
Learning Multiple-Question Decision Trees for Cold-Start
Recommendation

Mingxuan Sun
College of Computing

Georgia Tech.
msun3@gatech.edu

Fuxin Li
College of Computing

Georgia Tech.
fli@cc.gatech.edu

Joonseok Lee
College of Computing

Georgia Tech.
jlee716@gatech.edu

Ke Zhou
College of Computing

Georgia Tech.
kzhou@gatech.edu

Guy Lebanon
College of Computing

Georgia Tech.
lebanon@cc.gatech.edu

Hongyuan Zha
College of Computing

Georgia Tech.
zha@cc.gatech.edu

ABSTRACT
For cold-start recommendation, it is important to rapidly
profile new users and generate a good initial set of recom-
mendations through an interview process — users should
be queried adaptively in a sequential fashion, and multiple
items should be offered for opinion solicitation at each trial.
In this work, we propose a novel algorithm that learns to
conduct the interview process guided by a decision tree with
multiple questions at each split. The splits, represented as
sparse weight vectors, are learned through an L1-constrained
optimization framework. The users are directed to child
nodes according to the inner product of their responses and
the corresponding weight vector. More importantly, to ac-
count for the variety of responses coming to a node, a linear
regressor is learned within each node using all the previously
obtained answers as input to predict item ratings. A user
study, preliminary but first in its kind in cold-start recom-
mendation, is conducted to explore the efficient number and
format of questions being asked in a recommendation sur-
vey to minimize user cognitive efforts. Quantitative exper-
imental validations also show that the proposed algorithm
outperforms state-of-the-art approaches in terms of both the
prediction accuracy and user cognitive efforts.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
filtering; I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Performance, Experimentation

Keywords
Recommender systems, Cold-start problem, Collaborative
filtering, Decision tree

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSDM’13, February 4–8, 2013, Rome, Italy.
Copyright 2013 ACM 978-1-4503-1869-3/13/02 ...$15.00.

1. INTRODUCTION
Recommender systems have been established as a criti-

cal tool for many business applications with significant eco-
nomic impact. Successful systems span a variety of plat-
forms, including Amazon’s book recommendations, Netflix’s
movie recommendations, and Pandora’s music recommenda-
tions. A popular and effective approach to recommendations
is collaborative filtering, which focuses on detecting users
with similar preferences and recommending items favored
by the like-minded [3, 13, 11, 15]. However, the system
would fail to provide recommendations when no preference
information is gathered from a new user, which is known as
the cold-start problem [6, 17, 22].

Rapid profiling of new users is a key challenge in cold-
start recommender systems. One direct way to solicit the
preferences of new users is going through an initial interview
process [17]. In the interview, the recommender system asks
users to provide opinions on selected items and constructs
rough user profiles. Asking too few questions may lead to in-
accurate estimation of user profiles and the system is unable
to provide satisfactory recommendations, while asking too
many questions may cause users to abandon the interview.
A good interview is targeted at discovering user interests
with minimum interactions. Specifically, the process should
focus on (1) increasing the recommendation accuracy and
(2) minimizing user interaction efforts.

An adaptive interview process is known to improve the ac-
curacy, compared with previous approaches such as methods
based on meta-features or a static set of interview questions.
Many state-of-the-art work [17, 27, 6] have championed de-
cision trees [4] as a natural fit for adaptive interviews of new
users. In a primitive form of the decision tree, each node
asks for user opinions on one item and users are directed
to subtrees based on whether their answer is like, dislike or
unknown. Finally, the average preference of training users
within each leaf node is used to generate the recommenda-
tion list.

However, most users do not have the luxury to go through
the entire item set, thus the system needs to serve a majority
of users who have seen only tiny percentage of the items. In
this case the constructed decision trees are often extremely
unbalanced with the unknown branch capturing more than
80% of the users at each split (Figure 1, upper). Many users
have to repeatedly select unknown multiple times before lo-

cating any item they know about. In this case, not only did
the system gain little valuable information on users’ inter-
ests, but the users also easily get bored and may opt out of
the system prematurely.

For a better cold-start recommender system, we advocate
designs focusing on asking multiple questions at each trial.
Displaying multiple questions on one screen increases the
chance that a user knows at least one of them and thus allow-
ing for solicitation of more valuable information. This was
also suggested by some experimental studies that show users
prefer providing opinions on multiple items at a trial [17].
However, within the collaborative filtering context, there has
not been much existing work that focuses on building a sin-
gle decision tree with each node asking multiple questions.

The major contribution of this paper is to develop a tree
learning algorithm for cold-start collaborative filtering with
each node asking multiple questions. There are two key tech-
nical challenges to overcome in learning such a tree struc-
ture. First, with multiple questions at each node, it be-
comes substantially more expensive to search over all pos-
sible splits. Instead, we rely on a framework of minimizing
expected prediction loss with L1 regularization to find each
split. Second, when asking multiple questions, users with
different opinions would be grouped into the same node,
and making predictions by averaging training user responses
within each node is no longer sufficient. We propose to learn
a regressor within each node making use of all the answers
from the root to the present node. In our experiments, the
algorithm is shown to be able to improve the performance of
the cold-start recommendation system. One example of the
tree with multiple questions is shown in Figure 1 (lower).

In addition to the prediction accuracy, another essential
component for profiling new users is minimizing user efforts
in the interaction. Critical features influencing user cogni-
tive efforts include the number of items to ask at each trial,
as well as the type of answers collected from the users. User
response in common recommender systems can be binary or
5-star rating scale. The 5-star rating response is expected
to be more informative than a binary response but it may
take more user time. However, few existing work provides a
quantitative analysis on the efforts that users would spend
on different interfaces.

