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Abstract

Recent approaches to collaborative filtering have concentrated on estimating an
algebraic or statistical model, and using the model for predicting missing ratings.
In this paper we observe that different models have relative advantages in differ-
ent regions of the input space. This motivates our approach of using stagewise
linear combinations of collaborative filtering algorithms, with non-constant com-
bination coefficients based on kernel smoothing. The resulting stagewise model
is computationally scalable and outperforms a wide selection of state-of-the-art
collaborative filtering algorithms.

1 Introduction

Recent approaches to collaborative filtering (CF) have concentrated on estimating an algebraic or
statistical model, and using the model for predicting the missing rating of user u on item i. We
denote CF methods as f(u, i), and the family of potential CF methods as F .

Ensemble methods, which combine multiple models from F into a “meta-model”, have been a
significant research direction in classification and regression. Linear combinations of K models

F (K)(x) =

K∑
k=1

αkfk(x) (1)

where α1, . . . αK ∈ R and f1, . . . , fK ∈ F , such as boosting or stagewise linear regression and
stagewise logistic regression, enjoy a significant performance boost over the single top-performing
model. This is not surprising since (1) includes as a degenerate case each of the models f ∈ F by
itself. Stagewise models are greedy incremental models of the form

(αk, fk) = arg min
αk∈R,fk∈F

Risk(F (k−1) + αkfk), k = 1, . . . ,K, (2)

where the parameters of F (K) are estimated one by one without modifying previously selected pa-
rameters). Stagewise models have two important benefits: (a) a significant resistance to overfitting,
and (b) computational scalability to large data and high K.

It is somewhat surprising that ensemble methods have had relatively little success in the collaborative
filtering literature. Generally speaking, ensemble or combination methods have shown only a minor
improvement over the top-performing CF methods. The cases where ensemble methods did show
an improvement (for example the Netflix prize winner [10] and runner up), relied heavily on manual
feature engineering, manual parameter setting, and other tinkering.

This paper follows up on an experimental discovery: different recommendation systems perform
better than others for some users and items but not for others. In other words, the relative strengths
of two distinct CF models f1(u, i), f2(u, i) ∈ F depend on the user u and the item i whose rating
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Figure 1: Test set loss (mean absolute error) of two simple algorithms (user average and item aver-
age) on items with different number of ratings.

is being predicted. One example of two such systems appears in Figure 1 that graphs the test-set
loss of two recommendation rules (user average and item average) as a function of the number of
available ratings for the recommended item i. The two recommendation rules outperform each other,
depending on whether the item in question has few or many ratings in the training data. We conclude
from this graph and other comprehensive experiments [14] that algorithms that are inferior in some
circumstances may be superior in other circumstances.

The inescapable conclusion is that the weights αk in the combination should be functions of u and
i rather than constants

F (K)(u, i) =

K∑
k=1

αk(u, i)fk(u, i) (3)

where αk(u, i) ∈ R and fk ∈ F for k = 1, . . . ,K. In this paper we explore the use of such models
for collaborative filtering, where the weight functions αk(u, i) are learned from. A major part of our
contribution is a feature induction strategy to identify feature functions expressing useful locality
information. Our experimental study shows that the proposed method outperforms a wide variety of
state-of-the-art and traditional methods, and also outperforms other CF ensemble methods.

2 Related Work

Many memory-based CF methods predict the rating of items based on the similarity of the test user
and the training users [21, 3, 6]. Similarity measures include Pearson correlation [21] and Vector
cosine similarity [3, 6]. Other memory-based CF methods includes item-based CF [25] and a non-
parametric probabilistic model based on ranking preference similarities [28].

Model-based CF includes user and item clustering [3, 29, 32], Bayesian networks [3], dependence
network [5] and probabilistic latent variable models [19, 17, 33]. Slope-one [16] achieved fast
and reasonably accurate prediction. The state-of-the-art methods including the Netflix competition
winner are based on matrix factorization. The factorized matrix can be used to fill out the unobserved
entries of the user-rating matrix in a way similar to latent factor analysis [20, 12, 9, 13, 24, 23, 11].

