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ABSTRACT
The Domain Name System (DNS), which does not encrypt domain
names such as "bank.us" and "dentalcare.com", commonly accu-
rately reflects the specific network services. Therefore, DNS-based
behavioral analysis is extremely attractive for many applications
such as forensics investigation and online advertisement. Tradition-
ally, a user can be trivially and uniquely identified by the device’s
IP address if it is static (i.e., a desktop or a laptop). As more and
more wireless and mobile devices are deeply ingrained in our lives
and the dynamic IP address such as DHCP has been widely applied,
it becomes almost impossible to use one IP address to identify a
unique user. In this paper, we propose a new tracking method to
identify individual users by the way they query DNS regardless
of dynamic changing IP addresses and various types of devices.
The method is applicable based on two observations. First, even
though users may update IP addresses dynamically during different
sessions, their query patterns can be stable across these sessions.
Secondly, domain name look ups in sessions are different from
users to users according to their personal behaviors. Specifically,
we propose the constrained Dirichlet multinomial mixture (CDMM)
clustering model to cluster DNS queries of different sessions into
groups, each of which is considered being generated by a unique
user. Compared with traditional supervised and unsupervised mod-
els, our model does not acquire any labeled user information that
is very hard to obtain in real networks or the specification of the
number of clusters, and meanwhile enforces the maximum number
of session data in each cluster, which fits the DNS tracking problem
nicely. Experimental results on DNS queries collected from real net-
works demonstrate that our method accomplishes a high clustering
accuracy and outperforms the existing methods.

CCS CONCEPTS
• Security and privacy → Network security; • Computing
methodologies→ Cluster analysis;
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1 INTRODUCTION
The Domain Name System (DNS), which maps between domain
names and Internet Protocol (IP) addresses, is involved in almost all
network interactions between users and network services such as
web browsing, online shopping, instant messaging, and entertain-
ments. DNS, even with security extensions (i.e., DNSSEC), does not
encrypt domain names such as “yahoo.com”, “bank.us”, and “den-
talcare.com” that commonly accurately reflect the specific network
services offered by their corresponding IPs. As a result, analyzing
DNS traffic shows great promise to reveal users’ network activities,
behaviors, and patterns.

DNS-based behavioral analysis is extremely attractive for many
applications such as forensics investigation and online advertise-
ment. Government agencies such as NSA would like to identify
users with malicious activities given a collection of DNS query logs,
in case adversaries change IP addresses frequently to cover their
traces. Secondly, service providers such as Google and OpenDNS
may keep track of user visiting behaviors and target personalized
ads to each user. Meanwhile, significant privacy concerns are in-
troduced to individual users. If users are aware of the existence of
the types of privacy threats through DNS traffic, they can learn to
control the amount of information leakage by possibly using differ-
ent domain name servers or sharing online access with different
people in a group.

Despite its promise and privacy concerns, using DNS to infer
users’ information requires that DNS queries/responses can be
correctly attributed to their corresponding originators (i.e., network
devices who generate them). This is a trivial task when devices’
IP addresses are static (i.e., not changing over time) since we can
directly use an IP address to represent a network device (i.e., a
desktop or a laptop). Unfortunately, the dynamic IP address such as
DHCP has been widely adopted to mitigate the saturation of IPv4
address usage. Specifically, a network device is usually assigned
with different IP addresses across multiple days. This makes it
impossible to use one IP address to identify a unique network
device (or equivalently a user).

It is possible to identify individual users by the way they query
DNS regardless of dynamic changing IP addresses and various types
of devices based on two observations. First, even though users may
update IP addresses dynamically from time to time, their query
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patterns are likely to be consistent across these periods [8, 10]. As
a matter of fact, the online visiting behaviors of each individual
user are recurrent and consistent during a short continuous period
such as days or weeks. For example, users who have been highly
frequent in some services such as “healthcare.com” are likely to
remain frequent in the near future. Secondly, domain name look
ups in a period are unique from users to users according to their
personal behaviors. For example, some always prefer movies and
shopping while others focus on stock market news and banking.