This issue is addressed in our second contribution which
analyzes different strategies in terms of both the prediction
accuracy and user efforts. A user study, preliminary but
first in its kind, is performed to measure user efforts by the
interaction time. Tree-models that ask different number of
questions and different type of questions (binary/5-scale)
are shown randomly to different users through a web in-
terview interface. The average time spent on each scenario
is measured and we are thus able to measure the accuracy
against average user interaction time, which reveals the con-
figurations that work best in real-life scenarios. The current
quantitative user study that compares 1 − 4 questions in
both binary and 5-star formats is new, to the best of our
knowledge.

2. RELATED WORK
There have been a substantial body of literature on collab-

orative filtering (CF) recommendations, which can largely
be classified into memory and model based methods. Memory-
based CF methods predict the ratings of items based on the
similarity between the test user and training users [20, 3,

Armageddon

Being John

Malkovich

Independence

Day
Dante’s Peak

Stargate
Austin

Powers

Lethal

Weapon

Demolition

Man

From Dusk

Till Dawn

Rushmore Big Daddy

Patriot

Back to

Future2

Armageddon 2.8

Independence Day 0.4

Being John Malkovich -0.3

American Pie 1.1

Fargo -0.5

From Dusk Till Dawn 2.3

African Queen -2.0

Chinatown -0.1

Batman&Robin 1.8

Wild Wild West 0.1

Tommy

Boy

Big Daddy 2.4

Babe -0.2

 South Park 2.4

Fargo 0.3

 Patriot Games 2.0

Jurassic Park 0.4

Lethal

Weapon

Election 0.6

Out of Sight 0.5

Figure 1: The interview trees learned from the

movielens1M dataset. A circle denotes a leaf node

with recommendation results. Top: each node asks

a single question. The first 5 levels are shown from

the 10-level learned tree. Users are branched to left,

middle and right subtrees according to the answers

like, unknown and dislike respectively. It can be seen

that the middle branch of the tree is much longer

than the other branches. Bottom: each node asks

multiple questions. The first 3 levels out of a total

5 are shown. Users are branched to left, middle and

right subtrees according to equation (3) given the

answers and corresponding weights.

10]. Similarity measures include Pearson correlation [20] and
Vector cosine similarity [3, 10]. Other memory-based CF
methods include item-based CF [21] and a non-parametric
probabilistic method based on ranking preference similari-
ties [24]. Model-based CF includes user and item clustering,
Bayesian networks [3], and probabilistic latent variable mod-
els [15, 26, 11]. The state-of-the-art methods, including the
Netflix competition winner, are mostly based on matrix fac-
torization. The factorized matrix can be used to fill out the
unobserved entries of the user-rating matrix in a way similar
to latent factor analysis [19, 13].

One difficulty in recommender system is that the perfor-
mance is affected by factors such as number of users, number
of items, and observed total ratings. Unified models have
been proposed in [1, 7, 22] by combining both CF methods
and content features such as the genre, actor and director of
a movie. These methods generally achieve better prediction
accuracy on the items that few or no users have ever rated.

Several studies focus on eliciting preference for new users
to solve the cold-start problem. It has been demonstrated
in [16] that a good elicitation strategy should increase the
prediction accuracy with minimum user interaction. Sev-
eral approaches construct a short interview in which users

are asked to provide information on selected items. Ear-
lier attempts [17, 18] construct a static seed set based on
the item popularity and informativeness. A later work [5]
proposes a greedy algorithm to select the seed set that min-
imizes the prediction error. The performance of seed-based
methods is unsatisfactory because items selected in batch
are not adaptive to user responses in the interview process.
Active learning methods for collaborative filtering [2, 8, 12,
9] select questions according to criteria such as minimizing
the expected distance to the true user model, although these
methods are not efficient enough for online user interview.

The IGCN algorithm proposed in [18] uses pre-defined
user clusters to adaptively select questions in the interview.
An alternative approach using decision trees is also men-
tioned in [18], where each node is a question and users are
directed to subtrees based on their responses. The idea was
later developed in [6] as a more disciplined approach that
fits the decision tree to user ratings. To improve the pre-
diction accuracy with missing data, the work [27] further
integrates the decision tree with matrix factorization to fit
the user ratings with a latent factor analysis. The limita-
tion is that only one item is selected to ask at each node
of the decision tree. It is highly likely that the user does
not know any items in the first several interactions and the
estimation would be inaccurate. One alternative suggested
in [6] is selecting multiple items to ask at each interaction
by bootstrapping multiple trees. The method first generates
random trees and then select the best few whose linear com-
binations fit the training data best. However, this tends to
ask more questions compared to building a single tree with
multiple questions at each split, because each of the shallow
trees would more likely be full and in that case, the number
of questions increases linearly with the number of trees.

In this paper, we propose a tree learning algorithm for
collaborative filtering with each node asking multiple ques-
tions. In contrast to the work [6], our algorithm enables
optimization-based estimation procedures for not only the
prediction of user profiling but also the selection of ques-
tions. Our algorithm achieves significant improvements in
terms of the prediction accuracy and user interaction time.
Furthermore, it is able to handle heterogeneous preference
information including binary and 5-star rating responses.

Existing user study in [17, 18] is measuring the user efforts
by the number of pages they views before they rate a min-
imum number of items for the initial interview. Our user
study seeks to discover both the efficient number of ques-
tions on each screen, and whether binary or 5-star is more
effective in discovering user preferences.

3. DECISION TREE FOR COLD-START
In cold-start recommendations, we assume nothing about

new users and an interview process is performed to ask the
user a set of questions. For example, in the movie recom-
mendation system, we ask a user questions in the form “Do
you like the movie 50 first dates?” and the user answers
like, dislike and unknown, or provides 5-scale ratings, etc.
Based on the answers, the system would adaptively ask an-
other set of questions, gradually refine user preference and
recommend a set of movies in the end.

