
Tail Attacks on Web Applications

Huasong Shan
†
, Qingyang Wang

†
, Calton Pu

∗

†Computer Science and Engineering Division, Louisiana State University, Baton Rouge, LA, USA
{hshan1, qwang26}@lsu.edu

∗College of Computing, Georgia Institute of Technology, Atlanta, GA, USA
calton@cc.gatech.edu

ABSTRACT
As the extension of Distributed Denial-of-Service (DDoS) attacks

to application layer in recent years, researchers pay much interest

in these new variants due to a low-volume and intermittent pattern

with a higher level of stealthiness, invaliding the state-of-the-art

DDoS detection/defense mechanisms. We describe a new type of

low-volume application layer DDoS attack–Tail Attacks on Web

Applications. Such attack exploits a newly identified system vulner-

ability of n-tier web applications (millibottlenecks with sub-second

duration and resource contention with strong dependencies among

distributed nodes) with the goal of causing the long-tail latency

problem of the target web application (e.g., 95th percentile response

time > 1 second) and damaging the long-term business of the ser-

vice provider, while all the system resources are far from saturation,

making it difficult to trace the cause of performance degradation.

We present a modified queueing network model to analyze the

impact of our attacks in n-tier architecture systems, and numer-

ically solve the optimal attack parameters. We adopt a feedback

control-theoretic (e.g., Kalman filter) framework that allows attack-

ers to fit the dynamics of background requests or system state by

dynamically adjusting attack parameters. To evaluate the practi-

cality of such attacks, we conduct extensive validation through

not only analytical, numerical, and simulation results but also real

cloud production setting experiments via a representative bench-

mark website equipped with state-of-the-art DDoS defense tools.

We further proposed a solution to detect and defense the proposed

attacks, involving three stages: fine-grained monitoring, identifying

bursts, and blocking bots.

CCS CONCEPTS
• Security and privacy→ Distributed systems security;Web
application security; Denial-of-service attacks;

KEYWORDS
Long-tail latency; milli-bottleneck; n-tier systems; pulsating attack;

web attack; DDoS attack

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CCS ’17, October 30-November 3, 2017, Dallas, TX, USA
© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-4946-8/17/10. . . $15.00

https://doi.org/10.1145/3133956.3133968

1 INTRODUCTION
Distributed Denial-of-Service (DDoS) attacks for web applications

such as e-commerce are increasing in size, scale and frequency [1, 5].

Akamai’s “quarterly security reports Q4 2016" [1] shows the spot-

light on ThanksgivingAttacks, theweek of Thanksgiving (involving

the three biggest online shopping holidays of the year: Thanksgiv-

ing, Black Friday, and Cyber Monday) is one of the busiest times of

the year for the retailers in terms of sales and attack traffic. Web

applications remain the most vulnerable entrance for any enterprise

and organization, so the attackers can exploit them to launch both

low-volume and stealthy application-layer DDoS attacks. On the

other hand, in web applications especially e-commerce websites,

fast response time is critical for service providers’ business. For

example, Amazon reported that an every 100ms increase in the page

load is correlated to a decrease in sales by 1% [24]; Google requires

99 percentage of its queries to finish within 500ms [10]. Emerg-

ing augmented-reality devices (e.g., Google Glass) need the associ-

ated web applications with even greater responsiveness in order

to guarantee smooth and natural interactivity. In practice, the tail

latency, rather than the average latency, is of particular concern for

response-time sensitive web-facing applications [6, 10, 11, 18, 40].

In this paper we present a new low-volume application-layer

DDoS attack–Tail Attacks, significantly worsening the tail latency

on web applications. Web applications typically adopt n-tier archi-

tecture in which presentation (e.g., Apache), application processing

(e.g., Tomcat), and data management (e.g., MySQL) are physically

separated among distributed nodes. Previous research on perfor-

mance bottlenecks in n-tier systems [41–43] shows that very short

bottlenecks (VSBs) or millibottlenecks (with sub-second duration)

with dependencies among distributed nodes not only cause queuing

delay in local tier, but also cause significant queuing delay in up-

stream tiers in the invocation chain, which will eventually cause the

long-tail latency problem of the target system (e.g., 95th percentile

response time > 1 second). More importantly, this phenomenon usu-

ally starts to appear under moderate average resource utilization

(e.g., 50%) of all participating nodes, making it difficult to trace the

cause of performance degradation. In the scenario of Tail Attacks,

an attacker sends intermittent bursts of legitimate HTTP requests

to the target web system, with the purpose of triggering millibot-

tlenecks and cross-tier queue overflow, creating “Unsaturated DoS”

and the long-tail latency problem, where denial of service can be

successful for short periods of time (usually tens or hundreds of

milliseconds), which will eventually damage the target website’s

reputation and business in the long term.

The study of Tail Attacks complements previous research on

low-rate network-layer DDoS attacks [12, 14, 21, 22, 25, 27, 39],

https://doi.org/10.1145/3133956.3133968

Figure 1: Attack scenario and system model

low-volume application-layer DoS Attacks [8, 28], and flash crowds

(usually tens of seconds or minutes) [19, 38, 44] which refer to the

situation when thousands of legitimate users suddenly start to visit

a website during tens of seconds or minutes due to a flash event (e.g.,

during the week of Thanksgiving). The uniqueness of Tail Attacks

from previous research is that Tail Attacks aim to create very short

(hundreds of milliseconds) resource contention (e.g., CPU or disk

I/O) with dependencies among distributed nodes, while giving an

“Unsaturated illusion" for the state-of-the-art IDS/IPS tools leading

to a higher level of stealthiness.

The most challenging task for launching an effective Tail Attack

is to understand the triggering conditions of millibottlenecks inside

the target web system, and quantify their long-term damages on

the overall system performance. To thoroughly comprehend the

attack scenario, we exploit the traditional queueing network theory

to model the n-tier system, and analyze the impact of our attacks

to the end-users and the systems through two new proposed met-

rics: damage length during which the new coming requests can be

dropped with highly probability, and millibottleneck length during

which the bottleneck resources sustain saturation. To fit the dynam-

ics of background requests and system state, we develop a feedback

control framework. Given the guide of the proposed model and

the implementation based on the feedback control algorithm, we

can effectively control the attacks, and find that our attacks can

not only achieve high attack efficiency, but also escape the detec-

tion mechanisms based on human-behavior models, which further

increases the stealthiness of the attack.

In brief, this work makes the following contributions:

• Proposing Tail Attacks by exploiting resource contention

with dependencies among distributed nodes, that can signif-

icantly cause the long-tail latency problem in web applica-

tions while the servers are far from saturation.

• Modeling the impact of our attacks on n-tier systems based-

on queueing network theory, which can effectively guide

our attacks in an even stealthy way.

• Adopting a feedback control-theoretic (e.g., Kalman filter)

framework that allows our attacks to fit the dynamics of

background requests and system state by dynamically tuning

the optimal attack parameters.

• Validating the practicality of our attacks through not only

analytical, numerical, and simulation results but also real

experimental results of a representative benchmark website

equipped with state-of-the-art DDoS defense tools in real

cloud production settings.

• Presenting a conceptual solution to detect and defense the

proposed attacks, involving three stages: fine-grained moni-

toring, identifying bursts, and blocking bots.

We outline the rest of this paper as follows. Section 2 describes

an attack scenario and the practical impact of Tail Attacks in real

cloud production settings. Section 3 models our attack scenarios

in an n-tier system using queueing network theory, and provides

an effective approach to solve the potential optimal attack parame-

ters numerically. Further, we evaluate the attack analytical model

in JMT [7] simulator environment and suggest several guidelines

to choose the optimal attack parameters in more complex cases

(e.g., the competition for free slots of a queue between attack re-

quests and normal requests, overloaded attack requests can be also

dropped by the front-tier server). Section 4 describes our concrete

implementation to launch Tail Attacks in real web applications. We

adopt Kalman filter, a feedback control-theoretic tool, to automati-

cally adjust the optimal attack parameters fitting the dynamics of

target system state(e.g., dataset size change) and background work-

load. Section 5 shows our attack results of RUBBoS [34] benchmark

website we have conducted in real cloud production settings, which

further confirm the effectiveness and stealthiness of the proposed

attacks, and the practicality of the control framework in more prac-

tical Web environments. Section 6 provides a “tit-for-tat" strategy

to detect and defend our attacks targeting the unique scenario and

feature of the proposed attack. Section 7 discusses some additional

factors that may impact the effectiveness of Tail attacks. Section 8

presents the related work and Section 9 concludes the paper.

2 SCENARIO AND MOTIVATIONS
Attack Scenario. Consider a scenario of a Tail attack in an n-tier

system in Figure 1. The detailed model analysis and experimental

95ile RT 98ile RT 99ile RT Avg. RT

Setting W/o
att.