A few methods [8, 10] have been proposed to generate DNS-
based fingerprints from DNS queries and use the extracted fin-
gerprints to match and attribute DNS queries to their originators.
Specifically, Herrmann et al. [8] employed top-visited domains as
fingerprints whereas Kim et al. [10] leveraged temporal behaviors
of domain queries (e.g., the order in which an arbitrary pair of
domains are visited). Both methods follow the supervised learning
paradigm, where a large set of DNS queries with labeled users are
required to generate fingerprints for each user. Unfortunately, it is
extremely challenging to acquire such pre-labeled dataset in real
networks, which fundamentally limit the practical application of
these types of research methods.

On the other hand, unsupervised learning such as clustering can
be used to cluster DNS queries of different sessions into groups, each
of which is considered being generated by a unique user. Specifically,
we assume that queries issued from the same IP in a session are
from the same user, where a session length is a continuous duration
such as a day. As illustrated in Figure 1, there are assumed three IP
addresses and each issues a set of DNS queries in four consecutive
sessions. The goal of clustering is to group DNS query sessions into
distinct groups, where sessions in the same group belong to the
same user. For example, we believe that sessions labeled in orange
belong to the same user since they frequently access particular types
of domains such as “Yahoo” and “Learning”. Another group linking
all sessions labeled in blue tends to be a user who likes particularly
shopping and online TV sites, and the last group labeled in green
belongs to a user who likes news from “sina.com” and social media
actives via “qq.com”.

Most existingwork such as Kmeans and constrained Kmeans [11]
has been proposed under this framework, where top-visited do-
mains are used as features for clustering user sessions. These meth-
ods need the number of clusters to bootstrap, which is ideally
the number of distinct users in the network. However, due to the
bursty nature of human activities, such a design fundamentally
undermines the applicability of this method since accurately esti-
mating the number of users is extremely challenging in practice,
if not entirely unrealistic. On the other hand, traditional Dirichlet
multinomial mixture (DMM) and its variations [2, 7, 22] frequently
used in Bayesian nonparametric modeling can automatically adjust
the number of clusters. However, each cluster may contain many
sessions generated from multiple users, which does not fit into the
scenario of DNS tracking since we need to identify pure clusters
and each corresponds to a particular user.

As a means towards systematically solving these challenges, we
propose the constrained Dirichlet multinomial mixture (CDMM)

clustering model, which is a generalization of the traditional Dirich-
let multinomial mixture clustering (DMM) model. The key inno-
vation of the proposed model is to sample a session’s cluster label
only from the qualified candidate clusters whose current sizes are
smaller than a threshold, which is the maximum possible number
of sessions a user can contribute during the observation period. For
example, if session length is defined as a day and all session data
is collected in a week, the threshold is 7 assuming each user only
contributes one session each day. The constrained model fits the
scenarios of DNS clustering better and can potentially improve the
clustering performance. To our knowledge, this is the first research
about imposing cluster size constraint on nonparametric Bayesian
clustering methods. To summarize, we have made the following
contributions:

• We have designed a new clustering model without requiring
the specification of the number of clusters and meanwhile
enforcing the maximum number of sessions in each cluster,
which fits the DNS tracking problem nicely.
• Experimental results on DNS queries collected from real
networks demonstrate that our method accomplishes a high
clustering accuracy and outperforms the existing methods.

2 RELATEDWORK
Active research has been conducted to infer users’ behaviors through
collected network traffic including DNS queries. The focuses of
existing methods generally fall into two categories including i)
attributing network events to individual network users and ii) in-
ferring users’ demographic information. Our method focuses on
attributing sessions of DNS queries to their corresponding users
(and thus falls into the first category).

A few methods have been proposed to attribute network events
to individual users [6, 8–11, 17]. Most of these methods [6, 8–10, 17]
first generate behavioral fingerprints for network users and then
use these fingerprints to attribute network events whose users are
unknown, which requires a significantly large set of events whose
users are pre-labeled. This fundamentally limits the practical us-
age of these systems. In contrast, our method does not require
any DNS sessions to be pre-labeled. In addition, methods includ-
ing [6, 9, 17] generate user fingerprints using data sources (e.g.,
encrypted wireless traffic, HTTP traffic, and search engine traffic)
that offer much finer-grained information compared to DNS traffic.
In comparison with our method, Herrmann et al. [8] and Kim et
al. [10] generate user fingerprints using the same data source (i.e.,
DNS queries). However, both methods follow the supervised learn-
ing paradigm, where a long period (multiple days) of DNS queries
need to be labelled for bootstrapping. The work closest to ours
is [11]. Similar to [11], our method uses clustering method to aggre-
gate DNS sessions into clusters, where each cluster is expected to
contain sessions generated by one user. In spite of such similarity,
the method in [11] mandates the number of clusters. Unfortunately,
it is extremely challenging, if not entirely impossible, to specify
the number of clusters in practice, fundamentally limiting the ap-
plication of [11]. In comparison, our method does not require the
specification of the number of clusters.