In the adaptive interview, we would like to learn a function
that maps user responses to user preference profiles from
training data. Formally, let rij denote the observed rat-
ing of training user i for item j, where i = 1, 2, . . . , m and

j = 1, 2, . . . , n. The pairs (i, j) are stored in the set O =
{(i, j) | rij is observed}. Denote Oi = {j | rij is observed}
the set of items user i rated, Oj = {i | rij is observed} the
set of users that rate item j. Assume there are possible n
questions to ask, let x denote the user answer, which is a
n-dimensional vector and each entry takes value in the set
{−1, 0, 1} corresponding to dislike, unknown and like. Given
each training user i with the answer xi, our goal is to learn
a user profile T (xi) that predicts the rating of this user on
all the items.

In the simplest form, the user profile T (xi) is an n dimen-
sional vector with each dimension representing the predicted
rating of item j. However, such a representation is computa-
tionally challenging and hard to learn in large corpora with
thousands or millions of items. A common technique in rec-
ommender systems is to obtain lower dimensional models for
both users and items by minimizing a prediction loss func-
tion between the predicted ratings and true ratings of users.
That is,

min
T,V

X

i

X

j∈Oi

(rij − T (xi)
⊤vj)

2, (1)

where T (xi) is a k-dimensional vector, V = [v1, v2, . . . , vn]
is a k×n matrix, and vj is a k-dimensional vector represent-
ing the profile for item j. Usually, T and V are optimized
using matrix factorization methods, such as PCA, NMF or
nuclear-norm based matrix completion.

A decision tree structure is a natural fit for adaptive inter-
views where each node corresponds to one or multiple ques-
tions to ask. According to the evaluation of a user’s answers,
the user will be directed to subtrees. Once the user reaches
the leaf node, the recommendation list is provided using the
user preference learned from training data. Thus, the map-
ping function T (x) should be viewed as a function induced
from the decision tree, which is constructed from training
user ratings in a top-down approach. For each node N in
the tree, we learn a distinct function TN (x) for that node.
During test time, a user is first assigned to a node based on
his/her answers to the interview, then the function in that
node is used to obtain his/her user profile.

We adopt the framework in (1) for V and will discuss
the details for obtaining V in Section 3.4. However, our
main contribution lies in determining the decision tree split
with multiple questions, as well as learning the user profile
function in each node. Therefore we discuss these first in
Section 3.1 - 3.3.

3.1 Multiple Question Decision Tree Construc-
tion

In this subsection, we propose our approach of learning to
ask multiple questions at each decision tree split. For this
goal, there are two challenges to overcome. First, the num-
ber of possible questions can be quite large (e.g., we may
have n ∼ 105 in movie recommendation system) and search-
ing over all possible splits becomes a combinatorial problem
with a prohibitive

`

n

l

´

possibilities to evaluate where l is the
number of questions at each node. We solve this problem by
relaxing it as an L1 regularized optimization. Second, since
we are keeping the structure of the tree with 3 branches, it
is possible that users with different opinions would enter the
same node. Therefore different from other decision tree ap-
proaches (e.g. [27]), a non-constant function T needs to be
learned separately for each node. We solve this second prob-

lem by training a linear regressor within each node using all
the previously obtained answers as input.

For splitting with multiple items, the idea is to optimize
for a sparse weight vector on each item that has only a few
non-zeros. Formally, let w denote the weight of items, which
is a n-dimensional vector. Let l denote the maximum num-
ber of questions at each split. Training users at the current
node are split into 3 child nodes L, D and U according to
the linear combination of the answers x⊤

i w.
We use a modified logistic probability model to determine

the split. Let pi, qi denote the probability that user i belongs
to the L, and D branch respectively:

pi =
1

1 + c exp(−x⊤
i w)

,

qi =
1

1 + c exp(x⊤
i w)

. (2)

The three subgroups are defined as:

L(w) = {i|pi > qi, pi > 1 − pi − qi},

D(w) = {i|qi > pi, qi > 1 − pi − qi},

U(w) = {i|1 − pi − qi ≥ max(pi, qi)}, (3)

where c is a parameter controlling the likelihood of falling
into different groups. In practice, we find that c = 2 works
best. In such a case, a user belongs to the L group when
x⊤

i w is positive, the D group when x⊤
i w is negative, and

the middle group U only when the user answers none of the
questions, as shown in Figure 2.

Ideally, we need to optimize such an objective function

min
w,TL,TD,TU

X

i∈L(w)

X

j∈Oi

(rij − TL(xi)
⊤vj)

2

+
X

i∈D(w)

X

j∈Oi

(rij − TD(xi)
⊤vj)

2

+
X

i∈U(w)

X

j∈Oi

(rij − TU (xi)
⊤vj)

2

s.t. ‖w‖0 ≤ l, (4)

where TL, TD and TU are the profile functions for the nodes
L, D, U , and ‖w‖0 denotes the number of non-zeros in w.
The objective function first divides the training users into
three child nodes, and then computes the squared error
within each child node. The goal is to minimize the sum
of errors in all the three child nodes. In addition, the con-
straint ‖w‖0 ≤ l determined that w cannot have more than
l non-zeros.

We would adopt an alternating minimization strategy that
optimizes w and TL, TD, TU iteratively. However, the opti-
mization of w is a complicated non-convex combinatorial
problem, therefore we make relaxations to solve it with con-
tinuous optimization. In the next two subsections we dis-
cuss separately the optimization of w and the computation
of TL, TD, and TU .

3.2 Optimization Relaxations
In order to update the weight vector w in (4) with con-

tinuous optimization, we adopt two relaxations. The first is
to relax the hard partitioning L, D, and U into a soft parti-
tioning, with the probability of x belonging to the subgroups
L, D and U to be pi, qi, and 1 − pi − qi, respectively. This
makes the main objective function smooth in w.

The second relaxation is to append a penalty term on
‖w‖1 to the objective function, instead of a hard constraint
on the number of nonzeros ‖w‖0. This L1 relaxation ap-
proach has been popular in machine learning and signal pro-
cessing in recent years. The L1 term is convex and there ex-
ist efficient methods to optimize a smooth objective function
with such a penalty term [23].

