figure 2 (lower left) shows
the results of performing global histogram matching for the
color checker datasets.

Instead of matching the color statistics of the whole im-
age, we use color matching with local correspondences to
transfer color between images. The mapping function in
equation 2 can be learned by using the mean/variance of
local correspondences (e.g. the color checker) in both im-
ages, and this mapping can then be applied to every pixel in
the whole image. For example, we use the color statistics

Figure 4. Time-Dependent Geometry. Scene geometry in both
1930 (left) and 1972 (right) is overlaid on two photos from their
recovered 3D viewpoints. Observe that the geometry changes dra-
matically over the years. Our illumination estimation and color
matching relies on such a time-varying scene description to accu-
rately model shadows and establish corresponding regions across
images.

of the checker in the image to obtain the mapping function
and then map the whole image, the results in the lower right
of Figure 2 shows that color matching by using local corre-
spondences works better.

In the context of outdoor urban scene photos, in addi-
tion to the geometry correspondence between images, we
should also take shading and shadow information into ac-
count because the color statistics of the same facade will
change dramatically from when it is being lit to when it is
in shadow. For example, figure 3 shows the histogram of
two facades of one building in two different images. The
correspondence of the same facade no longer describes the
overall color changes for most of the scene. Only the fa-
cades of the same albedo that are lit in both images indicate
the overall color statistics changes between the two images.

Based on this observation, we color match between im-
ages by using the lit facades that are present in both im-
ages. To building up the spatial correspondences between
facades in different images, we need the underlying geom-
etry which will be introduced in section 3. Given the geom-
etry model, we can further estimate the illumination in the
outdoor scene in section 4 and take the scene illumination
into account for color matching.

3. Time-Dependent Geometry and Motion

In order to perform color matching, we require scene
geometry for two reasons: (1) to estimate scene illumina-
tion from shadows cast by the geometry, and (2) to estab-
lish correspondences between image regions in two distinct
photographs of the same scene that are taken from differ-
ent viewpoints. Traditionally, a 3D model of the scene ge-
ometry could be used for both the illumination and corre-
spondence tasks (e.g. [8], which registers images to static
3D building models in order to remove haze). However,
because we are matching photographs across decades of
time during which new buildings are constructed and de-
molished, we must make use of time-varying 3D geometry
which we refer to as a 4D model.



Figure 5. For each photograph (left), a corresponding building
segmentation (right) is derived from time-varying geometry and
recovered camera motion. Color coding shows the identity of
each building and demonstrates how we establish corresponding
regions across the two images, despite being captured years apart
and from different viewpoints. Though not shown above, individ-
ual facade correspondences are established in the same manner.

We define the time-dependent geometry or 4D model S4D

as a set of 3D models with associated temporal information.
Each 3D model S3D is represented as a set of 3D vertices
{v j| j ∈ 1..N} and a set of polygons { fk|k ∈ 1..K} connect-
ing these vertices. We do not attempt to model dynami-
cally changing objects such as cars, or planes, etc. Instead,
we aim to represent large-scale discrete changes such as
buildings appearing and then disappearing at discrete times.
Hence, the 4D model S4D we propose is simply a set of 3D
models S3D

r , each having an associated time interval tr, i.e.,

S4D ∆= {(S3D
r , tr)|r ∈ 1..R}, with R the number of 3D models

in the scene.

We build the 4D model and recover camera motion M
from images I via structure from motion (SFM). We per-
form SFM with manually matched correspondences to re-
cover 3D positions of building corners which we then man-
ually connect into solid polygonal building models S3D

r . For
each photograph we know the year in which it was captured
Y , and for each building we know the years of construction
and demolition tr from historical records. Note that such 4D
models can also be constructed using the more automated
approach presented in [13].

As an example, in the context of an urban scene con-
sisting of buildings, our reconstructed 4D model is shown
in Figure 4. Using this 4D model, each individual building
and facade can be identified in each image. Figure 5 shows a
building-based segmentation of the images, accounting for
visibility and occlusion. The whole model (S4D,M,Y ) that
is obtained serves as a strong geometry proxy for sun direc-
tion estimation and virtual view visualization.

Figure 6. 3D cast shadows of buildings help identify the sun direc-
tion, where the sun is modeled as a distant light source. Different
sun positions will change the shadow areas dramatically, and we
will observe different projected 2D shadows in the image accord-
ingly.

4. Estimating Sun Direction from Images

To account for strong illumination changes in outdoor
urban scenes, we take an extra step and attempt to recover
the dominant lighting in the scene by estimating the direc-
tion of the sun. Most of our historic images do not have
exact time stamps, but the buildings do show shading con-
trast and shadows. We make use of the shadows cast by
buildings in an image to identify the sun direction when the
image was captured. Figure 6 illustrates the underlying ge-
ometry which lets us infer the light direction from the 2D
projection of the shadows in the 3D scene. Estimating the
sun direction from images is important since it is the most
dominant light source. Thus sun position provides consid-
erable information for image-based modeling and rendering
applications. Applications such as [19] use time-stamped
images collected intensively through out a day from a cal-
ibrated camera to compute the sun position and radiance
changes, used to recover the reflectance properties in the
scene. Similarly, Jacobs et. al [5] infer the geographical lo-
cation of a static camera by examining how image intensity
varies throughout the day. There are methods for estimating
general lighting sources from cast shadows such as [1].