A substantial body of studies [1, 3–5, 12–16, 19–21, 24, 25] have
focused on inferring users’ application-level activity information
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Figure 1: Illustration: Linking user DNS query sessions regardless of changing IP addresses.

from a variety of network resources such as HTTP traffic, search
engine traffic, and encrypted skype traffic. For example, Chen et
al. [3] used HTTP connection patterns to infer users’ browsing ac-
tivities. In [20, 21], Wright et al. used machine learning methods to
reveal spoken language phases from encrypted VoIP traffic. Zhang
et al. [23] inferred users’ running applications from network-level
traffic patterns. Sun et al. [19] also recovered webpages visited by
users through encrypted network traffic by adopting carefully de-
signed traffic signatures. Krishnan et al. [12] revealed search engine
queries based on domain name correlations. Other types of online
activities have also been employed for demographic inference such
as friendship on Facebook [15, 24], search queries [1], location
check-ins [25], and social network interests [16]. Although these
methods have different objectives compared to ours, we expect our
method can complement these methods by associating a user with
more network events.

3 CONSTRAINED DMMMODEL
In this part, we introduce constrainedDirichlet multinomial mixture
clustering (CDMM) model in the context of linking user DNS query
activities regardless of dynamically updating IP addresses. A session
of a particular IP can be represented as a vector of dimension V ,
whereV is the size of unique domain names and each element of the
vector is the query frequency for each domain from the IP during a
day. Given a collection of session data S⃗ = {si }Ni=1, we would like
to find the corresponding cluster indicators Z⃗ = {zi }Ni=1, where
zi ∈ {1, 2, . . . ,K } and K is the total number of clusters, e.g., the
number of unique users. Since we do not know the actual number
of clusters, we can initialize K with a large number, and the clusters
will be learned automatically to fit to the data.

Specifically, our model CDMM is a probabilistic generative pro-
cess, in which each session is generated from a mixture of several
components where each component corresponds to a specific user.
Session vectors {si }Ni=1 are observed variables and the component
indicators Z⃗ = {zi }Ni=1 are latent variables. In addition, our model
extends DMM by adding a size constraint to each cluster, that is
the number of sessions in each cluster should be less thanmaxSize .
In the following sections, we present the details of the probabilistic
model, the generative process, and the collapsed Gibbs sampling

Table 1: NOTATIONS

Notation Description
α, β concentration parameter for Dir-Mult distribution
S⃗ all session vectors
Z⃗ cluster label vectors for corresponding sessions
si ith session vector from S⃗
zi cluster label for ith session
j jth domain name in dictionary
Φ⃗k multinomial parameters for cluster k over domain dictionary
θ⃗ multinomial parameters for the weights of each cluster
V the size of domain name dictionary
N the number of sessions
K the number of initialized clusters
mk the number of sessions in cluster k
Nk the occurrences of all domains in cluster k
N j
k the occurrence of jth domain in cluster k

ni the occurrence of all domains in session si
n ji the occurrence of jth domain in session si

maxSize maximum cluster size
maxI ter maximum number of iterations

method for parameter inference for CDMM. The math notations of
the model and parameters are listed in Table 1.