Att. W/o
att.

Att. W/o
att.

Att. W/o
att. Att.

EC2-111-2K 255 1347 267 1538 308 1732 192 273

EC2-1212-4K 247 1139 282 1341 328 1683 170 218

EC2-1414-6K 263 1085 270 1285 312 1628 160 206

Azure-111-1K 251 1153 274 1295 295 1821 176 290

Azure-1212-2K 254 1090 278 1284 295 1507 177 221

Azure-1414-3K 264 1090 297 1314 325 1510 181 242

NSF-111-1K 141 1217 151 2262 159 7473 90 327

NSF-1212-2K 128 1101 143 1502 167 7016 88 309

NSF-1414-3K 118 1014 122 1413 127 3152 71 268

W/o att.: Without attacks, Att.: under Tail Attacks, RT: response time(ms)

Table 1: The measured long-tail latency under Tail Attacks
in real cloud production setting.

data of Tail Attacks are in the following sections. By alternating

short “ON" and long “OFF" attack burst, an attacker guarantees

the attack both harmful and stealthy. Short “ON" attack burst is

typically on the order of milliseconds. The following sequence of

causal events will lead to the long-tail problem at moderate average

utilization levels during the course of Tail Attacks. (Event1) The
attackers send intermittent bursts of attack but legitimate HTTP re-

quests to the target system during the “ON" burst period; each burst

of attack requests are sent out within a very short time period (e.g.,

50ms). (Event2) Resource millibottlenecks occur in some node, for

example, CPU or I/O saturates for a fraction of a second due to the

burst of attack requests. (Event3) A millibottleneck stops the satu-

rated tier processing for a short time (order of milliseconds), leading

to fill up the message queues and thread pools of the bottleneck tier,

and quickly propagating the queue overflow to all the upstream

tiers of the n-tier system as shown in Figure 1b. (Event4) The fur-
ther incoming packets of new requests are dropped by the front tier

server once all the threads are busy and TCP buffer overflows in the

front tier. (Event5) On the end-user side, the dropped packets are

retransmitted several seconds later due to TCP congestion control

(minimum TCP retransmission time-out is 1 second [16]), the end

users with the requests encountering TCP retransmissions perceive

very long response time (order of seconds).

Long “OFF" attack burst is typically on the order of seconds, in

which the target system can cool down, clearing up the queued

requests and returning back to a low occupied state shown in Fig-

ure 1a. Unlike the traditional flooding DDoS attacks which aim to

bring down the system, our attack aims to degrade the quality of

service by causing the long-tail latency problem for some legiti-

mate users while keeping the attack highly stealthy. The alternating

short “ON" and long “OFF" attack burst can effectively balance the

trade-off between attack damage and elusiveness.

Measured Long-Tail Latency. Table 1 shows the impact of Tail

Attacks through concrete benchmark web application with real

production settings deployed in the most popular two commercial

Param. Description

Qi the queue size for the ith tier

Ci,A the capacity serving attack requests for the ith tier

Ci,L the capacity serving legitimate requests for the ith tier

λi the legitimate request rate terminating in the ith tier

B the attack request rate during a burst

L the burst length during a burst

V the burst volume during a burst

T the interval between every two consecutive bursts

li the time to fill up the queue of the ith tier

PD the period of the requests dropped during a burst

PMB the period of a millibottleneck during a burst

ρ(L) the average drop ratio during a burst

ρ(T) the drop ratio during the course of an attack

Table 2: Model parameters

cloud platforms (Amazon EC2 [3], Microsoft Azure [29]) and one

academic cloud platform (NSF Cloudlab[31]). We use a notation

CloudPlatform-ServerTiers-BaselineWorkload to denote the cloud

platform, the configuration of the n-tier system, and the background

workload. For Server Tiers, We use a four-digit (or three-digit) nota-

tion #W#A#L#D to denote the number of web servers, application

servers, load-balance servers (may not be configured), and database

servers. More experimental details are available in Section 5.1. Ta-

ble 1 compares the tail latency of the target system under attack and

without attack, indicating the significant long tail latency problem

under attack. Such long tail latency problem (e.g., 95th percentile

response time > 1 second) is considered as severe performance

degradation by most modern e-commerce web applications (e.g.,

Amazon) [6, 10, 11, 18, 24]. At the same time, the average response

time is still in acceptable range under attack, making the illusion

of “business as usual" for system administrators.

3 TAIL ATTACKS MODELING
In this section, we provide a simple model to analyze the impact of

our attacks to the end-users and the victim n-tier system. Based-on

the simplified model we introduce an effective approach of getting

the potential optimized attack parameters to achieve our attack

goal. Finally, we evaluate the model via simulation experiments

and suggest several approaches to tune the attack parameters.

3.1 Model
Queueing network models are commonly used to analyze the per-

formance problems in complex computer systems [23], especially

for performance sizing and capacity provision. Here, we use a well-

tuned queuing network to model n-tier systems, and analyze the

sequence of causal events and the impact in the context of Tail

Attacks shown in Figure 1. Table 2 summarizes the notation and

description of the parameters used in our model. The basic attack

pattern (see Event1 in Section 2) shown in Figure 1 is that during

the “ON" burst period (L) the attackers send a burst of attack re-

quests with the rate (B), after the “OFF" burst period (T-L) they send
another burst again, and repeat this process during the course of

a Tail attack. If all the attack requests will not be dropped by the

target system (more complex case will be discussed in Section 3.3),

we can calculate the attack volume during a burst by:

V = B ∗ L (1)

We assume that the external burst of legitimate HTTP requests

(Event1 in Section 2) can cause sudden jump of resource demand

flowing into the target system and cause millibottlenecks (Event2

in Section 2) in the weakest point of the system [12]. In our model

analysis, we assume that the n-th tier is the bottleneck tier. For

example, the bottleneck typically occurs in the database tier (the

n-th tier) in web applications due to the high resource consumption

of database operations.

Due to the inter-tier dependency (call/response RPC style com-

munication) in the n-tier system, one queued request in a down-

stream server holds a thread in every upstream server. Thus, the

system administrator typically configures the queue size of up-

stream tiers bigger than the queue size of downstream tiers. In this

case, millibottlenecks (Event2 in Section 2) caused by overloaded at-

tack bursts can lead to cross tier queue overflow from downstream

tiers to upstream tiers (Event3 in Section 2) due to the strong de-

pendency among n-tier nodes. If the queue size satisfies
(C1) Q1 > Q2 > ... > Qn−1 > Qn

and the burst rate satisfies
(C2) λn + B > Cn

for all i=1,...,n, then the time needed to fill up the queue for the n-th
server is approximately

ln =
Qn

(λn + B −Cn,A)
(2)

ln−1 =
(Qn−1 −Qn)

(λn−1 + λn + B −Cn,A)
(3)

...

l1 =
(Q1 −Q2)

(
∑n
i=1 λ i + B −Cn,A)

(4)

When millibottlenecks occur in the n-th server, firstly the queue

in the n-th tier is overflown during ln , which equals the available

queue size of the n-th tier divided by the newly-occupied rate for

the queue of the n-th tier in Equation 2. The available queue size

equals the queue size of each tier subtracting the queue size of

its directly downstream tier. The newly-occupied rate equals the

incoming rate of each tier subtracting the outgoing rate of the

total system (Cn,A), the incoming rate of the n-th tier includes the

requests going through the n-th tier and terminating in the n-th
tier (B for the attack requests and λn for the normal requests). We

carefully choose the attack requests [40] guaranteeing the attack

requests go through every tier and terminate in the last bottleneck

tier (detailed implementation in Section 4.2). Equation 3 represents

the time to fill up the queue in the n-1-th tier. Because one queued

request in a downstream server holds a position in the queue of

every upstream server, after the n-th tier is full, the available queue

size of the n-1-th tier should be (Qn−1 - Qn). All the requests arriving

to a downstream tier need to go through every upstream tier, thus

the incoming rate of the n-1-th tier includes the request rate of

terminating in the n-1-th tier (λn−1) and the request rate of going

through the n-1-th tier (λn + B). Similarly, we can calculate the

time to fill up every queue in the n-tier system during the process

of propagating the queue overflown. Finally, the required time to

overflow all the queues in the n-tier system is the sum of li . Here,
Q, C, and λ are constants. li is a function of B.