Some recent work suggested that combining different CF models may improve the prediction ac-
curacy. Specifically, a memory-based method linearly combined with a latent factor method [1, 8]
retains the advantages of both models. Ensembles of maximum margin matrix factorizations were
explored to improve the result of a single MMMF model in [4]. A mixture of experts model is
proposed in [27] to linearly combine the prediction results of more than two models. In many cases,
there is significant manual intervention such as setting the combination weights manually.

Feature-weighted linear stacking [26] is the ensemble method most closely related to our approach.
The primary difference is the manual selection of features in [26] as opposed to automatic induction
of local features in our paper that leads to a significant improvement in prediction quality. Model
combination based on locality has been proposed in other machine learning topics, such as classifi-
cation [31, 18] or sensitivity estimation [2].
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3 Combination of CF Methods with Non-Constant Weights

Recalling the linear combination (3) from Section 1, we define non-constant combination weights
αk(u, i) that are functions of the user and item that are being predicted. We propose the following
algebraic form

αk(u, i) = βk hk(u, i), βk ∈ R, hk ∈ H (4)

where βk is a parameter and hk is a function selected from a familyH of candidate feature functions.

The combination (3) with non-constant weights (4) enables some CF methods fk to be emphasized
for some user-item combinations through an appropriate selection of the βk parameters. We assume
thatH contains the constant function, capturing the constant-weight combination within our model.

Substituting (4) into (3) we get

F (K)(u, i) =

K∑
k=1

βk hk(u, i) fk(u, i), βk ∈ R, hk ∈ H, fk ∈ F . (5)

Note that since hk and fk are selected from the sets of CF methods and feature functions respectively,
we may have fj = fl or hj = hl for j 6= l. This is similar to boosting and other stagewise algorithms
where one feature or base learner may be chosen multiple times, effectively updating its associate
feature functions and parameters. The total weight function associated with a particular f ∈ F is∑
k:fk=f βkhk(u, i).

A simple way to fit β = (β1, . . . , βK) is least squares

β∗ = arg min
β∈C

∑
u,i

(
F (K)(u, i)−Ru,i

)2

, (6)

where Ru,i denotes the rating of user u on item i in the training data and the summation ranges over
all ratings in the training set. A variation of (6), where β is constrained such that αk(u, i) ≥ 0, and∑K
k=1 αk(u, i) = 1 endows F with the following probabilistic interpretation

F (u, i) = Ep {f |u, i} , (7)

where f represents a random draw from F , with probabilities p(f |u, i) proportional to∑
k:fk=f βkhk(u, i). In contrast to standard combination models with fixed weights, (7) forms a

conditional expectation, rather than an expectation.

4 Inducing Local Features

In contrast to [26] that manually defined 25 features, we induce the features hk from data. The
features hk(u, i) should emphasize users u and items i that are likely to lead to variations in the
relative strength of the f1, . . . , fK . We consider below two issues: (i) defining the setH of candidate
features, and (ii) a strategy for selecting features fromH to add to the combination F .

4.1 Candidate Feature FamiliesH

We denote the sets of users and items by U and I respectively, and the domain of f ∈ F and h ∈ H
as Ω = U × I . The set R ⊂ Ω is the set of user-item pairs present in the training set, and the set of
user-item pairs that are being predicted is ω ∈ Ω \R.