Let m̄ denote the number of users reaching the current
node, our relaxation problem computes w which minimizes
the weighted prediction loss:

min
w

m̄
X

i=1

pi

X

j∈Oi

(rij − TL(xi)
⊤vj)

2

+

m̄
X

i=1

qi

X

j∈Oi

(rij − TD(xi)
⊤vj)

2

+

m̄
X

i=1

(1 − pi − qi)
X

j∈Oi

(rij − TU (xi)
⊤vj)

2 + λ||w||1. (5)

To solve (5), we adopt a projected scaled sub-gradient op-
timization [23]. This algorithm computes the Hessian only
for the nonzero part of the current w, and adopts linear-time
Barzilai-Borwein subgradient steps for the rest. It is suitable
for our task because of its fast convergence rate thanks to the
incorporated second-order information, and each iteration is
a linear-time operation. The only cubic-time computation
is to compute the Hessian inverse on the nonzeros. Since we
have usually less than 5 nonzeros, this step would normally
take constant time.

By changing the parameter λ, we can find solutions with
different numbers of nonzeros in w. In practice, we first
binary search between 0 and λmax to find λ0 such that the
number of nonzero entries of w is between 1 and l. Then we
search around λ0 with a finer step size, locating l different
solutions with 1, 2, . . . , l nonzeros respectively. From this
solution set, we select the one that minimize (5) without
the penalty term.

The optimization for w is still non-convex, therefore a
good choice of starting point is important. We choose the
starting point as the best 1-item question found by the ap-
proach in [27] and set ws = 1 and wj = 0 (j = 1, 2, . . . , n, j 6=
s) as our initial value. We find this scheme to work well in
practice.

3.3 Computing User Profile Functions
We adopt a linear regression model in each node in order

to map different user answers to preferences. The input to
the linear model would be all the previous answers that the
user has submitted and the output is the user profile. The
nodes deeper down the tree would have more information
since more answers have been submitted by the user to arrive
at the node.

Formally, let t (t < n) denote the number of asked items
from the root till the current node, x̄i denote the answer
of user i, which is a t + 1 dimensional vector including a
constant dimension x̄i0 = 1. Our linear model is TL(xi) =
ZLx̄i, TD(xi) = ZDx̄i and TU (xi) = ZU x̄i, where ZL, ZD

and ZU are (t + 1) × k matrices for each individual node in
the next level.

We try to best approximate all the observed scores rij

within the node, using all the obtained answers x̄i and the
current item profiles vj . This gives the following optimiza-

tion problem:

ZL = arg min
Z

X

i∈L(w)

X

j∈Oi

(rij − (Z⊤x̄i)
⊤vj)

2,

ZD = arg min
Z

X

i∈D(w)

X

j∈Oi

(rij − (Z⊤x̄i)
⊤vj)

2,

ZU = arg min
Z

X

i∈U(w)

X

j∈Oi

(rij − (Z⊤x̄i)
⊤vj)

2. (6)

It turns out that each has a closed form solution:

zL =

0

@

X

i∈L(w)

X

j∈Oi

(x̄ix̄
⊤
i) ⊗ (vjv⊤

j)

1

A

−10

@

X

i∈L(w)

X

j∈Oi

rij(x̄i ⊗ vj)

1

A,

zD =

0

@

X

i∈D(w)

X

j∈Oi

(x̄ix̄
⊤
i) ⊗ (vjv⊤

j)

1

A

−10

@

X

i∈D(w)

X

j∈Oi

rij(x̄i ⊗ vj)

1

A,

zU =

0

@

X

i∈U(w)

X

j∈Oi

(x̄ix̄
⊤
i) ⊗ (vjv⊤

j)

1

A

−10

@

X

i∈U(w)

X

j∈Oi

rij(x̄i ⊗ vj)

1

A,

(7)

where zL, zD and zU are large column vectors formed by
concatenating the column vectors of the matrices ZL, ZD,
and ZU respectively, and ⊗ denotes the matrix Kronecker
product. The regression inside each node allows different
answers to be mapped to different ratings, thus solving the
problem of contradicting opinions for different users within
a node. At each node, we alternatively optimize (5) and (6)
until convergence.

When the amount of training data becomes small along
the path reaching the leaf node, the estimation of user pro-
files may overfit. Following previous papers [27], we apply
hierarchical regularization at the current node so that the
coefficients of profile ZL, ZD and ZU are shrinking towards
the ones at its parent node. For example, the solution with
regularization for ZL is:

ZL = arg min
Z

X

i∈L(w)

X

j∈Oi

(rij − (Z⊤x̄i)
⊤vj)

2

+ λz||Z − Z0||
2, (8)

where Z0 is the estimation at the parent node padded with
zeros to reach the size of Z at the child node.

3.4 Item Profile Construction
The item profile is initialized using a nonlinear matrix fac-

torization method based on Gaussian process latent variable
models [14]. Given an initialized profiles vj , we can construct
a tree T using the algorithm in section 3.1. Given the de-
cision tree T , the user profile estimated at leaf nodes of the
tree is T (xi) = (Z⊤

k xi), where xi is the user responses along
the path. We then update item profiles vj (j = 1, 2, . . . , n)
with regularized least square regression:

vj = arg min
vj

X

i∈Oj

(rij − v⊤

j T (xi))
2 + λv||vj ||

2. (9)

A closed form solution for vj exists as shown in [27].

3.5 Computational Complexity
The full algorithm is summarized in Algorithms 1 and 2.

The computational complexity for updating item profiles vj

for all j = 1, 2, . . . , n is O(n|Oj |maxk2 +nk3), where n is the

number of items, |Oj | is the number of users who rated item
j, and k is the dimension of latent space. For the tree con-
struction, at each node, the complexity for running the split
algorithm in [27] is O(

P

i∈users
|Oi|

2 + nk3), the complex-
ity for optimizing w and Z by (5) is O(α

P

i∈users
|Oi|n +

αt3k3), where |Oi| is the number of observed ratings of user
i at the node, α is the iterations, and t is the maximum num-
ber of questions asked in the path. The complexity for build-
ing the whole tree is thus O(d

Pm

i=1 |Oi|n + βnk3 + βt3k3),
where d is the depth of the tree and β is the number of nodes
in the tree. In practice, the tree depth d is no more than
6, the maximum number of questions t is no more than 20,
and k is usually selected from 10 to 20.