Once all the queues are overflown (Event3 in Section 2) in the

n-tier system, the new incoming requests may be dropped by the

front tier (Event4 in Section 2). We term the period of the requests

dropped during a burst as damage length. If the attackers continue
to send attack requests to the system with overflown queues, and

we assume that attack requests can always occupy the free position

of the queue in the system (more complicated case will be discussed

in Section 3.3), then we can approximately infer damage length by:

PD = L −
n∑
i=1

l i (5)

Further, the end-users with the dropped requests perceive very long

response time (Event5 in Section 2), leading to the long-tail latency

problem caused by our attacks (Event1 in Section 2), which can be

approximately estimated as follows,

ρ(T) =
PD
T

(6)

During a burst, the servers need to provide all the required com-

puting resources (including bottleneck resources) to serve both

attack requests and normal requests. We term the period of a milli-

bottleneck during a burst as millibottleneck length, during which

bottleneck resources sustain saturation. Thus,millibottleneck length
should involve the resource consumption for both attack and nor-

mal requests during a burst. Equation (7) represents millibottleneck
length derived through the geometric progression in mathematics

(more detailed derivation of this equation in Appendix A).

PMB = V ∗
1

C n,A
∗

1

(1 − (λn ∗
1

C n,L
)) (7)

where 1/Cn,A and 1/Cn,L are the service time for attack and normal

requests in the bottleneck tier, respectively.

3.2 Numerically Solve Attack Parameters
Based on the model, we can infer the damage and elusiveness of our

attacks through damage length and millibottleneck length. Further,

if we assign the attack goal and know system parameters, we can

calculate the optimal attack parameters mathematically.

Constant Parameters Estimation. To get some reasonable con-

stant parameters(λ,Ci,A,Ci,N ,Q) in the model, we estimate these

constants via profiling the service time of each type of request of

each component tier in the benchmark web-site RUBBoS [34](more

details in Section 5.1), the capacity of each tier Ci can be calculated

from the service time. We choose heavy requests (e.g., long service

time by consuming more system bottleneck resource, detailed ex-

planation in Section 4.2) as attack requests. Table 3 lists a group of

reasonable values of the constants for our model profiled in RUB-

BoS. During the profiling, we choose 2000 legitimate users with

7-second think time as our baseline experiment. All the transactions

supported by RUBBoS are terminated in MySQL, each transaction

follows a static page-load terminated in Apache, and no transaction

terminates in Tomcat. Thus, the request rate of each tier λi is 280,
0, and 280, respectively. We set the queue size of each server Qi
satisfying the condition C1 in Equation (2).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 100 200 300 400 500 600

B
u

r
st

 L
e
n

g
th

 L
 [

s]

Attack Rate B [#/s]

PD >= 0.1
PMB <= 0.5

L <= 0.5

(a) There exists an overlapped fea-
sible zone below the dash line
PMB and above the solid line PD .

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 100 200 300 400 500 600

B
u

r
st

 L
e
n

g
th

 L
 [

s]

Attack Rate B [#/s]

PMB <= 0.5
PD >= 0.1, Q=30
PD >= 0.1, Q=80

PD >= 0.1, Q=130
L <= 0.5

(b) As Q increases, the feasible
zone narrows down until no so-
lution when Q is 130 (red line).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 100 200 300 400 500 600

B
u

r
st

 L
e
n

g
th

 L
 [

s]

Attack Rate B [#/s]

PMB <= 0.5
PD >= 0.2
PD >= 0.1

PD >= 0.05
L <= 0.5

(c) Various target PD . No solu-
tion when PD is > 0.2s (red line),
since no overlap exists.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 100 200 300 400 500 600

B
u

r
st

 L
e
n

g
th

 L
 [

s]

Attack Rate B [#/s]

PD >= 0.1
PMB <= 0.3
PMB <= 0.5
PMB <= 0.7

L <= 0.5

(d) Various target PMB . No so-
lution when PMB is < 0.3s (red
line), since no overlap exists.

Figure 2: Numerically solve the optimal attack parameters. Solid line depicts damage length, the target zone is above the solid
line; and dash line depicts millibottleneck length, the target zone is below the dash line.

Server Tier (i) λi Ci,A Ci,L Qi
Apache 1 280 3443 3657 55

Tomcat 2 0 1300 1987 25

MySQL 3 280 280 725 6

Table 3: Constant parameters estimation profiled in RUB-
BoS experiment with 2000 concurrent users.

Attack Goal and Solver. Suppose that we set our attack goal as

95th percentile response time longer than 1 second which is a severe

long-tail latency problem for most e-commerce websites [6, 10, 11,

18], and the duration of a millibottleneck less than 0.5 seconds in the

bottleneck tier such that the average utilization can be at moderate

level (e.g., 50-60%) to bypass the defense mechanisms. If we assume

the burst interval T is 2 seconds, then the input to the model can

be two inequations: damage length PD is bigger than 0.1 seconds

and millibottleneck length PMB is less than 0.5 seconds. Further,

we turn these two inequations to L as a function of B, the others
parameters are all constants(Inequation (8) and (9)).

L >=
n∑
i=1

l i + 0.1 =
Qn

(λn + B −Cn,A)

+
(Qn−1 −Qn)

(λn−1 + λn + B −Cn,A)

+... +
(Q1 −Q2)

(
∑n
i=1 λ i + B −Cn,A)

+ 0.1

(8)

L <= 0.5 ∗ (1 − λn ∗
1

Cn,L
) ∗

Cn,A
B

(9)

Thus, the problem of selecting a set of optimal attack parameters

(B,L,V,T) can become a nonlinear optimization problem. Although

nonlinear optimization problem is hard to solve since there exist

multiple feasible regions and multiple locally optimal points in

those regions, we can add more constraints to narrow the range of

feasible regions. For instance, the burst length obviously should be

less than target millibottleneck length(e.g.,L <= 0.5).

Substituting the constant parameters in Inequation (8) and (9), we

can get an unique feasible region as the potential attack parameters

shown in Figure 2a. In real cloud production settings, the queue

size must be diverse according to the capacity of the websites.

In Figure 2b, we can see that as the queue of the front tier (e.g.,

Apache) increases from 30 to 80, the feasible region reduces; when

it increases to 130 (the red line), the two inequations do not overlap,

which implies that there is no solution to satisfy our predefined

attack goal. The fundamental reason is that our attack goal is too

strict, which seems to be an impossible mission. Note that when the

queue of the front tier is 80, in the strictest attack target cases (PD
>= 0.2 seconds, the red line in Figure 2c; or PMB <= 0.3 seconds,

the red line in Figure 2d), there is also no solution that can solve

the attack parameters of our attacks. We will further discuss how

to deal with the non-solution cases in Section 4.1.

3.3 Simulation Experiments
The numerical solver in the previous section does not considermany

aspects of the real system (e.g., the competition of the free position

in the queue between attack requests and normal requests, over-

loaded attack requests can be dropped, etc.). To further validate the

simple model, we present results from Java Model Tools(JMT) [7] in

which such limitations are absent. JMT is an open source suite for

modeling Queuing Network computer systems. It is widely used in

the research area of performance evaluation, capacity planning in

n-tier systems. Thus, it is a natural choice to evaluate the impact of

our attacks in n-tier systems. We modify the JMT code and simulate

the bursts of attack requests for our attacks with the configurable

attack parameters in our model.

Given the proposed model and the idea of solving the nonlin-

ear optimization problem, we can get the feasible region of attack

parameters. We initialize the parameters in JMT similar to the set-

ting of our numerical solver, and choose a potential optimal point

(400,0.215) in Figure 2a as our attack parameters, the attack rate B
is 400 requests per second and the burst length L is 0.215 seconds,

so the attack volume per burst V is 86 (see equation (1)) if all the

attack requests will not be dropped by the target system.

Results in JMT Figure 3 shows the results of one burst during

1 second time period using fine-grained monitoring (e.g., 50 mil-

liseconds) in JMT expriment. Figure 3a illustrates the process of

filling up all the queues in the n-tier system. Note that the queue of

MySQL, Tomcat, and Apache is overflow from down-stream tiers

 0

 30

 60

 0 0.2 0.4 0.6 0.8 1Q
u

e
u

e
 U

s
a
g
e
 [

#
]

Timeline [s]

Apache Tomcat MySQL

(a) Process of filling up the queues in
3-tier system, queue overflow are propa-
gated from the bottleneck tier (MySQL) to
the upstream tiers (Tomcat, then Apache).

 0
 20
 40
 60
 80

 100

 0 0.2 0.4 0.6 0.8 1 C
P

U
 U

s
a
g
e
 [

%
]

Timeline [s]

Apache Tomcat MySQL

(b) Millibottleneck length (MySQL CPU)
is less than the expected value 500ms,
since overloaded attack requests are also
dropped by the front tier (Apache).

 0

 3

 6

 0 0.2 0.4 0.6 0.8 1D
r
o
p

p
e
d

 R
e
q

.
[#

]

Timeline [s]

Attacker
Normal User

(c) The shift of the amount of dropped re-
quests during damage length shows the
competition for the available slot of the
queue freed by the outgoing requests.