We consider the following three unimodal functions on Ω, parameterized by a location parameter or
mode ω∗ = (u∗, i∗) ∈ Ω and a bandwidth h > 0

K
(1)
h,(u∗,i∗)(u, i) ∝

(
1− d(u∗, u)

h

)
I (d(u∗, u) ≤ h) ,

K
(2)
h,(u∗,i∗)(u, i) ∝

(
1− d(i∗, i)

h

)
I (d(i∗, i) ≤ h) ,

K
(3)
h,(u∗,i∗)(u, i) ∝

(
1− d(u∗, u)

h

)
I (d(u∗, u) ≤ h) ·

(
1− d(i∗, i)

h

)
I (d(i∗, i) ≤ h) , (8)
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where I(A) = 1 if A holds and 0 otherwise. The first function is unimodal in u, centered around
u∗, and constant in i. The second function is unimodal in i, centered around i∗, and constant in u.
The third is unimodal in u, i and centered around (u∗, i∗).

There are several possible choices for the distance functions in (8) between users and between items.
For simplicity, we use in our experiments the angular distance

d(x, y) = arc cos
(
〈x, y〉
‖x‖ · ‖y‖

)
(9)

where the inner products above are computed based on the user-item rating matrix expressing the
training set (ignoring entries not present in both arguments).

The functions (8) are the discrete analogs of the triangular kernel Kh(x) = h−1(1 − |x −
x∗|/h)I(|x − x∗| ≤ h) used in non-parametric kernel smoothing [30]. Their values decay lin-
early with the distance from their mode (truncated at zero), and feature a bandwidth parameter h,
controlling the rate of decay. As h increases the support size |{ω ∈ Ω : K(ω) > 0}| increases and
maxω∈ΩK(ω) decreases.

The unimodal feature functions (8) capture locality in the Ω space by measuring proximity to a
mode, representing a user u∗, an item i∗, or a user-item pair. We define the family of candidate
features H as all possible additive mixtures or max-mixtures of the functions (8), parameterized by
a set of multiple modes ω∗ = {ω∗1 , . . . , ω∗r}

Kω∗(u, i) ∝
r∑
j=1

Kω∗
j
(u, i) (10)

Kω∗(u, i) ∝ max
j=1,...,r

Kω∗
j
(u, i). (11)

Using this definition, features functions hk(u, i) ∈ H are able to express a wide variety of locality
information involving multiple potential modes.

We discuss next the strategy for identifying useful features fromH and adding them to the model F
in a stagewise manner.

4.2 Feature Induction Strategy

Adapting the stagewise learning approach to the model (5) we have

F (K)(u, i) =

K∑
k=1

βk hk(u, i) fk(u, i), (12)

(βk, hk, fk) = arg min
βk∈R,hk∈H,fk∈F

∑
(u,i)∈R

(
F (k−1)(u, i) + βkhk(u, i)fk(u, i)−Ru,i

)2

.

It is a well-known fact that stagewise algorithms sometimes outperform non-greedy algorithms due
to resistance to overfitting (see [22], for example). This explains the good generalization ability of
boosting and stage-wise linear regression.

From a computational standpoint, (12) scales nicely with K and with the training set size. The one-
dimensional quadratic optimization with respect to β is solved via a closed form, but the optimization
over F andH has to be done by brute force or by some approximate method such as sampling. The
computational complexity of each iteration is thus O(|H| · |F| · |R|), assuming no approximation
are performed.

Since we consider relatively small families F of CF methods, the optimization over F does not pose
a substantial problem. The optimization over H is more problematic since H is potentially infinite,
or otherwise very large. We address this difficulty by restricting H to a finite collection of additive
or max-mixtures kernels with r modes, randomly sampled from the users or items present in the
training data. Our experiments conclude that it is possible to find useful features from a surprisingly
small number of randomly-chosen samples.
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5 Experiments

We describe below the experimental setting, followed by the experimental results and conclusions.

5.1 Experimental Design

We used a recommendation algorithm toolkit PREA [15] for candidate algorithms, including three
simple baselines (Constant model, User Average, and Item Average) and five matrix-factorization
methods (Regularized SVD, NMF [13], PMF [24], Bayesian PMF [23], and Non-Linear PMF [12]),
and Slope-one [16]. This list includes traditional baselines as well as state-of-the-art CF methods
that were proposed recently in the research literature. We evaluate the performance using the Root
Mean Squared Error (RMSE), measured on the test set.