3.1 Generative Process
The CDMM model is parameterized by two Dirichlet multinomial
distributions and corresponding positive scaling parametersα and β .
The session vectors {si }Ni=1 are generated with symmetric Dirichlet
prior:

θ |α ∼ Dir (α |K , ...,α |K ), (1)
zi |θ ∼ Mult (θ1, ...,θk ) i = 1, ...,N , (2)
Φk |β ∼ Dir (β ) k = 1, ...,K , (3)

si |zi , {Φk }
K
k=1 ∼ Mult (si |Φzi ). (4)

The process first samples one out of K clusters, e.g., k , based on
the multinomial distributions with parameter θ , and then generates
session si according to the distribution of cluster k parameterized



by Φ. In order to enforce size constraint on each cluster, we need
to modify the above generative procedure as follows:
• For the current session, constructing the candidate cluster
(user) label list, where all the candidate clusters have fewer
thanmaxSize DNS queries.
• Sampling the cluster label from the candidate list as in Equa-
tion (2).
• Choosing the corresponding multinomial distribution of a
candidate cluster from Dirichlet distribution parameterized
by β .
• Generating DNS queries for the session based on the chosen
cluster label and multinomial distribution parameterized by
Φzi as defined in Equation (4).

More intuitively, we can use the Chinese Restaurant process
(CRP) to illustrate the CDMM model where sessions are customers
and users are represented as tables in a Chinese restaurant. Assume
there are K fixed tables and N customers. At the very beginning,
each user is randomly assigned to a table. If they are not satisfied
with the initial assignment, they can change tables dynamically. We
assume this reallocating process is guided by the following rules.
Firstly, users are more willing to join a table with more people in
order to feel comfortable, which means rich clusters gets richer. In
addition, users prefer to sit with their friends, that is users like to
join a table where they share more similar features with existing
table users. Most importantly, different from traditional CRP, we
have a size constraint for each table. If the table is full, users has to
choose a second preferable table instead.

3.2 Parameter Learning
Given sessions and their initial label assignments, we employ the
Gibbs sampling method to infer the hidden cluster for each session.
The key concept of Gibbs sampling is to sample the cluster label
using the conditional posterior probability p (zi |Z⃗¬i , S⃗ ) as shown
in Equation (5):

p (zi = k |Z⃗¬i , S⃗,α , β ) ∝ p (zi = k |Z⃗¬i ,α ) · p (si |zi = k, Z⃗¬i , S⃗¬i , β ),
(5)

where Z⃗¬i is the user assignments for all sessions except for session
si , The intuition of this formula is that removing the effect of session
si from the DNS session corpus and using the rest information to
infer the user label for session si .

The first term on the right side of Equation (5) is the component
weight measured by the number of data points in cluster k . The
more sessions a user already have, the more likely session si is
assigned to this user. Our model also imposes size constraint for
each cluster in case the cluster becomes increasingly large. The
concrete calculation for the component weight is shown in Equation
(6):

p (zi = k |Z⃗¬i ,α ) =

∫
θ
p (zi |θ )p (θ |α ) =

mk,¬i + α

N − 1 + Kα
. (6)

The second term of Equation (6) in the middle is the likelihood
measuring how likely the current cluster generates session si . The
more features session si and the existing sessions of the cluster
share, the more likely si will fall into this cluster. In CDMM, we
adopt multinomial distribution to model each cluster, which can
tackle the sparsity problem and ismore suitable to our actual session

clustering circumstance. And the corresponding formula is shown
in Equation (7):

p (si |zi = k, Z⃗¬i , S⃗¬i , β ) ∝

∏
j ∈si
∏n ji

l=1 (N
j
k,¬i + β + l − 1)∏ni

t=1 (Nk,¬i +V β + t − 1)
, (7)

where N j
k,¬i and Nk,¬i are the cluster-level statistics, with N

j
k,¬i

as the total occurrences of domain j in cluster k by removing the
effect of session si , and Nk,¬i as the number of sessions in cluster
k after removing the effect of session si . In addition, ni is the total
occurrences of all domains in session si , and n

j
i is the occurrences

of domain j in session si . Since not all domains occur in a specific
session si , we only take into account the domain names that appear
in the session, that is j ∈ si , when calculating the probability.

Combining Equations (6) and (7) into Equation (5), we can rewrite
the full posterior distribution as follows:

p (zi = k |Z⃗¬i , S⃗ ) ∝
mk,¬i + α

N − 1 + Kα

∏
j ∈si
∏n ji

l=1 (N
j
k,¬i + β + l − 1)∏ni

t=1 (Nk,¬i +V β + t − 1)
.