Figure 3: Results of one burst during 1 second period in JMT experiment

to up-stream tiers overtime. The CPU saturations of the bottleneck

tier MySQL last approximately 400 milliseconds as shown in Fig-

ure 3b, less than the expected value 500 milliseconds calculated

by our model, since overloaded attack requests are also dropped

by the front tier which will not go through the front tier and into

the bottleneck tier. Figure 3c shows dropped requests perceived

by attackers and legitimate users in the corresponding burst. Note

that the dropped requests span two sampling duration (100 millisec-

onds), validating our model expectation for the dropped length. The

interesting observation is that the dropped requests from attackers

is bigger than ones from legitimate users at the time of 0.15, the

opposite phenomenon happens in the next sampling windows at

the time of 0.2. This implies that the requests from the attacker and

ones from the legitimate users compete the available position of

the queue freed by the outgoing request in the n-tier system during

damage period [28], eventually the loser will be dropped.

However, when we aggregate the data of the legitimate users

during the 3-minute simulation experiment, the amount of dropped

requests is 1099 and the total requests is 54901, thus the actual drop

ratio for the legitimate users is 2%, which is far from the predefined

goal of the drop ratio 5%. From this observation, we should calibrate

the drop ratio from Equation 6 to

ρ(T) =
PD ∗ ρ(L)

T
(10)

Here, ρ(L) refers to the average drop ratio for the requests of the

legitimate users during damage length, which represents the com-

petition ability for attack requests compared to normal requests. In

the previous JMT experiment, ρ(L) is approximately 0.4.

Tuning the Attack Parameters. Due to the existence of the com-

petition between the attackers and the legitimate users, the attack-

ers may fail to get the predefined attack goal (e.g., 95th percentile

response time > 1 second) by using the recommended attack param-

eters of the proposed model. We further investigate how to increase

the competition ability of attack requests, and the drop ratio of the

requests from the legitimates users during damage length, namely

ρ(L). Finally, the attackers can choose the optimal attack parameters

to achieve high damage with low cost and high stealthiness. For

simplicity, we assign attack interval T as fixed value (say, 2 seconds),

since our focus on this paper is to investigate how to effectively

trigger the millibottlenecks which is predominantly determined by

Attack Para. Legitimate Users
B L Dropped Reqs. Total Reqs. ρ(T)
300 0.285 1096 55998 0.0196

400 0.215 1099 54901 0.0200

500 0.173 1705 54292 0.0314

600 0.144 2082 53915 0.0386

700 0.123 2326 53671 0.0433

800 0.108 2399 53598 0.0448

Table 4: Fix burst volume V=86. Bigger BHigher ρ(T), imply-
ing higher competition ability for the burst with larger B.

the other three parameters (B,L,V). Due to interdependent relation-

ship of these three parameters in Equation 1, we fix one parameter

(L or V), then observe the impact with various attack rate B. We still

consider the marked potential optimal point (400,0.215) in Figure 2a

as our baseline attack parameters.

First, we fix burst volume V as 86, and select a set of attack

rate (from 300 to 800) to conduct our attack experiments using JMT.

Table 4 shows that as the attack rate increases, the drop rate ρ(T) ac-
cordingly increases, which confirms that higher attack request rate,

compared to normal request rate, can achieve higher competition

ability to seize the available position in the queue.

Next, we fix burst length L as 0.215 seconds, and select another

set of attack rate to conduct our JMT experiments. Figure 4 depicts

ρ(T) and ρ(L) as a function of the ratio of attack rate and service

rate for the bottleneck tier. We mark two vertical lines to split up

into three zones with various attack rate B. (1) In zone a, B is less

than Cn,A, the drop ratios are all zero, since the attack rate is too

low to trigger an effective millibottleneck to lead to cross tier queue

overflown in the target system, which violates the condition C2
in Equation 2. (2) In zone b, B is bigger than Cn,A , the drop ratio

increases non-linearly as B increases. Observe that ρ(L) of Normal

Users is a little bit bigger than ρ(L) of Attackers, because B is bigger

than λn . In this case, the requests from the attackers can seize

the available position in the queue with a more highly probability

than ones from the legitimate users. (3) In zone c, B is bigger than

C1,A, the attack requests are directly dropped by the most front

tier, thus the increase of B does not contribute to the drop ratio of

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 5 10 15 20

a b c
ρ(

T
)

B/Cn

Normal Users

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

a b c

ρ(
L

)

B/Cn

Normal Users Attackers

Figure 4: Fix burst length L=0.215 seconds. (1) in Zone a, B < Cn, B is too low to trigger effective millibottlenecks; (2) in Zone b,
B > Cn , the bottleneck is in n-th tier, ρ(T) increases as B increases; (3) in Zone c, B>C1, the attack requests are directly dropped
by the most front tier, no obvious attack effect (ρ(T) is flat) even though B increases tremendously, implying that we should
choose a moderate B until the attack goal is achieved (e.g., the green horizontal line is a target).

Figure 5: A feedback control framework

the legitimate users, it only increases the drop ratio itself. Given

this observation, we should choose a moderate B until the attack

goal is achieved (e.g., the green horizontal line in Figure 4).

4 TAIL ATTACKS IMPLEMENTATION
4.1 Overview
As mentioned before, the analytical model used in the numerical

solver analyzes the simple scenario skipping many aspects of the

system reality (e.g., the competition for the free position of the

queue between attack requests and normal requests, overloaded at-

tack requests can be dropped, etc.), and the simulation experiments

show more complicated cases involving the absent system real-

ity. However, our attacks do not consider more realistic case with

dynamics of baseline workload
1
or system state(e.g., dataset size

change). For example, the peak workload occurs at approximately

1:00 p.m. during the week of Thanksgiving [1]. A set of effective

attack parameters of Tail Attacks may become failed ones over

1
For e-commerce applications, the baseline workload during the day time is usually

significantly higher than that during the mid-night period.

time, either it can not trigger millibottlenecks (not enough attack

requests) or it might trigger the defense alarm of the target system

(too frequent or massive attack requests). How can we dynamically

adjust the attack parameters catering to instant system state and

baseline workload is a big challenge for Tail Attacks. The static

attack parameters in the dynamical environment may make the

attack either invalid like a “mosquito bite" or easily exposed to the

detection mechanisms. In this section, we implement a feedback

control-theoretic (e.g., Kalman filter) framework that allows attack-

ers to fit the dynamics of background requests or system state by

dynamically adjusting the optimal attack parameters in Figure 5.

Via our best practice, we find that the attack rate should not

be invariable to maximize the attack effectiveness and stealthi-

ness. [25] suggests a double-rate DoS steam to minimize the at-

tack cost. We design a three-stage transmitting strategy to send

one burst: Quickly-Start , Steadily-Hold and Covertly-Retreat. In

Quickly-Start stage, the attacker sends the burst of requests at a

high rate to quickly fill up all the queues in the n-tier system, heavy
requests (detailed explanation in Section 4.2) are preferred because

it can consume more bottleneck resources and occupy the queue

longer with low cost and high stealthiness, the amount of heavy

 0

 100

 200

 300

 400

 0 0.2 0.4 0.6 0.8 1

Q
u

eu
e

U
sa

g
e

[#
]

Timeline [s]

Apache queue size

Start Hold(Damage Length) Retreat

Millibottleneck Length

Apache Tomcat MySQL

Figure 6: Queue shifts during a three-stage burst(quickly-
start, steadily-hold, covertly-retreat)

requests during this stage should be large enough to temporar-

ily saturate the bottleneck resource in the target system [40]. In

Steadily-Hold Stage, the attacker should guarantee the queue can

be overflown during this stage and attack requests can seize the

free position in the queue with highly probability. Heavy requests
are not necessary to serve as attack requests during this stage. We

prefer light requests to hold on queue, such that in the last Covertly-

Retreat stage, the attack requests can quickly and covertly leave

the systems. In Covertly-Retreat stage, there is no attack request to

be sent out. Figure 6 demonstrates the queue shifts during a three-

stage burst. Through the strategy of variable attack rate and various

attack requests, we can solve the insolvable cases in Section 3.2 by

carefully choosing less heavy requests as attack requests.

Return back to our model in Equation 5, we can see the rela-

tionship between PD and the attack rate B were nonlinear. We can

transfer PD as a function of V and B using equation 1:

PD =
V

B
−

n∑
i=1

l i (11)

If we fix the attack rate B, mathematically, PD and the attack vol-

ume V have a linear relationship; the same as PMB (see Equation 7).

These linear relationships provide us with a firm theoretical founda-

tion to dynamically adapt the optimal attack parameters fitting the

changes of system state and baseline workload. The overall control

algorithm can be described in Algorithm 1.