Algorithm 1 Optimization for Tree Model and Item Pro-
files
Require: The training data R = rij |(i, j) ∈ O.
Ensure: Estimated decision tree T and item profile vj (j =

1, 2, . . . , n).
1: Initialize vj (j = 1, 2, . . . , n) using [14].
2: while not converge do

3: Fit a decision tree T using Algorithm 2.
4: Update vj using Equation (9).
5: end while

6: return T and vj (j = 1, 2, . . . , n).

Algorithm 2 Optimization for Tree Model

1: function FitTree(UsersAtNode)
2: Find the best single item s using [27].
3: Initialize w with all zeros but ws = 1.
4: while not converge do

5: Compute ZL, ZD, and ZU using Equation (7).
6: Update w using Equation (5).
7: end while

8: Split users into three groups L(w), D(w) and U(w).
9: if square error reduces after split and depth <

maxDepth then

10: call FitTree(L(w)), FitTree(D(w)) and
FitTree(U(w)) to construct subtrees.

11: end if

12: return T with T (x) = (Z⊤
k x)⊤V , if x falls in the k-th

node in the decision tree.
13: end function

4. EXPERIMENTS
We examine the estimation framework on three movie rec-

ommendation datasets: Movielens1M, EachMovie and Net-
flix. The details of each dataset are shown in Table 1. The
Netflix data we used is a random sample containing about
half of the original movies and a quarter of the original users.
The prediction performance is evaluated on the test set S
with the root mean square error (RMSE), which is defined
as:

RMSE =

s

1

|S|

X

(i,j)∈S

(r̂i,j − ri,j)2, (10)

where r̂i,j and ri,j are the predicted and ground truth ratings
for user i and item j, respectively.

We seek to answer three questions in the following:

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

pr
ob

ab
ili

ty

p=1/(1+c*exp(−x))
q=1/(1+c*exp(x))
1−p−q

Figure 2: Probabilities of being in the three groups

with c = 2.

1. For new users, how does the proposed algorithm per-
form in terms of the prediction accuracy comparing to base-
lines? How does the performance improve with respect to
the number of screens and questions?

2. How many questions do we ask on each screen in order
to minimize user interaction time?

3. What types of user responses are more informative and
less time-consuming?

In the end, we summarize and analyze insights on how
many items to query on each screen, what types of answers
users can employ, and how prediction accuracy changes with
different settings.

Table 1: Dataset Description
Dataset Users Items Ratings Scale

MovieLens1M 6040 3952 1, 000, 209 1 − 5
EachMovie 72, 916 1628 2, 811, 983 1 − 6

Netflix 120, 000 8000 11, 670, 175 1 − 5

4.1 Cold-Start Prediction Accuracy
In this experiment, we randomly split the data into a

training and a test set, each containing 75% and 25% users,
respectively. The parameters λz and λv in the algorithm are
selected by 4-fold cross validation on the training set. The
dimensionality for the profile, k is fixed to be 15. All the
ratings in the training set are used to construct the decision
tree. The test set is further split into two disjoint sets: an-
swer and evaluation sets, which contain 75% and 25% rated
items for each test user. The answer set is used to simulate
the responses of test users in the interview process. The
evaluation set is used to evaluate the prediction accuracy
after the interview process. The question is in the form “Do
you like item j?”. For example in the movie recommenda-
tion, the question is “Do you like movie 50 first date?” For
binary answer type, where a user is expected to answer like,
dislike and unknown, we follow the standard settings [18, 6,
27] and simulate test user responses as the following:

xij =

8

>

<

>

:

1 (i, j) ∈ O and rij > 3

−1 (i, j) ∈ O and rij <= 3

0 (i, j) /∈ O.

(11)

For the EachMovie dataset where the rating scale is 1 − 6,
we use rij > 4 instead.

Figure 3 compares the performance of our model with sev-
eral standard baselines. One is the single-question decision
tree with matrix factorization, denoted as w1Base [27]. This
model has been shown in [27] as the strongest tree model
with single-question splits. The other is bootstrapping tree
model w4Base [6] which generates random decision trees,
and select k-best ones to form a linear combination. In our
experiments, the tree generation method in [6] always per-
forms worse than the one in [27]. Therefore in w4Base we
adopted the bootstrapping methodology in [6] with the tree
generation method from [27], in order for a fairer compar-
ison. We used the best parameters as reported in [27] and
[6].

It has been shown that 1 ≤ k ≤ 5 is practical for online
interview. We set k = 4. Our models w2, w3, and w4 are
the trees with maximum number of questions at each node
being 2, 3, and 4 respectively.

For all methods, the prediction error measured in RMSE
decreases as more questions have been asked (Figure 3). In
the first row of Figure 3, our models w2, w3 and w4 have a
big advantage over w1Base when the error is measured per
screen, since in each screen we have definitely solicited more
information than w1Base. The model w4Base also performs
better than w1Base in this sense. But more notably, our
models w3 and w4 outperform w4Base, which shows the ad-
vantage of our multiple-question tree model versus a linear
combination of multiple bootstrapped trees.

In the second row in Figure 3 where we compare perfor-
mance versus number of questions, we see no major differ-
ence between w1Base and w2, w3, w4 when relatively few
questions have been asked. However, our multiple-question
tree model is able to ask more questions and further reduce
the prediction error, whereas in w1Base, the performance
cannot improve with trees more than 6 − 7 layers, because
at this time the number of training users in each leaf node
is already very small, essentially making further splits very
susceptible to overfitting. The model w4Base in this row
showed its inefficiency in needing to ask more questions to
obtain the same performance, which comes from the redun-
dancy and inefficient use of information from the multiple
trees.