Table 1 lists 5 experimental settings. SINGLE runs each CF algorithm individually, and chooses the
one with the best average performance. CONST combines all candidate algorithms with constant
weights as in (1). FWLS combines all candidate algorithms with non-constant weights as in (3)
[26]. For CONST and FWLS, the weights are estimated from data by solving a least-square prob-
lem. STAGE combines CF algorithms in stage-wise manner. FEAT applies the feature induction
techniques discussed in Section 4.

To evaluate whether the automatic feature induction in FEAT works better or worse than manually
constructed features, we used in FWLS and STAGE manual features similar to the ones in [26]
(excluding features requiring temporal data). Examples include number of movies rated per user,
number of users rating each movie, standard deviation of the users’ ratings, and standard deviation
of the item’s ratings.

The feature induction in FEAT used a feature space H with additive multi-mode smoothing kernels
as described in Section 4 (for simplicity we avoided kernels unimodal in both u and i). The family
H included 200 randomly sampled features (a new sample was taken for each of the iterations in the
stagewise algorithms). The r in (11) was set to 5% of user or item count, and bandwidth h values of
0.05 (an extreme case where most features have value either 0 or 1) and 0.8 (each user or item has
moderate similarity values). The stagewise algorithm continues until either five consecutive trials
fail to improve the RMSE on validation set, or the iteration number reaches 100, which occur only in
a few cases. We used similar L2 regularization for all methods (both stagewise and non-stagewise),
where the regularization parameter was selected among 5 different values based on a validation set.

We experimented with the two standard MovieLens datasets: 100K and 1M, and with the Netflix
dataset. In the Netflix dataset experiments, we sub-sampled the data since (a) running state-of-
the-art candidate algorithms on the full Netflix data takes too long time - for example, Bayesian
PMF was reported to take 188 hours [23], and (b) it enables us to run extensive experiments mea-
suring the performance of the CF algorithms as a function of the number of users, number of
items, voting sparsity, and facilitates cross-validation and statistical tests. More specifically, we
sub-sampled from the most active M users and the most often rated N items to obtain pre-specified
data density levels |R|/|Ω|. As shown in Table 2, we varied either the user or item count in the
set {1000, 1500, 2000, 2500, 3000}, holding the other variable fixed at 1000 and the density at 1%,
which is comparable density of the original Netflix dataset. We also conducted an experiment where
the data density varied in the set {1%, 1.5%, 2%, 2.5%}with fixed user and item count of 1000 each.

We set aside a randomly chosen 20% for test set, and used the remaining 80% for both for training
the individual recommenders and for learning the ensemble model. It is possible, and perhaps more
motivated, to use two distinct train sets for the CF models and the ensemble. However, in our case,
we got high performance even in the case of using the same training dataset in both stages.

Method C W S I Explanation
SINGLE Best-performed single CF algorithm
CONST O Mixture of CF without features
FWLS O O Mixture of CF with manually-designed features
STAGE O O O Stagewise mixture with manual features
FEAT O O O O Stagewise mixture with induced features

Table 1: Experimental setting. (C: Combination of multiple algorithms, W: Weights varying with
features, S: Stage-wise algorithm, I: Induced features)
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Dataset Netflix MovieLens
User Count 1000 2000 3000 1000 1000 943 6039
Item Count 1000 1000 2000 3000 1000 1682 3883