4.2 Estimator
The Estimator, as illustrated in Figure 5, estimates three critical

metrics in the control algorithm implementing the proposed model:

service time of the requests, damage length PD , and millibottleneck

length PMB . We use a prober to monitor attacks and infer PD ,
coordinate and synchronize bots to launch attacks and infer PMB .

Estimating Service Time. Service time of a HTTP request is the

time that the target web system needs to process the request without

any queuing delay. It is easy to calculate the end-to-end response

time of a request using two time stamp of sending requests and

receiving responses [26], we term them start-time and end-time
of a HTTP request. The end-to-end response time of a request

Algorithm 1 Pseudo-code for the control algorithm

1: procedure AdaptAttackParameters
2: AttackReqST← EstimateServiceTime
3: DamLen← EstimateDamageLenByProber
4: MBLen← EstimateMilliBottleneckLenByBots
5: if DamLen = 0 then
6: /* can not fill up queue, increase B */

7: B← B + stepB
8: else
9: gapDamLen← Abs(DamLen - targetDamLen)
10: stepV← gapDamLen/AttackReqST
11: if DamLen > targetDamLen then
12: /* reduce damage length by decreasing V */

13: V← V − stepV
14: else if DamLen < targetDamLen then
15: /* increase damage length by increasing V */

16: V← V + stepV
17: else
18: /* current values are the optimal parameters. */

19: end if
20: end if
21: if MBLen > targetMBLen then
22: /* set max V */

23: Vmax← targetMBLen/AttackReqST
24: V← Vmax
25: /* choose less heavy requests as attack requests */

26: end if
27: end procedure

equals the difference between end-time and start-time. Typically,
the end-to-end response time of a HTTP request involves three

parts: the network latency between the client and the target web

application, the queuing delay in the n-tier system, and the service

time of each server. The network latency can be measured using

the ping command. When the target system is at low utilization, the

queuing effect inside the target system can be ignored. Thus, we

can approximately estimate the service time of any HTTP request

supported by the target web system as the end-to-end response

time subtracting the network latency when the target system is in

the time block with a low workload. Since the service time of the

estimated request may drift over time (e.g., due to changes in the

data selectivity and the network latency variation) in real appli-

cations, we measure the service time of a HTTP request multiple

times and take the average.

Previous research results [41] show that the predominant part of

the service time of a request is spent on the bottleneck resource in

the system.We call the requests that heavily consume the bottleneck

resource as heavy requests with long service time (e.g., the request

querying multi-tables in the database) while those consume no or

little bottleneck resource as light requests with short service time

(e.g., static requests) [40]. Thus, the prober naturally exploits light
requests to monitor the impact of the attacks since it can be more

elusive under the radar without causing any alert of the target web

(a) Estimate PD by start-time
of the last dropped probing
request subtracting start-time
of the 1st dropped probing re-
quest during an attack burst.

(b) Infer PMB by end-time of
the last non-dropped attack re-
quest subtracting end-time of
the 1st non-dropped attack re-
quest during a interval.

Figure 7: Demonstration of inferring damage length andmil-
libottleneck length by Estimator.

system; and the bots can take heavy requests as candidate attack
requests since it can be more efficient causing millibottlenecks and

cross tier queue overflow. More advance technology about profiling

heavy requests will be discussed in Section 7.

Through profiling and exploiting heavy requests [40], Tail At-

tacks can transiently saturating the critical bottleneck resource (e.g.,

database CPU) of the target systems, which can saturate the critical

resource of the system with much lower volume (thus less bots

are needed) compared to that of traditional flooding DDoS attacks

which usually try to fully saturate the target network bandwidth.

Estimating damage length PD . To estimate PD , the prober needs
to send probing requests (e.g., light requests) to the target web

system at a predefined rate and record start-time and end-time of
a probing request. The recommended sending interval of probing

requests is less than the target damage length, in the case, any

probing request may not miss the period of overflown queue caused

by an attack burst and the prober can sense PD [22]. Figure 7a

illustrates the implementation approach to estimate PD as start-
time of the last dropped probing request subtracting start-time of
the first dropped probing request during a burst. Since some probing

requests may probably seize the free position in the queue and are

not be dropped during the damage length, we can calibrate PD by

multiplying ρ(L) (see equation 10). Some websites may send some

alarm to the users if they send the requests at a very high rate. In

this case, the prober can send the probing requests at an acceptable

rate for the target web system and estimate the drop ratio during a

sampling period, then our control algorithm can exploit drop ratio

as the target criterion to dynamically adjust the attack parameters.

Estimating millibottleneck length PMB . After sending a burst

of attack requests (e.g., heavy requests) to the target web system,

the bots can record start-time and end-time of an attack request

and estimate PMB . We only count the non-dropped attack requests,

since the dropped request involves TCP retransmission time-out.

There are two options to infer PMB . One way is end-time of the
last non-dropped attack request subtracting start-time of the first
non-dropped attack request during one attack interval. As we men-

tion before, the end-to-end response time of a HTTP request in-

volves three parts: the network latency, the queuing delay, and the

service time. In this way, the result overcharges a length of the

network latency. The other option of inferring PMB is end-time of
the last non-dropped attack request subtracting end-time of the first
non-dropped attack request during one attack interval shown in

Figure 7b. In this way, it undercharges a length of the service time.

For the concrete environments of a special website, the attacker can

choose any approach to estimate millibottleneck length. In our eval-

uation section, we choose the second one, since the network latency

is much longer than the service time in our RUBBoS environment.

4.3 Controller
So far, we discuss many aspects that can influence the effectiveness

of our attacks. In the model, the competition for the free slot of the

queue between attack requests and normal requests may impact

precision of damage length, and the dropped attack requests may

decrease millibottleneck length. For Estimator, the network latency

variation and the drifted target system state might reduce the accu-

racy of inferring damage length and millibottleneck length in our

implementation. All of aspects lead to the observing and measuring

inaccuracy, and result in the invalidation of launching an effective

attacks using our control algorithm. To mitigate these negative im-

pacts for our control algorithm, we adapt a popular feedback-based

control tool, Kalman filter [20]. On the one hand, it can take past

measurements into account for implementing our feedback control

algorithm, reducing the impact of the process noise (e.g., baseline

workload and system state). On the other hand, it can mitigate the

measurement noise due to inaccuracy of the estimator.

Let z(k) be the measurement of PD in k-th burst by Estimator.

Since PD is a linear function of burst volume V (see equ. (11)), we

can define x(k) using a linear dynamical system model:

SystemDynamics : x (k) = x (k − 1) +U (k) +v (k) (12)

MeasurementDomain : z (k) = x (k) +w (k) (13)

where the variables v(k) and w(k) are the process noise (e.g., dynam-

ics of baseline workload) and the measurement noise (e.g., imperfect

estimation by Estimator), respectively. U(k) is the expected control

result, a linear function of burst volume V.
Let x̂(k | k−1) be a priori estimate of state parameter x at burst k-

th given the history of all k-1 bursts, and let x̂(k | k) be a posteriori
estimate of state parameter x at k-th burst. Further, let P(k | k) be
a posteriori error covariance matrix which quantifies the accuracy

of the estimate x̂(k | k). The Kalman filter executes recursively for

each new observation including two phases: Predict in which a

priori estimate of state and error matrix are calculated, and Correct

in which a posteriori estimate of state and error matrix are refined

using the current measurement. The Kalman filter model for our

control framework is given by:

Predict (Time Update)

x̂(k | k − 1) = x̂(k − 1 | k − 1) +U (k) (14)

P(k | k − 1) = P(k − 1 | k − 1) +V (k) (15)

Correct (Measurement Update)

Kд(k) =
P(k | k − 1)

(P(k | k − 1) +W (k))
(16)

x̂(k | k) = x̂(k | k − 1) + Kд(k)(z (k) − x̂(k | k − 1)) (17)

P(k | k) = (1 − Kд(k))P(k | k − 1) (18)

whereW(k) and V(k) are the covariances of w(k) and v(k), respec-

tively. In practice, we can estimate these two noise covariances us-

ing automaticmathematical tools (e.g., autocovariance least-squares

method [32]) or manual observation to tune the optimal value.Kд(k)
is termed the Kalman gain which represents the confidence index of

the new measurement (z(k)) over the current estimate (x̂(k | k − 1)).
If Kд(k) equals 1, it implies that the attacker totally trust the mea-

surement, the effectiveness of adjusting the attack parameters in

our attacks is totally depending on the accuracy of the estimated

value by Estimator.

Using the Kalman filter, the Controller in Figure 5 can predict

the required attack parameters at k-th burst given the historical

results of all k-1 bursts, dynamically command the new parameters

to the bots, and automatically and effectively launch Tail Attacks.