In the third row, we compare performance versus the ex-
pected time that users spend in the interview process mea-
sured from our user study, described in the next subsection.
In this case, w1Base is comparable with our models when
relatively few questions have been asked. However, our im-
provement is more significant if the user is going to spend
more than 20 seconds in the recommender system. In that
case the performance of single-question decision trees starts
to saturate, but our models continue to provide more and
more accurate recommendations to the user.

Table 2 shows an example of a user’s responses and the
recommendation list.

4.2 User Study
In this user study, we measure the expected time that

users spend on the interview process through an online in-
terview. Once a user logs in, the interview script loads the
precomputed tree model and displays questions of the node
on one screen. It proceeds to another screen after the user
submits answers. The interview process ends when the user

MovieLens Netflix EachMovie

R
M

S
E

v
s.

sc
re

e
n

1 2 3 4 5 6
0.916

0.918

0.92

0.922

0.924

0.926

0.928

w1Base
w2
w3
w4
w4Base

1 2 3 4 5 6 7
0.912

0.914

0.916

0.918

0.92

0.922

0.924

0.926

0.928

0.93

w1Base
w2
w3
w4
w4Base

1 2 3 4 5 6 7
1.31

1.315

1.32

1.325

1.33

1.335

1.34

1.345

w1Base
w2
w3
w4
w4Base

Screen number Screen number Screen number

R
M

S
E

v
s.

q
u
e
st

io
n

0 5 10 15 20
0.916

0.918

0.92

0.922

0.924

0.926

0.928

w1Base
w2
w3
w4
w4Base

0 5 10 15 20
0.912

0.914

0.916

0.918

0.92

0.922

0.924

0.926

0.928

0.93

w1Base
w2
w3
w4
w4Base

0 5 10 15 20
1.31

1.315

1.32

1.325

1.33

1.335

1.34

1.345

w1Base
w2
w3
w4
w4Base

Question number Question number Question number

R
M

S
E

v
s.

ti
m

e

0 10 20 30 40 50
0.916

0.918

0.92

0.922

0.924

0.926

0.928

w1Base
w2
w3
w4
w4Base

0 10 20 30 40 50 60
0.912

0.914

0.916

0.918

0.92

0.922

0.924

0.926

0.928

0.93

w1Base
w2
w3
w4
w4Base

0 10 20 30 40 50
1.31

1.315

1.32

1.325

1.33

1.335

1.34

1.345

w1Base
w2
w3
w4
w4Base

Time (seconds) Time (seconds) Time (seconds)

Figure 3: The prediction RMSE with respect to screen number, question number and user time on three

datasets. We compare our methods asking 2, 3 and 4 questions with baseline w1Base asking single question

and baseline w4Base asking 4 questions. For all methods, the prediction error measured in RMSE decreases

as the screen number, question number increases. The first and second row shows that methods asking 2, 3, 4
questions on each screen performs better than asking one question w1Base. The time in the third row is the

expected time users spend in the interview process measured from our user study.

reaches a leaf node of the tree model. The trees are al-
ways downloaded fully into the local computer in order to
save network communication time. There are 8 precomputed
tree models in total. For tree models labeled as w1Binary,
w2Binary, w3Binary and w4Binary, users are asked 1, 2, 3,
and 4 questions maximum at each node respectively and pro-
vides binary answers dislike, like, or unknown. For another
4 tree models w1Rate, w2Rate, w3Rate, and w4Rate, user re-
sponses are in 1 − 5 rating scale. A random tree type will
be selected when a user logs in. The users are instructed to
answer the questions at their first sight, in order to avoid
the situation that users linger on a particular page too long,
or even search the internet to find particular answers.

In total we are able to collect responses from 76 users.
Figure 4 shows our interview web interface. Table 3 com-
pares the expected time to answer k questions on one screen.
It reveals that the time increment for users to answer more
questions per screen is usually sublinear, with answering 2

questions around 1.5 times slower than asking 1 question,
and answering 4 questions around 2.5 times slower. Answer-
ing rating scale questions usually adds 2.5−3.5 seconds to all
the 4 settings (1−4 questions). The time difference between
a rating scale answer and a binary answer seems not to have
strong dependency with the number of questions. We sus-
pect this phenomenon still comes from the sparsity of the
data: with 4 questions per page, usually the user would not
have seen all movies on a page therefore he/she only has to
provide ratings for 1 − 2 of them.

Figure 5 compares the time of the interview process by
asking different number of questions per screen. It can be
seen that w1Rate does not seem to be a much better op-
tion than w1Binary because the time increases significantly
without too many questions being asked. However, the frac-
tion of time increased from w4Binary to w4Rate seems not
too big. Although w4Rate costs the longest time (over 50
seconds for 4 screens), it is able to obtain about 14 rated

Table 2: A user’s responses to the first two screens of

the interview process each with 4 questions, followed

by the recommendation list.

(a) Interview Questions
Screen Questions Responses

1 The Royal Tenenbaums Unknown
Lost in Translation Like
Independence Day Unknown

Being John Malkovich Unknown
2 How to Lose a Guy in 10 Days Like

Miss Congeniality Like
Pulp Fiction DisLike
Taxi Driver Unknown

(b) Top-5 Recommendations
Rank Movie Title

1 Indiana Jones and the Last Crusade
2 The Sixth Sense
3 The Green Mile
4 Life Is Beautiful
5 Toy Story

Table 3: A comparison of average time to answer

n questions on one screen. When the number of

questions per screen increases, the increase in the

response time is sublinear.

Binary User Response
Ask l questions l = 1 l = 2 l = 3 l = 4

Time (seconds) 4.4097 6.7267 7.8841 10.4232

Rating Scale User Response
Ask l questions l = 1 l = 2 l = 3 l = 4

Time (seconds) 6.9339 9.5906 10.1404 13.8569

responses, comparing to less than 5 rated responses from
w1Rate in 35 seconds.