Our goal is to find the best sun position given the image.
We model the sun as a parallel light source defined by ele-
vation θ and azimuth α (clockwise from north). In order for
the sun to properly interact with our geometry, it is impor-
tant that we align the local coordinate system in which we
reconstructed the 3D model with a global coordinate system
on the Earth’s surface; knowing the true physical location of
any three points in the scene produces the required rotation,
translation, and scaling from local to global coordinates.

The main idea is to use the geometry as a sundial: we
find cast shadows in the scene, and then search for the sun



(a) Image (b) Day/Time Probability

(c) Measured Shadows (d) Predicted Shadows

Figure 7. Illumination Estimation. For an image with unknown
time and date (a), we measure a shadow by thresholding the
ground region in the image (c) and search over times of day and
days of the year for a sun position that predicts the same shadow-
ing pattern. The shadow regions predicted by the estimated most
likely sun position are shown in (d). By comparing measured and
predicted shadows, we generate a probability distribution (b) over
days of the year (horizontal axis from left to right is Jan. 1 to Dec.
31) and times of day (vertical axis from top to bottom is 0 to 23
hours). We predict that the image is taken at Jan. 23, 10 am.

position that best predicts the cast shadows. The shadow
in the image can be measured using intensity thresholding
in regions of interests. For our initial experiments, an ap-
proximate ground shadow map is obtained by thresholding
the ground region in the image given the building segmen-
tation. One can further manually mark a region of interest
with better accuracy.

To bias the search towards likely sun positions, we do
not directly search the azimuth-elevation space but instead
search over calendar date and time of day. For a specific
geographical location, not all positions of the sun (θ ,α) are
possible due to the Earth’s movement relative to sun. The
date within a year and the time of day uniquely determine a
position of the sun with respect to a given location [11], so
we use data/time instead of angles.

For every date/time combination, we evaluate the corre-
sponding sun direction (θ ,α) by a simple sum of square dif-
ferences (SSD) criterion. We denote the predicted shadow
image as Ip and the real, measured shadow region in the
images as Im. Both Ip and Im are binary images where
the value at each pixel indicates whether the pixel is lit
(Ip(x,y) = 1) or shadowed (Ip(x,y) = 0) in the original pho-
tograph. Given the underlying scene geometry, for each sun
direction (θ ,α), we can easily predict the shadow map Ip.
Given the geometry and camera pose, each pixel in the im-

Figure 8. Top: two historic images with unknown dates and times.
Bottom: two photos with exif tags, both taken at around 3pm Nov.
9, 2003. We predict the time of day at 3pm and day of year with
most probability at two peaks (Nov. 6 and Feb. 9 of the year).

age can be identified as lit by sun or not by the following
ray-tracing procedure: first find a pixel’s 3D position by
backprojecting the pixel onto the aligned 3D geometry, and
then shoot a ray from this 3D point along the sun direction.
If the ray is not occluded by other geometry, then the pixel
is lit, otherwise it is in shadow. We then compute the sum
of squared differences (SSD) between pixels in Ip and Im.

Figure 7 shows the results for estimating sun directions
by sampling the date and time of day for each image. In
these experiments, we sampled once every 10 days out of
a possible 365, and we sample time once per hour in 24
hours. We observe that when the sampling over day and
time, the sun probability map is symmetric with respect to
June 22, because the summer and winter solstices divide
every year into two symmetric halves. Every day between
June 22 and December 22 will have a corresponding day in
the first half of the year when the sun takes the same appar-
ent path through the sky. So in the date and time estimation,
there is always an ambiguity between the two dates which
correspond to the same elevation θ and azimuth α of the
sun. As such, we can speed up the sun position estimation
process by evaluating only half a year’s sun positions.

We verify this method on photographs with ground-truth



dates and times as shown in Figure 8. For each image, given
the estimated sun position at a date and time, we can create
a shading/shadow map for the scene at that time. We show
how to make use of these results during color matching and
virtual view synthesis in the following two sections.

5. Color Matching with Geometry and Shading
Correspondences

As discussed in section 2, we perform color matching
between images using the statistics of lit facades that are
in correspondence across images. The spatial correspon-
dences of facades are identified using the underlying geom-
etry. The sun position allows us to identify lit facades and
to normalize the amounts of lighting falling on the facades
in each image. This helps us to extract the uniformly lit fa-
cades from each image that can be used as textures for scene
visualization.