5 REAL CLOUD PRODUCTION EVALUATION
5.1 Tail Attacks in Real Production Settings
To evaluate the practicality of our feedback control attack frame-

work in the real cloud production settings, we deploy a representa-

tive benchmark website in the most popular two commercial cloud

platforms (Amazon EC2, Microsoft Azure) and one academic cloud

platform (Cloudlab[31]).

Experiment Methodology.We adopt RUBBoS [34], a representa-

tive n-tier web application benchmark modeled after the popular

news website Slashdot. We configure RUBBoS using the typical 3-

tier or 4-tier architecture. A sample setting EC2-1414-6K in Table 5

is 1 Apache web server, 4 Tomcat application servers, 1 C-JDBC

clustering load-balance server, 4 MySQL database servers deployed

in Amazon EC2, and 6000 concurrent legitimate users. RUBBoS has

a workload generator to emulate the behavior of legitimate users

to interact with the target benchmark website. Each user follows a

Markov chain model to navigate among different webpages, with

averagely 7-second think time between every two consecutive re-

quests. Through modifying the RUBBoS source code, we simulate

various baseline workload (e.g., variable concurrent users during

the experiment). Meanwhile, in our experiments we adopt a central-

ized strategy to coordinate and synchronize bots [12, 37, 49] (more

discussion about distrubuted bots coordination and synchroniza-

tion in Section 7). All the bots are in the same location to rule out the

impact of the shift of network-latency. We control a small bot farm

of 10 machines (one of which serves as a centralized controller),

synchronized by NTP services, which can achieve millisecond pre-

cision [15]. Each bot uses Apache Bench to send intermittent bursts

of attack HTTP requests, commanded by our control framework.

All the VMs we run are 1 vCPU core and 2GB memory, which is

the basic computing unit for the commercial cloud providers. We

select HDD disk since our experimental workloads are browse-only

CPU intensive transactions. We select t2.small instance ($0.023

per hour) in Amazon EC2 us-east-1a zone, and A1 ($0.024 per

hour) instance in Microsoft Azure East US zone. They have similar

CPU NW

Setting V PD ρ(T) PMB (%) (MB/s)

(#) (ms) (%) (ms) W/o
att. Att. W/o

att. Att.

EC2-111-2K 202 96.4 5.64 287 18.8 27.3 116 167

EC2-1212-4K 217 96.9 5.47 297 16.0 20.2 239 282

EC2-1414-6K 234 105.3 5.89 271 15.2 18.1 352 401

Azure-111-1K 113 100.8 5.26 346 41.2 70.6 60 76

Azure-1212-2K 137 99.1 5.56 479 34.6 58.3 119 141

Azure-1414-3K 156 99.9 5.57 408 19.5 25.6 177 195

NSF-111-1K 97 101.0 5.40 453 49.1 76.8 58 72

NSF-1212-2K 112 96.7 5.75 490 48.4 62.4 118 137

NSF-1414-3K 131 99.4 5.22 470 34.6 51.0 173 186

W/o att.: Without attacks, Att.: under Tail Attacks,
CPU: MySQL CPU usage, NW: Apache network traffic

Table 5: The corresponding parameters and bottleneck re-
source utilization of Tail Attacks in real production settings.

prices and hardware configurations. However, the CPU core in EC2

(2.40GHz Intel Xeon E5-2676 v3) is more powerful than the one

in Azure (2.10GHz AMD Opteron 4171 HE or 2.40GHz Intel Xeon

E5-2673 v3). The worst one is in NSF Cloud (2.10GHz Intel Xeon

E5-2450), where we run the VMs in Apt Cluster in the University

of Utah’s Downtown Data Center .

For the baseline workload, we have two chosen criteria: the

bottleneck resource utilization (e.g., CPU utilization or Network

bandwidth) is less than %50 (Column 6 and 8 of Table 5), and no

long-tail latency problem exists in without-attacks cases shown in

the Table 1. Because EC2 has more powerful CPU that we used in

our experiments, it can serve higher baseline workload than the

other two. The network overhead can be the bottleneck resource

in EC2 platform even though CPU is at low utilizations [17]. In our

experiments, MySQL CPU is the bottleneck tier in Azure and NSF

Cloud due to the high resource consumption of database operations.

We pre-define our attack goal as the 95th percentile response

time longer than 1 second and the utilization of the bottleneck

resource less than 50%, and fix the attack interval as 2 seconds. Thus,

we need to control damage length PD longer than 100 milliseconds,

millibottleneck length PMB less than 500 milliseconds.

Results. Column 2 to 5 of Table 5 show the corresponding model

parameters in our real cloud production setting experiments con-

trolled by our attack framework. It clearly shows that our attacks

controlled by our algorithm can achieve the predefined targets (5%

drop ratio ρ(T), damage length PD < 100ms, millibottleneck length

PMB < 500ms). EC2 has more powerful CPU, so it requires more

attack requests per burst V to launch a successful attack. As the

servers scale out (from 111 to 1212, 1414), the n-tier system can

service more legitimate users, at the same time, in order to launch

Tail Attacks it requires higher V due to their higher capacity, which

means that bigger websites need larger botnet to attack. Column 7

 0

 100

 200

 300

 400

 0 20 40 60 80 100 120 140 160 180

R
e
q

.
[#

]

Timeline [s]

(a) The requests of baseline workload vary
from 2000 to 500 concurrent users.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 20 40 60 80 100 120 140 160 180

P
D

 [
s
]

Timeline [s]

mean=0.098

(b) Damage length inferred by the prober
nearly equals the target 100ms.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180

P
M

B
 [

s
]

Timeline [s]

mean=0.22

(c) Millibottleneck length estimated by the
bots is less than 500ms, achieving the goal.

 0
 50

 100
 150
 200
 250
 300

 0 20 40 60 80 100 120 140 160 180

V
 [

#
]

Timeline [s]

(d) Required attack volume V controlled
by our framework increases as back-
ground requests decreases in Fig. 8a.

 0

 5

 10

 15

 0 20 40 60 80 100 120 140 160 180

D
r
o
p

 R
a
ti

o
 [

%
]

Timeline [s]

mean=5.5

(e) Drop ratio for legitimate users meets
the target 5%, indicating the effectiveness
controlled via damage lengthPD in Fig. 8b.

 0
 20
 40
 60
 80

 100

 0 20 40 60 80 100 120 140 160 180

C
P

U
 U

s
a
g
e
 [

%
]

Timeline [s]

mean=52

(f) Bottleneck resource utilization approxi-
mately equals 50%, indicating the effective-
ness controlled via PMB in Fig. 8c.

Figure 8: Results of Tail Attacks on RUBBoS web application in a real cloud production setting

and 9 of Table 5 show the average CPU utilization ofMySQL tier and

the average network traffic of Apache tier, which are the bottleneck

resource in our experimental environment. Under our attacks in the

real cloud production settings, the end users encounter the long-tail

latency problem (see Table 1). However, all the bottleneck resources

are under moderate average resource utilization even in large scale

case (e.g., CPU is 25.6% in Azure-1414-3K, and NW is 401MB/s in

EC2-1414-6K). These experimental results show that our attacks

can cause significant long tail latency problem, while the servers

are far from saturation, guaranteeing a high level stealthiness.

Figure 8 further illustrates the 3-minute detailed experimental

results with various baseline workload under our attacks launched

by our control framework in NSF-1212 setting. Figure 8a shows

baseline workload changes from 2000 to 500 concurrent users at the

middle point of the experiment (each user has 7-second think time

between two webpages). Note that the shift of baseline workload in

this case is different from the previous cases in which we scale out

the servers. Figure 8d shows the required burst volume dynamically

adjusted by our framework, a sudden increase at the middle due to

the decrease of baseline workload. Figure 8b and Figure 8c depict

damage length and millibottleneck length estimated by the prober

and the bots, respectively. The measured average value of two criti-

cal metrics of our model are successfully controlled in the target

range. Figure 8e and Figure 8f depict the drop ratio during every

attack interval and the CPU utilization of MySQL using 1 second

granularity monitoring, respectively, which match our predefined

attack goal to a great extent. In general, through the RUBBoS ex-

periments in real cloud production settings, we can validate and

confirm the practicality of our attack control framework.

5.2 Tail Attacks under IDS/IPS systems
Next, in order to evaluate the stealthiness of Tail Attacks under the

radar of state-of-the-art IDS/IPS systems, we deploy some popu-

lar defense tools in the web tier in our RUBBoS environments to

evaluate whether our attacks can be detected by them.