We plot in Figure 6 the prediction performance for these
different settings. The performance differs with data, in
MovieLens, the setting w4Binary with asking 4 questions for
binary answers performs the best. In the Netflix data, the
main advantage of a rated response is that it can achieve
superior recommendation performance, with longer surveys.
However, time-wise it has only a very small advantage if the
total time spent on the survey is less than 30 seconds. In the
EachMovie data however, a rated response is always signifi-
cantly better than a binary one in all accounts. This study
can provide material to support decisions in deploying cold-
start recommender systems: if the goal is a short survey,
then using either binary or rated responses should have no
major difference, while rated responses could have a slight
advantage. However if the goal is a longer survey for more
accurate user responses, it is more likely that seeking rated
responses from the user would perform better.

5. CONCLUSIONS
In this paper we propose a new algorithm to learn deci-

sion trees with multiple dimensions selected for each split,
for applications in cold-start recommender systems. Based
on L1 regularization, a relaxation formulation is proposed to
optimize for each split. The new tree has users with hetero-

MoviePickalpha
Name (optional):

Answer the questions below. Your individual responses will be kept confidential.

For each item, select an option. When finished, click the "Submit" button.

What do you feel about the following movies?

The Royal Tenenbaums Like Dislike Unknown

Lost in Translation Like Dislike Unknown

Independence Day Like Dislike Unknown

Being John Malkovich Like Dislike Unknown

Submit ! Clear all !

What do you feel about the following movies? 1 (Dislike) to 5 (Like)

The Royal Tenenbaums 1 2 3 4 5 Unknown

Miss Congeniality 1 2 3 4 5 Unknown

American Beauty 1 2 3 4 5 Unknown

Pulp Fiction 1 2 3 4 5 Unknown

Submit ! Clear all !

Figure 4: Interview web interface with 2 types of

user input. Upper: binary. Bottom: rating scale.

geneous answers in the same node. Therefore regressors are
learned within each node based on previously given answers.
Experiments show that the algorithm outperforms state-of-
the-art approaches in terms of both the prediction accuracy
and user cognitive efforts. A user study is conducted to un-
derstand the efficient number and format of questions being
asked in a movie recommendation survey. The conclusion
is that the multiple movies per screen approach is more fa-
vorable to single movie per screen approach, and asking for
a rated response is more beneficial than a binary response,
especially in longer surveys.

The current framework focuses on collaborative filtering
recommendation and it does not take into account the con-
tent features such as user information and item attributes.
In the future, we may learn to ask questions based on hybrid
information of varying degree of granularity (e.g., genre, sub-
genre, director, actor, user age). Moreover, there are other
types of strategies to explore in terms of minimizing user ef-
forts. One example suggested in [25] supplies a list of items
and asks the users to choose some from them. Another sim-
ilar cold-start problem is to learn the profile for new items
by asking a few experienced users to rate them. In this case,
asking multiple users at each trial would also be preferable
because some users may not respond to a particular ques-
tion. We suspect that there are some duality between this
cold-start item problem and the current one, and the current
framework can be extended to handle this new task.

6. ACKNOWLEDGMENTS
Part of the work was supported by NSF IIS-1116886 and

a Yahoo! Faculty Research and Engagement award.

1 2 3 4 5 6 7
5

10

15

20

25

30

35

40

45

50

55

Screen Number

T
im

e
(s

ec
on

ds
)

w1Binary
w2Binary
w3Binary
w4Binary
w1Rate
w2Rate
w3Rate
w4Rate

0 5 10 15
5

10

15

20

25

30

35

40

45

50

55

Question Number

T
im

e
(s

ec
on

ds
)

w1Binary
w2Binary
w3Binary
w4Binary
w1Rate
w2Rate
w3Rate
w4Rate

Figure 5: Time of the interview process with different question number per screen. The horizontal axis of left

figure is the number of screen and the horizontal axis of right figure is the averaged number of accumulated

questions.

MovieLens Netflix EachMovie

R
M

S
E

v
s.

sc
re

e
n

1 2 3 4 5 6
0.916

0.918

0.92

0.922

0.924

0.926

0.928

w1Binary
w2Binary
w3Binary
w4Binary
w1Rate
w2Rate
w3Rate
w4Rate

1 2 3 4 5 6
0.91

0.912

0.914

0.916

0.918

0.92

0.922

0.924

0.926

0.928

0.93

w1Binary
w2Binary
w3Binary
w4Binary
w1Rate
w2Rate
w3Rate
w4Rate

1 2 3 4 5 6
1.3

1.305

1.31

1.315

1.32

1.325

1.33

1.335

1.34

1.345

w1Binary
w2Binary
w3Binary
w4Binary
w1Rate
w2Rate
w3Rate
w4Rate

Screen number Screen number Screen number

R
M

S
E

v
s.

q
u
e
st

io
n

0 2 4 6 8 10 12
0.916

0.918

0.92

0.922

0.924

0.926

0.928

w1Binary
w2Binary
w3Binary
w4Binary
w1Rate
w2Rate
w3Rate
w4Rate

0 2 4 6 8 10 12 14 16
0.91

0.912

0.914

0.916

0.918

0.92

0.922

0.924

0.926

0.928

0.93

w1Binary
w2Binary
w3Binary
w4Binary
w1Rate
w2Rate
w3Rate
w4Rate

0 5 10 15 20
1.3

1.305

1.31

1.315

1.32

1.325

1.33

1.335

1.34

1.345

w1Binary
w2Binary
w3Binary
w4Binary
w1Rate
w2Rate
w3Rate
w4Rate

Question number Question number Question number

R
M

S
E

v
s.

ti
m

e

0 10 20 30 40 50
0.916

0.918

0.92

0.922

0.924

0.926

0.928

w1Binary
w2Binary
w3Binary
w4Binary
w1Rate
w2Rate
w3Rate
w4Rate

0 10 20 30 40 50 60
0.91

0.912

0.914

0.916

0.918

0.92

0.922

0.924

0.926

0.928

0.93

w1Binary
w2Binary
w3Binary
w4Binary
w1Rate
w2Rate
w3Rate
w4Rate

0 10 20 30 40 50 60 70
1.3

1.305

1.31

1.315

1.32

1.325

1.33

1.335

1.34

1.345

w1Binary
w2Binary
w3Binary
w4Binary
w1Rate
w2Rate
w3Rate
w4Rate

Time (seconds) Time (seconds) Time (seconds)