(8)
Gibbs samplingworks in a similar way as Expectation-Maximization

(EM). For each iteration, after determining the cluster label zi for
a session si , e.g., zi = k , we need to update the parameters of the
kth corresponding cluster. Since we assume each cluster follows a
multinomial distribution, the updating rule for each cluster in each
iteration is shown in Equation (9):

p (Φ⃗k |S⃗, Z⃗ , β ) = Dir (Φ⃗k |n⃗k + β ) and Φk, j =
N
j
k + β∑V

j=1 N
j
k +V β

,

(9)
where n⃗k = [N 1

k ,N
2
k , . . . ,N

V
k ] and each entry N

j
k is the occurring

number of the jth query in the kth cluster. Different clusters have
different weights on the query frequency of domains in the dic-
tionary, meaning users have their own preference when browsing
the Internet. The discriminative distribution information can help
group the sessions into clusters.

3.3 Hyper-parameters
In CDMM, there are two hyper-parameters, α and β , which balance
between the priority knowledge and the observed data. The prior
knowledge can be treated as pseudo experimental results before
we observe the real data.

The hyper-parameter α controls the component weight. We give
α a large value when we are confident about our prior knowledge
compared with the real data. A large α means that each cluster
has equal probability to generate each session data at the very
beginning and these probability needs more observed data to be
adjusted. In a similar way, β controls the multinomial distribution
of domain name occurrences for each cluster. A small β means that
each user has equal preference over all domains, which however
can be easily updated by the observed data. In our practice, α with
smaller values such as 0.001 and β with smaller values such as 0.05
usually work fine.



3.4 Algorithm
In this part, we list the pseudo code of constrained Gibbs sampling
for our CDMM model, as shown in Algorithm 1. It follows the
common Gibbs sampling framework: 1) scan session vector iter-
atively and remove the effect of the current session; 2) construct
the qualified cluster list for the session; 3) using rest information
to calculate the posterior probability of a session belonging to each
qualified cluster and sample cluster label; 4) update multinomial
distribution based on the selected cluster label.

Compared with the traditional DMMmodel, the most significant
modification of CDMM is Step 3. Before sampling the cluster label
for session si , we need to construct the qualified cluster list first.
The list is dynamic during each iteration and contains clusters who
have fewer thanmaxSize sessions currently.We only sample cluster
label from the qualified list because some clusters are already full
and cannot take any more sessions.

3.5 Complexity Analysis
• Space complexity:
Following Algorithm 1, we need to store all session vectors
S⃗ , which essentially is a session-domain matrix of size N ·
V , where N is the number of sessions and V is the size of
domain name dictionary. Compared with Dirichlet Process
Mixture model, we predefine a fixed number of maximum
clusters K . Therefore, for each iteration, we need to store
the information about Z⃗ with size N ,mk and Nk with size
K , and N

j
k with size K · V . Since the number of clusters is

always smaller than the number of data points, the total
space complexity of CDMM is O (N · V ). In practice, the
matrix will be really sparse, thus the actual storage is much
less than O (N ·V ).
• Time complexity: Themost time-consuming part of CDMM
is the collapsed Gibbs sampling procedure. Given the num-
ber of iterations and session-Vocabulary matrix, Gibbs sam-
pling alternatively samples user label for each session from
the conditional posterior distribution computed with other
user labels fixed. For one session, we need to compute K

probabilities and each represents the likelihood that the kth
cluster generates the session. To compute this probability,
we need to go through every domain occurrence in each
session. We assume the average number of domains in a
session is L. Then givenmaxIter , the complexity of CDMM
is O (maxIter · N · K · L).

4 EXPERIMENTS
To evaluate the performance of our proposed CDMM model in
clustering DNS sessions, we carry out experiments on real-world
dataset and compare results with several state-of-the-art clustering
techniques.

4.1 Dataset
Our DNS dataset contains 1M domain queries covering totally
89,009 distinct domain names over 7 days from September 23 to Sep-
tember 31 in 2013. The dataset was collected at a Chinese university

Algorithm 1: Constrained Dirichlet Multinomial Mixture
Model (CDMM)
Input:
• Sessions in the DNS query logs, S⃗
• Hyper-parameter, α and β
• Estimated initial number of clusters, K
• Maximal size of each cluster size,maxSize