As shown in Figure 9, for each photo, we first select the
facades that are lit by the sun. Then assuming the facade is
Lambertian, we can determine the object albedo by divid-
ing the per-pixel intensities on a given facade by the cosine
between the facade’s normal and the direction to the sun.
Then the mean and variance of the extracted shadow-free
and shading corrected textures will be the constraints in 1
to form the color mapping function.

We then perform color transfer between the images
based the color statistics of the extracted object albedos in
both images. The mapping results are shown in Figure 10
and 11. We can see that the facades are better matched be-
tween images when we use the local correspondences.

Figure 9. For each photograph (left), a corresponding building seg-
mentation with shading and shadow information is derived from
time-varying geometry, recovered camera motion and sun direc-
tions (middle). Shadow-free, shading corrected albedo texture are
extracted (right) for color matching.

(a) Source Image (b) Target Image

(c) Global Color Match (d) Local + Lit Color Match

Figure 10. When adjusting the color of the source image (a) to
match the target (b), our local, lit facade correspondence technique
(d) produces more accurate results than the traditional global color
matching method (c).

(a) Source Image (b) Target Image

(c) Global Color Match (d) Local + Lit Color Match

Figure 11. When adjusting the color of the source image (a) to
match the target (b), our local, lit facade correspondence technique
(d) produces more accurate results than the traditional global color
matching method (c).

6. Virtual View Synthesis at a Virtual Time and
Results

One of our main goals is to visualize the reconstructed
urban scene from different viewpoints and lighting condi-
tions. In order to construct high quality object albedos (tex-



tures) for the various building facades, we select the texture
detail for a given facade from the image that best shows
that particular building face. This means that different fa-
cades come from different photos, making it necessary to
match colors across these photos. To generate object albe-
dos for the entire collection of images, we select one photo
as the target color tone, and perform color matching of all
the other photos to this target. We then make use of the
known sun position for each photo to correct for the vary-
ing amounts of sunlight that fall on each facade, making a
Lambertian assumption about the facade reflectance. Note
that we only select facades that are lit by the sun in order
to generate facade albedos. Given the source images in Fig-
ure 1, Figure 12 (top) shows how poorly mismatched the
facades are if color matching and illumination are ignored.
Figure 12 (bottom) shows the color matched and illumina-
tion corrected versions of the facade albedos. Note that the
models in this scene are not lit by any virtual lights, so that
the image only shows the per-object albedos.

With the color matched and illumination corrected fa-
cade albedos, we can now create new views of the recon-
structed urban scene. These views may be from any angle,
with arbitrary illumination, and at any historic time that is
represented in our 4D urban model. To synthesize the scene
on a given date and time, we first compute the sun position
at that time and then use this information to correctly illu-
minate each object. To demonstrate this, we have created a
synthetic time-lapse video of an urban scene from sunrise to
sunset on Nov. 6, and snapshots from this video are showed
in Figure 13. Note that the path of the virtual sun is a close
match to the true sun path for that given date.

7. Conclusion
We have demonstrated an approach that uses estimation

of sun position and correspondences of facades across pho-
tographs to build and visualize 4D models of urban scenes.
The illumination estimation and facade correspondences are
vital for performing color matching across photographs that
were taken with un-calibrated cameras in different years or
decades. Our method allows us to create the facade tex-
tures for 4D models of these urban scenes, and this makes it
possible to visualize such a scene from any viewpoint, date
and time. Moreover, our tools also allow us to give time-of-
year estimates of undated photographs and to perform color
matching between dissimilar photos.

There are a few limitations to our approach that we plan
to explore in the future. First, we have largely ignored the
effects of sky illumination apart from the sun, and account-
ing for this should give improved results. Related to this,
our illumination correction makes the assumption that the
urban scene is directly lit by the sun, and as such does not
apply to photos taken on heavily clouded days. In addition,
our illumination estimation and albedo determination is not

applicable to non-Lambertian surfaces, such as buildings
that have glass-dominated facades. Working with scenes
that contain such non-Lambertian objects is a challenging
area for future research.

In conclusion, visualizing large-scale dynamic scenes
from historic images is an exciting but challenging task. For
a large-scale 3D scene with many occlusions, an accurate
estimation of geometry is already difficult due to the accu-
racy of image feature matching and SFM methods. When
extended to 4D, additional techniques are required to iden-
tify the changing structures and the time when each image
is taken. We have shown above that as the scene changes
through time, the photometry of the scene is even harder to
estimate due to the unknown camera photometry model and
illumination conditions. We have presented novel illumina-
tion estimation and facade-based color matching techniques
that form a valuable contribution toward solving the difficult
problem of 4D scene visualization.

Figure 12. Top: blindly combined textures. Bottom: shadow-free,
uniform-shaded, color matched object albedos.



Figure 13. Virtual views at two different times of day (Nov. 6).
Top: 10 am. Bottom: 5 pm. Note the changes in illumination and
shadowing due to sun position.
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