Density 1.0% 1.0% 1.0% 1.5% 2.0% 2.5% 6.3% 4.3%

Si
ng

le
C

F
Constant 1.2188 1.2013 1.2072 1.1964 1.1888 1.2188 1.2235 1.2113 1.2408 1.2590
UserAvg 1.0566 1.0513 1.0375 1.0359 1.0174 1.0566 1.0318 1.0252 1.0408 1.0352
ItemAvg 1.1260 1.0611 1.0445 1.1221 1.1444 1.1260 1.1029 1.0900 1.0183 0.9789
Slope1 1.4490 1.4012 1.3321 1.4049 1.3196 1.4490 1.3505 1.0725 0.9371 0.9017
RegSVD 1.0623 1.0155 1.0083 1.0354 1.0289 1.0343 1.0154 1.0020 0.9098 0.8671
NMF 1.0784 1.0205 1.0069 1.0423 1.0298 1.0406 1.0151 1.0091 0.9601 0.9268
PMF 1.6180 1.4824 1.4081 1.4953 1.4804 1.4903 1.3594 1.1818 0.9328 0.9623
BPMF 1.3973 1.2951 1.2949 1.2566 1.2102 1.3160 1.2021 1.1514 0.9629 0.9000
NLPMF 1.0561 1.0507 1.0382 1.0361 1.0471 1.0436 1.0382 1.0523 0.9560 0.9415

C
om

bi
ne

d

SINGLE 1.0561 1.0155 1.0069 1.0354 1.0174 1.0343 1.0151 1.0020 0.9098 0.8671
CONST 1.0429 1.0072 0.9963 1.0198 1.0102 1.0255 0.9968 0.9824 0.9073 0.8660
FWLS 1.0288 1.0050 0.9946 1.0089 1.0016 1.0179 0.9935 0.9802 0.9010 0.8649
STAGE 1.0036 0.9784 0.9668 0.9967 0.9821 0.9935 0.9846 0.9769 0.8961 0.8623
FEAT 0.9862 0.9607 0.9607 0.9740 0.9717 0.9703 0.9589 0.9492 0.8949 0.8569

p-Value 0.0028 0.0001 0.0003 0.0008 0.0014 0.0002 0.0019 0.0013 0.0014 0.0023

Table 2: Test error in RMSE (lower values are better) for single CF algorithms used as candidates
and combined models. Data where M or N is 1500 or 2500 are omitted due to the lack of space, as
it is shown in Figure 2. The best-performing one in each group is indicated in Italic. The last row
indicates p-value for statistical test of hypothesis FEAT � FWLS.
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Figure 2: Performance trend with varied user count (left), item count (middle), and density (right)
on Netflix dataset.

For stagewise methods, the 80% train set was divided to 60% training set and 20% validation set,
used to determine when to stop the stagewise addition process. The non-stagewise methods used the
entire 80% for training. The 10% of training set is used to select regularization parameter for both
stagewise and non-stagewise. The results were averaged over 10 random data samples.

6 Result and Discussion

6.1 Performance Analysis and Example

Table 2 displays the performance in RMSE of each combination method, as well as the individual
algorithms. Examining it, we observe the following partial order with respect to prediction accuracy:
FEAT � STAGE � FWLS � CONST � SINGLE.

• FWLS � CONST � SINGLE: Combining CF algorithms (even only with constant
weights) produces better prediction than the best-single CF method. Also, using non-
constant weights improves performance further. This result is consistent with what has
been known in literature [7, 26].
• STAGE � FWLS: Figure 2 indicates that stagewise combinations where features are cho-

sen with replacement are more accurate. The selection with replacement allow certain
features to be selected more than once, correcting a previous inaccurate parameter setting.

• FEAT � STAGE: Making use of induced features improves prediction accuracy further
from stagewise optimization with manually-designed features.

Overall, our experiments indicate that the combination with non-constant weights and feature in-
duction (FEAT) outperforms three baselines (the best single method, standard combinations with
constant weight, and the FWLS method using manually constructed features [26]). We tested the
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Figure 3: Average weight values of each item (top) and user (bottom) sorted in the order of high to
low weight of selected algorithm. Note that the sorting order is similar between algorithm 1 (User
Average) and 2 (Item Average). In contrast, algorithm 8 (NLPMF) has opposite order, which will be
weighted higher in different part of the data, compared to algorithm 1 and 2.

hypothesis RMSEFEAT < RMSEFWLS with paired t-test. Based on the p-values (See the last
row in Table 2), we can reject the null hypothesis with significance of 99%. We conclude that
our proposed combination outperforms state-of-the-art methods, and several previously proposed
combination methods.