Output: Cluster label vector for each session, Z⃗
begin

Step 1: Setmk , Nk and N
j
k to zero for each cluster k

Step 2: Randomly assign cluster label for each session and
update cluster information based on assignments
for each session i ∈ [1,N ]: do

zi ← k ∼ Random[1,K]
mk ←mk + 1 and Nk ← Nk + ni
for domain j ∈ si do

N
j
k ← N

j
k + n

j
i

end
end
Step 3: Constrained Collapsed Gibbs Sampling
for iter← 1 to maxIter do

for each session i ∈ [1 : N ] do
1⃝save cluster label for the current session: k = zi
2⃝remove session effect
mk ←mk − 1;Nk ← Nk − ni for each domain
name j ∈ si do

N
j
k ← N

j
k − n

j
i

end
3⃝construct qualified cluster list with fewer than
maxSize sessions
4⃝sample a cluster k for si from the candidate
cluster list by Equation (8):
zi ← k ∼ p (zi = k |Z⃗¬i, S⃗ )
5⃝recover this session’s effect
mk ←mk + 1 and Nk ← Nk + ni
for each domain name j ∈ si do

N i
k ← N i

k + n
j
i

end
end

end
end

where all DNS queries are originated from the student housing net-
work. The log keeps the records of a large number of students with
different querying behaviors. For example, each student accesses
domains of different types both in their studying and leisure times.
Each student is uniquely assigned a static IP address that connects
a device in the dorm to the broadband network, so the dataset
contains the ground truth that maps between user IP address and
DNS queries. The labeled information allows us to evaluate the
effectiveness of our proposed clustering algorithms.

We preprocess the raw DNS query log and format it in a matrix
as described in the previous section. Empirical studies show that



a session time can be a fixed duration of 24 hours since a large
number of users do not change IP addresses during a day. The data
is sparse. The number of queries per user follows a long tail dis-
tribution, where 80% users only query fewer than 50 domains and
20%users query more than 50 domains. Similarly, the number of
sessions per domain also follows a long tail distribution. To over-
come data sparsity, following the approach in [8], we select the
most frequent 200 domains with at least 100 queries from different
sessions as the dictionary for feature representation, which largely
reduces the dimension without dramatically hurting clustering per-
formance. After feature selection, we construct our testing subset
of 4K sessions from 478 distinct users with different activity levels.

4.2 Evaluation Metrics
We evaluate the results against the traditional gold standard using
several classic metrics, including adjusted Rand Index (ARI) [18],
Normalized Mutual Information (NMI), homogeneity, completeness,
and V-score. In addition, we would like to evaluate the clustering
performance in the context of tracking individual users with respect
to changes of user activity levels, so we also adopt the Traceability
metric. We give more information about these metrics below.

ARI: Rand Index (RI) measures the cluster similarity by counting
pairs that are assigned correctly or wrong. ARI is an “adjusted for
chance” measure which is independent of the number of clusters.
We use ARI to compare the clustering performance.

NMI: Mutual Information (MI) measures the information shared
between two clusters. The more information they share, the more
efficient the clustering algorithm is. NMI is the normalized mutual
information by scaling the MI results between 0 and 1, where 0
means sharing no information and 1 means perfect correlation.
Given the true labels and the cluster labels, NMI is a symmetric
indicator to measure the clustering results.

Homogeneity, Completeness, andV-score: Homogeneitymea-
sures the purity of the cluster. If most data points in the cluster
have the same label, the homogeneity of this cluster will be high.
Otherwise, the cluster is not pure and will have a lower homo-
geneity. Given ground truth, high completeness means more data
points with the same true label fall into the same cluster. V-score
measures how well the clustering result satisfies homogeneity and
completeness.

Traceability: Adopting the same notation from [11], we define
that a user is completely traceable, if all his or her sessions across
different days are assigned to a single cluster. It is possible that the
session data of completely traceable users are grouped together with
other users’ session data and the clusters are not necessarily pure.
Thus we define a user is perfectly traceable if all his or her sessions
are assigned to a single cluster and the cluster is pure without
other users’ sessions. We would like to measure the percentage of
completely linked users and perfectly linked users, respectively.