Figure 6: The prediction RMSE with respect to screen number, question number and user time on three

datasets given different types of user answers. The Binary type expects users to answer like and dislike.

w2Binary, w3Binary and w4Binary are the tree models with 2, 3 and 4 questions on each screen respectively. In

the Rate type, user chooses from a 5-star rating scale. w2Rate, w3Rate and w4Rate are the tree models with 2, 3
and 4 questions on each screen respectively. Generally, rating scale provides richer information than binary

answers, which leads to better prediction accuracy. On the other hand, rating scale may take more user time

than binary answers.

7. REFERENCES
[1] D. Agarwal and B. Chen. Regression-based latent

factor models. In Proc. of the ACM SIGKDD, pages
19–28. ACM, 2009.

[2] C. Boutilier, R. Zemel, and B. Marlin. Active
collaborative filtering. In Proceedings of the Nineteenth

Conference on Uncertainty in Artificial Intelligence,
pages 98–106, 2003.

[3] J. Breese, D. Heckerman, and C. Kadie. Empirical
analysis of predictive algorithms for collaborative
filtering. In Proc. of Uncertainty in Artificial

Intelligence, 1998.

[4] L. Breiman, J. Friedman, R. Olshen, and C. Stone.
Classification and Regression Trees. Wadsworth and
Brooks, Monterey, CA, 1984.

[5] N. Golbandi, Y. Koren, and R. Lempel. On
bootstrapping recommender systems. In Proceedings of

the 19th ACM international conference on

Information and knowledge management, pages
1805–1808. ACM, 2010.

[6] N. Golbandi, Y. Koren, and R. Lempel. Adaptive
bootstrapping of recommender systems using decision
trees. In Proceedings of the fourth ACM international

conference on Web search and data mining, pages
595–604. ACM, 2011.

[7] A. Gunawardana and C. Meek. Tied boltzmann
machines for cold start recommendations. In
Proceedings of the 2008 ACM conference on

Recommender systems, pages 19–26. ACM, 2008.

[8] A. Harpale and Y. Yang. Personalized active learning
for collaborative filtering. In Proc. of ACM SIGIR

Conference, pages 91–98. ACM, 2008.

[9] L. He, N. Liu, and Q. Yang. Active dual collaborative
filtering with both item and attribute feedback. In
AAAI, 2011.

[10] J. L. Herlocker, J. A. Konstan, A. Borchers, and
J. Riedl. An algorithmic framework for performing
collaborative filtering. In Proc. of ACM SIGIR

Conference, 1999.

[11] T. Hofmann. Latent semantic models for collaborative
filtering. ACM Transactions on Information Systems,
22(1):115, 2004.

[12] R. Jin and L. Si. A bayesian approach toward active
learning for collaborative filtering. In Proceedings of

the 20th conference on Uncertainty in artificial

intelligence, pages 278–285, 2004.

[13] Y. Koren. Factor in the neighbors: Scalable and
accurate collaborative filtering. ACM Transactions on

Knowledge Discovery from Data, 4(1):1–24, 2010.

[14] N. D. Lawrence and R. Urtasun. Non-linear matrix
factorization with gaussian processes. In Proc. of the

ICML, 2009.

[15] D. M. Pennock, E. Horvitz, S. Lawrence, and C. L.
Giles. Collaborative filtering by personality diagnosis:
A hybrid memory- and model-based approach. In
Proc. of the Conference on UAI, 2000.

[16] P. Pu and L. Chen. User-involved preference
elicitation for product search and recommender
systems. AI Magazine, 29(4):93, 2009.

[17] A. Rashid, I. Albert, D. Cosley, S. Lam, S. McNee,
J. Konstan, and J. Riedl. Getting to know you:
learning new user preferences in recommender systems.

In Proceedings of the 7th international conference on

Intelligent user interfaces, pages 127–134. ACM, 2002.

[18] A. Rashid, G. Karypis, and J. Riedl. Learning
preferences of new users in recommender systems: an
information theoretic approach. ACM, 2008.

[19] J. Rennie and N. Srebro. Fast maximum margin
matrix factorization for collaborative prediction. In
Proc. of the International Conference on Machine

Learning, 2005.

[20] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and
J. Riedl. Grouplens: an open architecture for
collaborative filtering of netnews. In Proc. of the

Conference on CSCW, 1994.

[21] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl.
Item-based collaborative filtering recommendation
algorithms. In Proc. of the International Conference

on World Wide Web, 2001.

[22] A. I. Schein, A. Popescul, L. H. Ungar, and D. M.
Pennock. Methods and metrics for cold-start
recommendations. In Proc. of ACM SIGIR

Conference, pages 253–260. ACM, 2002.

[23] M. Schmidt. Graphical Model Structure Learning with

L1-Regularization. PhD thesis, The University of
British Columbia, 2010.

[24] M. Sun, G. Lebanon, and P. Kidwell. Estimating
probabilities in recommendation systems. In Proc. of

the International Conference on Artificial Intelligence

and Statistics, 2011.

[25] S. Yang, B. Long, A. Smola, and H. Zha.
Collaborative-competitive ltering: Learning
recommender using context of user choice. In Proc. of

ACM SIGIR Conference, 2011.

[26] K. Yu, S. Zhu, J. Lafferty, and Y. Gong. Fast
nonparametric matrix factorization for large-scale
collaborative filtering. In Proc. of ACM SIGIR

Conference, 2009.

[27] K. Zhou, S. Yang, and H. Zha. Functional matrix
factorizations for cold-start recommendation. In Proc.

of the ACM-SIGIR conference, pages 315–324, 2011.