To see how feature induction works in detail, we illustrate an example with a case where the user
count and item count equals 1000. Figure 3 shows the average weight distribution that each user or
item receives under three CF methods: user average, item average, and NLPMF. We focused on these
three methods since they are frequently selected by the stagewise algorithm. The x axis variables
in the three panels are sorted in the order of decreasing weights of selected algorithm. Note that in
each figure, one curve is monotonically decaying, showing the weights of the CF method according
to which the sorting was done. An interesting observation is that algorithm 1 (User Average) and
algorithm 2 (Item Average) have similar pattern of sorting order in Figure 3 (right column). In other
words, these two algorithms are similar in nature, and are relatively strong or weaker in similar
regions of Ω. Algorithm 8 (NLPMF) on the other hand, has a very different relative strength pattern.

6.2 Trend Analysis

Figure 2 graphs the RMSE of the different combination methods as a function of the user count,
item count, and density. We make the following observations.

• As expected, prediction accuracy for all combination methods and for the top single method
improves with the user count, item count, and density.

• The performance gap between the best single algorithm and the combinations tends to
decrease with larger user and item count. This is a manifestation of the law of diminish-
ing returns, and the fact that the size of a suitable family H capturing locality informa-
tion increases with the user and item count. Thus, the stagewise procedure becomes more
challenging computationally, and less accurate since in our experiment we sampled same
number of compositions fromH, rather than increasing it for larger data.

• We note that all combination methods and the single best CF method improve performance
as the density increases. The improvement seems to be the most pronounced for the single
best algorithm and for the FEAT method, indicating that FEAT scales up its performance
aggressively with increasing density levels.
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• Comparing the left and middle panels of Figure 2 implies that having more users is more
informative than having more items. In other words, if the total dataset size M × N is
equal, the performance tends to be better when M > N (left panel of Figure 2) than
M < N (middle panel of Figure 2).

6.3 Scalability

Our proposed stagewise algorithm is very efficient, when compared to other feature selection algo-
rithms such as step-wise or subset selection. Nevertheless, the large number of possible features may
result in computational issues. In our experiments, we sampled from the space of candidate features
a small subset of features that was considered for addition (the random subset is different in each
iteration of the stagewise algorithm). In the limit K → ∞, such a sampling scheme would recover
the optimal ensemble as each feature will be selected for consideration infinitely often. Our experi-
ments conclude that this scheme works well also in practice and results in significant improvement
to the state-of-the-art even for a relatively small sample of feature candidates such as 200. Viewed
from another perspective, this implies that randomly selecting such a small subset of features each
iteration ensures the selection of useful features. In fact, the features induced in this manner were
found to be more useful than the manually crafted features in the FWLS algorithm [26].

7 Summary

We started from an observation that the relative performance of different candidate recommendation
systems f(u, i) depends on u and i, for example on the activity level of user u and popularity of item
i. This motivated the development of combination of recommendation systems with non-constant
weights that emphasize different candidates based on their relative strengths in the feature space.
In contrast to the FWLS method that focused on manual construction of features, we developed a
feature induction algorithm that works in conjunction with stagewise least-squares. We formulate a
family of feature function, based on the discrete analog of triangular kernel smoothing. This family
captures a wide variety of local information and is thus able to model the relative strengths of the
different CF methods and how they change across Ω.

The combination with induced features outperformed any of the base candidates as well as other
combination methods in literature. This includes the recently proposed FWLS method that uses
manually constructed feature function. As our candidates included many of the recently proposed
state-of-the-art recommendation systems our conclusions are significant for the engineering com-
munity as well as recommendation system scientists.
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