4.3 Baselines for Comparison
• Kmeans: Kmeans is one of the most popular clustering algo-
rithms. Kmeans iteratively clustersN samples intoK clusters
by assigning samples to the nearest centroid and recom-
putes the centroid for all clusters. Kmeans quits its iteration
when reaching the maximum number of iterations or no

cluster reassignment for samples occurs. The drawback of
Kmeans clustering is that the number of clusters should be
pre-defined. Moreover, measuring similarity by Euclidean
distance is not quite appropriate for some clustering prob-
lems. And initial centroid will affect the final clustering per-
formance.
• Constrained Kmeans (c-Kmeans) [11]: c-Kmeans is an
extension to the existing K-means with an additional con-
straint that the number of points in each cluster should be
smaller than a certain threshold. The core idea of this method
is to add a reassignment step after the traditional Kmeans
method. Given the cluster size constraint, after recomput-
ing the centroid for each cluster, c-Kmeans sorts the data
points within a cluster by distance from the centroid. Based
on the distance, c-Kmeans removes data points far from the
centroid until this cluster satisfies the size constraint. Each
removed point will be assigned to the closest cluster with
size smaller than the constraint. The method fits our scenario
of DNS clustering. C-Kmeans is also sensitive to initializa-
tion methods. Moreover, C-Kmeans requires the number of
clusters to be pre-defined.
• Dirichlet Multinomial Mixture Model (DMM) [22]: In
contrast to K-means methods, DMM can dynamically cluster
data to k groups where the exact k does not need to be pre-
defined. DMM is a generative model and its core idea is to
sample the cluster label based on the conditional posterior
distribution. The posterior probability of a sample assigning
to a cluster is determined by cluster size and the similarity
between the sample and the existing cluster samples. The
method fits our scenario of DNS clustering, where the num-
ber of users changes every day. However, this generative
process will make big clusters get bigger and this trend will
violate the cluster size constraint.
• Constrained Dirichlet Multinomial Mixture Model
(CDMM): With the similar relationship between Kmeans
and C-Kmeans, our CDMM model is an extension to DMM
with an additional constraint that the number of points in
each cluster should be smaller than a certain threshold. The
core change of this method to DMM is the cluster sample
step. In this step, we do not sample the label from all clusters.
We only sample the cluster label from the qualified user list
based on the posterior distribution.

4.4 Clustering Results
4.4.1 Clustering performance using classic metrics: We

first briefly summarize the experimental results and discuss the
effects of the maximum number of clusters and the initialization
approaches on the clustering accuracy.

To compare the model robustness with respect to the cluster size,
we conduct two types of experiments, where the first assumes that
the number of users is very close to the ground truth size, and the
second assumes that the number of users is 200% of the ground
truth to simulate the burstiness in complex online systems.

For each experiment, we further discuss the performance of all
four clustering models with two different types of initialization
strategies: random initialization (R) and smart initialization (S),



Table 2: Evaluate the clustering performance of eight methods using five classic metrics. Suffix “R” indicates random initialization and suffix
“S” indicates smart initialization.

clusterNum Metrics Methods
Kmeans-R CKmeans-R DMM-R CDMM-R Kmeans-S CKmeans-S DMM-S CDMM-S

True
User Number

ARI 0.3024 0.4802 0.2051 0.5021 0.3812 0.6444 0.2744 0.7539
NMI 0.4381 0.5564 0.4089 0.5610 0.5206 0.6909 0.5099 0.7730

HOMO 0.8192 0.8719 0.7319 0.8654 0.8517 0.9113 0.8063 0.9320
Complete 0.8549 0.8791 0.8888 0.8885 0.8773 0.9171 0.9134 0.9499
V-Score 0.8367 0.8755 0.8028 0.8768 0.8643 0.9142 0.8565 0.9409

200% True
User Number

ARI 0.3393 0.4591 0.2197 0.5082 0.3793 0.5071 0.2802 0.7332
NMI 0.3931 0.4642 0.4441 0.5655 0.4305 0.4993 0.5267 0.7520

HOMO 0.9075 0.9302 0.7490 0.8670 0.9138 0.9417 0.8111 0.9248
Complete 0.8418 0.8607 0.9076 0.8898 0.8510 0.8700 0.9231 0.9463
V-Score 0.8734 0.8941 0.8207 0.8782 0.8813 0.9044 0.8635 0.9354

which configure the initial k cluster centroids in different ways. In
random initialization, the centroids of each cluster are initialized
randomly from one of the session data, which fits the scenario
where the algorithm is deployed on a newDNS service with no prior
knowledge. In smart initialization, we assume that the ground truth
labels are available from k unique users. Specifically, for Kmeans
and C-Kmeans, using smart initialization, centroids are initialized
as session vectors from k different users as in [8]. For DMM and
CDMM, using smart initialization, sessions of the same users are
assigned to the same cluster with higher probability, which is an
extremely ideal case. After initialization, clustering models will
re-assign each point to clusters iteratively to fit to data until the
resulting clustering assignments will not change any more.