ExperimentMethodology. Typically, the popular solution to mit-

igate the application layer DDoS attacks is identifying abnormal

user-behavior [38, 44–47]. Snort [9] is a signature rules based Open-

Source IDS/IPS tool that is widely used in practice for DDoS de-

fense, the users can customize the alert rules by setting reasonable

thresholds in the specific systems. We set alert rules following some

user-behavior models in Snort to evaluate whether our attacks devi-

ate from the model (judging based on predefined thresholds). In the

following experiments, we configure 2000 concurrent legitimate

users, and our attack goal is to achieve the 95th percentile response

time longer than 1s for these legitimate users.

Results. To validate the user behavior model, we take request

dynamics model [33] as an example. The authors analyzed the dis-

tribution of a user’s interaction with a Web server from a collection

ofWeb server logs, categorized four session types (searching, brows-

ing, relaxed and long session), and modeled the features for each

type of session based on average pause between sessions. Typically,

average inter-request interval for searching and browsing sessions

is less than 10 seconds. RUBBoS [34] also models the inter-request

interval per session as a Poisson process with the mean as 7, which

means an average 7-second think time between two webpages for

each session. In this case, we can calculate the 95% confidence in-

terval as (2.814, 14.423). We can set the minimal boundary of the

interval (e.g., rounded to 3, the statistical granularity is seconds in

Alert Rule Parameters Triggered Alert Number
Threshold Sampling Period Bots Legitimate Users

1 3s 0 19262

5 15s 0 7032

10 30s 0 1074

15 45s 0 174

20 60s 0 23

50 150s 0 2

100 300s 0 0

Table 6: The attacker can successfully predict the inter-
requestmodel. Less the sampling period, higher alerts from
the legitimate users, indicating higher false positive error.
However, the attacker can trigger no alert by carefully con-
trolling the request pattern.

Snort) as the alert threshold to validate whether our attacks deviate

the RUBBoS model, since the smaller alert threshold can lead to less

false positive error. We use the “detection_filter" property in Snort

to define the alert rules monitoring inter-request rate for each IP,

which generate an alert once the amount of requests from the same

IP exceeds the predefined threshold during a sampling statistical

period. Column 1 and 2 of Table 6 depict the threshold and the

sampling interval for these alert rules, respectively.

We use RUBBoS client to simulate 2000 concurrent legitimate

users and craftily control our bots catering to the inter-request

model in RUBBoS to bypass the above alert rules in Table 6 while

achieving our attack goal. Due to the limited numbers of IPs, we can

not have enough IP address to simulate the 2000 legitimate users

and the bots from real IP address to evaluate the above detection

rules in Snort. However, we can map a session to a individual IP

address and implement the same detection algorithm using the

“detection_filter" property of Snort to validate the above alert rules.

We conduct a 3-minute successful attack experiment in our RUBBoS

websites. In our case, to achieve the attack goal, the required attack

parameters are V as 300, L as 50 and I as 3. To follow the inter-

request model in RUBBoS (alert threshold as 3), it requires 301

totally-synchronized bots (one session simulates one bot in our

experiments and sends one request in more than 3s interval) while

avoid triggering the alerts (deviating from the model). Column

3 and 4 of Table 6 report the traced alert number from the bots

and the legitimate users for these rules, respectively. As a result,

our attacks can be totally invisible to these alert rules. Note that

as the sampling interval increases the alerts from the legitimate

users decrease, the reasonable sampling interval can reduce the

false positive errors (typically the interval should be on the order

of minutes). Another important guide to our attacks is that as the

sampling interval increases, the threshold of the rules also has to

increase, which can give us more flexible options to send the attack

requests using different intervals (e.g., in the above case, less than

10 requests every 30s interval per session, or less than 20 requests

every 60s interval per session). To choose which sending pattern,

we can further learn from the other user-behavior models to make

our attacks even more stealthy.

Someone may argue that the “no alert" results are got from

the assumption that the attackers comprehensively know the alert

Inter-request Model Botnet Designed Attack Pattern
Actual Predicted minS minG 1G. 2G. 4G. 8G.

3 3 300 1 1/3s 2/6s 4/12s 8/24s

3 6 600 2 - 1/6s 2/12s 4/24s

3 12 1200 4 - - 1/12s 2/24s

3 24 2400 8 - - - 1/24s

1G.: 1Group, 2G.:2Groups, 4G.:4Groups, 8G.:8Groups
minS.:minimal Size, minG.:minimal Group

Table 7: The attacker conservatively predicts the inter-
request model. To achieve a burst with 300 requests in ev-
ery 3 seconds (V=300, L=50, I=3), more conservative predict
needs bigger botnet.

thresholds of the user-behavior model, such that they can design

a corresponding attack pattern to avoid be detected. Most user-

behavior models are public to both the defenders and the attackers,

the only gap is the specific alert threshold and rules, which typically

are learned from the server’s past logs for their anomaly detection

systems by the defenders of specific websites [33]. However, the at-

tackers can use the questionnaire approach to similarly estimate the

real users‘ behaviors, and use a conservative value as the potential

threshold to design the attack pattern with the price of increasing

more bots shown in Table 7. The four rows in Table 7 show four

cases with different predicted values (3, 6, 12, 24). Obviously, as the

predicted value is more conservative, it requires a bigger botnet

(minimal size is 2400 when the prediction is 24). In the ‘24’ case, the

attacker must split the 2400 bots into 8 groups, each group takes

turn to send a burst of 300 requests in every 24-second interval.

6 DETECTION AND DEFENSE
Here, we consider a solution to detect and defend against Tail At-

tacks. There exists no easy approach to accurately distinguish the

attack requests from legitimate requests. Instead, we can identify

the attack requests by detecting the burst and matching the bursty

arrivals to millibottlenecks and cross tier queue overflown (Event2

and Event3 in Section 2). We present a workflow to mitigate our

attacks involving three stages: fine-grained monitoring, burst de-

tection, and bots blocking.

Fine-grained monitoring. The unique feature of our attacks is
that we exploit the new-found vulnerability of millibottlenecks

(with subsecond duration) in recent performance studies of web

applications deployed in cloud [41–43]. In order to capture milli-

bottlenecks, the monitoring granularity should be less than the

millibottlenecks period in millisecond level. For example, if the

monitoring granularity is 50ms, it can definitely pinpoint the milli-

bottleneck longer than 100ms, probably can seize the millibottle-

neck in the range of 50ms to 100ms, but absolutely can not capture

the millibottleneck less than 50ms. Thus, how to choose the mon-

itoring granularity is depending on the observation and specific

requirement of eliminating the special millibottlenecks.

Burst detection. Through fine-grained monitoring, we may ob-

serve a bunch of spike for eachmetrics (e.g., CPU utilization, request

traffic, queue usage, etc.). However, our purpose is to detect the

burst of attack requests, so we must discriminate the actual attack

bursts from them. Based on the unique scenario of our attacks in

Section 2, we can define our attack bursts in which all the follow-

ing events occur simultaneously: very long response time requests

(dropped requests), cross tier queue overflown, millibottlenecks

(e.g., CPU utilization, I/O waiting), and burst of requests. If all the

events are observed in the same spike duration, we can regard the

spike duration as a potential attack burst.

IP-based statistical analysis defense.Oncewe identify the bursts
of Tail Attacks, the next task is to distinguish the requests of the

bots from the requests of the legitimate users during the burst and

block them. The attacker, in our attack scenario, aims to coordinate

and synchronize the bots to sending bursts of attack requests during

short “ON" burst period and repeat the process after long “OFF"

burst period as introduced in Section 2, we can ideally introduce

a new request metric that quantifies the suspicion index of the in-

coming requests by aggregating the requests statistics during “ON"

burst and “OFF" burst for further analysis. Specially, we define the

suspicion index for each IP address as follows:

SII P =
NBI P
NI P

(19)

where NBI P and NI P are the number of requests for each IP during

“ON" burst and the attack interval T (including “ON" and “OFF"

burst), respectively. If SII P for a IP is close to 1, the IP is likely

to be a bot; on the other hand, SII P of the legitimate user can be

approximately the target attack drop ratio (e.g., 0.5 if the target is

95th percentile response time longer than 1 second). Figure 9 shows

Probability Density Function of SII P in the RUBBoS experiment

in Section 5.1. The red bar represents the bots and the green bars

represent the 2000 legitimate users. In this way to identify bots, the

false positive and false negative error can be close to 0 with 100%

high precision.