Table 2 shows the clustering results of Kmeans, C-Kmeans, DMM,
and CDMMwith both random initialization and smart initialization
strategies, a total of 8 methods.

First of all, by comparing two batch experiments, model CDMM-
R/S and DMM-R/S are stable even if the maximum number of clus-
ters is very different from the ground truth size, e.g., twice of the
ground truth. This is because DMM and CDMM can adjust the
number of clusters dynamically to fit the data and the results are
less sensitive to the initialized size of clusters. However, Kmeans
and C-Kmeans are more sensitive to the initialized size of clusters.
For example, the NMI score for Kmeans-R drops from 0.4381 to
0.3931, the NMI score for Kmeans-S drops from 0.5206 to 0.4305,
the ARI score for CKmeans-R drops from 0.4802 to 0.4591, and the
ARI score of CKmeans-S drops from 0.6444 to 0.5071 when the
cluster size doubles.

Furthermore, the performance of clustering methodologies heav-
ily depends on the initial cluster assignments. The results of all four
models with smart initialization “-S” are much better than those
with random initialization “-R”. This indicates that clustering with
prior knowledge such as user session patterns from previous days
or weeks can largely increase the accuracy.

Finally, our CDMM outperforms all other models consistently
with both types of initialization. Specifically, from Table 2, we can
see that DMM-R/S have lower metric scores except for homogeneity.
From the definition of homogeneity, clusters with large sizes are
likely to generate high homogeneity score. However, all session
data with different ground truth (e.g., user labels) may fall in the
same cluster thus all other metrics are extremely low. Compared

with the traditional DMM, ourModel CDMM-R/S add the constraint
to cluster size, which results in smaller and purer clusters. Similar
conclusion can be drawn when comparing C-Kmeans and Kmeans.
In summary, due to both advantages of dynamic allocation and size
constraints, CDMM achieves better performance compared with
other methods.

4.4.2 Clustering performance in tracking DNS users: We
would like to measure the traceability of users with respect to
different activity levels. Specifically, we divide users into two groups:
active users who appear more than five days in a week, and less
active users otherwise. Figure 2 compares the clustering results
of all eight models measured by traceability in different groups.
As long as all the sessions of a user is in a cluster, this user is
completely traceable. A user is perfectly traceable if all the sessions
are in one cluster and the cluster does not have other users’ sessions.
By definition, perfect traceable rate (displayed on right) is always
lower than complete traceable rate (displayed on left).

Generally, the accuracy in terms of traceability is much higher for
active users than for less active users. For example, the complete
traceability using CDMM-R increases from 26% to 36%, and the
perfect traceability increases from 10% to 19% when users are more
active.

Further, our CDMM model also gets the best results compared
with other models in terms of traceable rate. If users are active
on more than 5 days in a week, it is likely that the algorithm can
completely identify the users at the rate of 19% with random ini-
tialization and 49% with smart initialization.

In summary, our model is very effective to trace active users.
From the user perspective, in case to avoid these types of privacy
threats through DNS traffic, they may try different domain name
servers thus to spread activities in each domain server, or share
online access with different people in a group to disguise their
unique query patterns.

5 CONCLUSIONS
DNS-based behavioral analysis is extremely attractive for many ap-
plications such as forensics investigation and online advertisement.
In this paper, we have proposed the constrained Dirichlet multi-
nomial mixture (CDMM) clustering model without requiring the
specification of the number of clusters and meanwhile enforcing
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Figure 2: Clustering performance of eight methods measured by complete linkable rate (left) and perfect linkable rate (right)
with respect to different user activity groups in the observation period.

the maximum number of data in each cluster, which fits the DNS
tracking problems nicely. We have performed extensive evaluation
based on DNS queries collected from real networks. Experimental
results have demonstrated that our method accomplishes a high
clustering accuracy and outperforms the existing methods.
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