 0
 50

 100
 150
 200
 250
 300
 350

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u

m
b

e
r
 o

f
IP

s
(S

e
ss

io
n

s)

SIIP

Normal Users
Attackers

Figure 9: Identify bots

7 DISCUSSIONS
Impact of load balancing. Some web applications adopt load

balancing (e.g., Amazon Elastic Load Balancing [4]) in front of the

system to distribute load across multiple web servers. This type of

load balancing works well for stateless servers such as web servers,

in which incoming traffic are supposed to evenly distribute among

them. However, whether or not load balancing can mitigate the ef-

fectiveness of Tail attacks depends on the location of the bottleneck

resource in the target web system. For example, if the bottleneck

resource is in the web server tier, load balancing indeed increases

the bar of an effective Tail attack since each web server only re-

ceives a portion of total attacking requests, thus higher volume of

attacking requests per burst are needed to create millibottlenecks

in the system. On the other hand, if the bottleneck resource is in

a non-scalable tier such as the relational database tier, the load

balancing in front tiers does not help mitigating the effectiveness

of Tail Attacks. This is because no matter which web server an

attacking HTTP request arrives at, the database queries sent out by

the HTTP request may eventually converge to the same database

server, and create millibottlenecks there.

Impact of cloud scaling. Large-scale web applications usually

adopt dynamic scaling strategy (e.g., Amazon Auto Scaling [2]) for

better load balancing and resource efficiency, however, Tail Attacks

can easily bypass current dynamic scaling techniques, since the

control window of the state-of-the-art scaling mechanism is usu-

ally in minute-level (e.g., Amazon CloudWatch monitoring in a

minute granularity), while Tail Attacks are too short (sub-second

duration) for them to catch and take any scaling actions [40]. The

main advantage of Tail attacks is that it is invisible to most mon-

itoring programs and can remain hidden for a long time because

of the low volume characteristic and the sub-second duration of

millibottlenecks as shown in our experimental results.

Browser compatibility check. Some state-of-the-art defense

tools may check the header information of each HTTP request

to determine whether it is sent from a real browser or from a bot.

A HTTP request sent from a real browser usually has completed

header information such as “User-Agent”, while such information

may not appear or be difficult to be generated by a bot which only

uses a script language to generate HTTP requests. In addition, some

websites such as Facebook need a legitimate user to login first be-

fore any following transactions, especially heavy query requests
(detailed explanations in Section 4.2). They may track the cookies

stored in the client side browser in order to keep an active session in

the server side; a bot may not be able to interact with such websites

due to the lack of support of a real browser. We can address these

challenges by using PhantomJS [36] to generate attacking HTTP

requests. PhantomJS is a headless web browser without a heavy

graphical user interface. It is built on top of WebKit, the engine

behind Chrome and Safari. So PhantomJS can behave the same as a

real browser does. Therefore, an attacker can launch browser-based

Tail Attacks using heavy requests as attack requests by PhantomJS,

and the generated requests will be extremely difficult to distinguish

from the requests sent by legitimate users.

Distributed bots coordination and synchronization. One pre-
condition of Tail attacks is that bots could be coordinated and

synchronized so that the generated HTTP requests are able to

reach the target web system within a short time window. Many

previous research efforts already provide solutions, using either

centralized [12, 37, 49] or decentralized methods [22], to coordi-

nate bots to send synchronized traffic to cause network congestion

at a specific network link. Centralized control can achieve higher

level of bots coordination and synchronization, which enables a

more effective Tail Attack compared to decentralized methods. In

this paper we adopt the centralized control method to do experi-

ments. On the other hand, a decentralized method in general is able

to coordinate and synchronize more bots than a centralized one,

thus making it possible to target large-scale/high-capacity websites.

However, a decentralized method is more challenging to control

the length of each burst of attacking requests arrived at the target

website, thus mitigating the effectiveness of Tail Attacks.

8 RELATEDWORK
In this section, we review themost relevant workwith regard to low-

volume application-layer attacks, which is even stealthier to avoid

traditional network-layer based detection mechanisms [30, 35, 48].

Low-volume Application Layer DDoS attacks. Low-volume

DDoS application attacks are characterized by a small number

of attack requests transmitted strategically to the target appli-

cation servers, as an extension of network-layer low-volume at-

tacks [12, 14, 21, 22, 25, 27, 39]. Macia-Fernandez et al. initially pro-

posed low-rate attacks against application servers (LoRDAS) [28]
that send traffic in periodic short-time pulses at a low rate, shar-

ing the similar on-off attack pattern with our attacks. Slow-rate
attacks [8] deplete system resources on the server‘s side by sending

(e.g., slow send/Slowloris [13]) or receiving (e.g., slow read) traffic

at a slow rate. Our attacks share the similar features of low attack

volume with low-rate and slow-rate attacks.

However, compared to these two attacks, our attacks dig more

deeply into n-tier architecture applications while LoRDAS attacks
only in 1-tier application server. Our analytical model for n-tier sys-

tems can guide and guarantee our attacks dynamically controlled in

a more effective and elusive way by accurately estimating damage
length andmillibottleneck length. In addition, slow-rate attacks need
to develop well-crafted HTTP header (Slow Headers) or body (Slow

Body) thus expose obvious attack patterns to the defense tools,

while Tail Attacks use the legitimate and normal heavy requests

as our attack requests thus hide deeper. More importantly, we ex-

ploit the ubiquity of millibottlenecks (with sub-second duration)

and strong dependencies among distributed nodes for web appli-

cations, leading to long-tail latency problem with a higher level of

stealthiness than LoRDAS and Slow-rate attacks.
Detecting and Defending against Application DDoS attacks.
To mitigate application DDoS attacks, existing solutions typically

focus on distinguishing application-layer DDoS traffic from the

traffic created by legitimate users, such as abnormal user-behavior

in high-level features [44, 46, 47] of surging web pages, in session-

level [38], or in request-level [45]. To be stealthy, for the features of

navigating web pages, our attacks can learn from the user behaviors

of a legitimate user; as for session or requests level of our attacks, we

can calculate the required optimized attack volume and botnet size

discuss in Section 5. Compared to existing solutions, our proposed

countermeasure can be tied to the unique feature of our attacks

and accurately capture the bots.

9 CONCLUSION
We described Tail Attacks, a new type of low-volume application

layer DDoS attack in which an attacker exploits a newly identified

system vulnerability (millibottlenecks and resource contention with

dependencies among distributed nodes) of n-tier web applications

to cause the long-tail latency problem of the target web application

with a higher level of stealthiness. To thoroughly comprehend the

attack scenario (Section 2), we formulated the impact of our attacks

in n-tier systems based-on queueing network model, which can

effectively guide our attacks in a stealthy way (Section 3). We imple-

mented a feedback control-theoretic (e.g., Kalman filter) framework

that allows attackers to fit the dynamics of background requests

or system state by dynamically adjusting the optimal attack pa-

rameters (Section 4). To validate the practicality of our attacks, we

evaluated our attacks through not only analytical, numerical, and

simulation results but also benchmark web applications equipped

with state-of-the-art DDoS defense tools in real cloud production

settings (Section 3 and Section 5). We further proposed a solution

to detect and defense the proposed attacks, involving three stages:

fine-grained monitoring, identifying bursts, and blocking bots (Sec-

tion 6). More generally, our work is an important contribution

towards a comprehensive understanding of emerging low-volume

application DDoS attacks.

A DERIVATION OFMILLIBOTTLENECK
LENGTH

During millibottleneck length, the bottleneck resources sustain sat-

uration. Millibottleneck length should involve the serving time for

both attack and normal requests during a burst. The attackers only

send requests within the short “ON" period, thus the amount of at-

tack requests is the burst volume V. Meanwhile, the legitimate users

always send requests during millibottleneck length, thus the satu-
ration length is an infinite recursive process until it converges to

zero exponentially. Equation (20) represents millibottleneck length
derived through the geometric progression in mathematics, here,

m limits to infinity.

PMB = V ∗
1

C n,A
+V ∗

1

C n,A
∗ λn ∗

1

C n,L

+V ∗
1

C n,A
∗ λn ∗

1

C n,L
∗ λn ∗

1

C n,L
+ ...

+V ∗
1

C n,A
∗ (λn ∗

1

C n,L
)m

= lim

m→∞

m∑
k=0

V ∗
1

C n,A
∗ (λn ∗

1

C n,L
)k

= V ∗
1

C n,A
∗ lim

m→∞

(1 − (λn ∗
1

C n,L
)m+1)

(1 − (λn ∗
1

C n,L
))

= V ∗
1

C n,A
∗

1

(1 − (λn ∗
1

C n,L
))

(20)

where 1/Cn,A and 1/Cn,L are the service time for attack and normal

requests in the bottleneck tier, respectively.

ACKNOWLEDGMENTS
This research has been partially funded by National Science Foun-

dation by CISE’s CNS (1566443, 1421561), SAVI/RCN (1402266,

1550379), CRISP (1541074), SaTC (1564097) programs, an REU sup-

plement (1545173), Louisiana Board of Regents under grant LEQSF

(2015-18)-RD-A-11, and gifts, grants, or contracts from Fujitsu, HP,

Intel, and Georgia Tech Foundation through the John P. Imlay, Jr.

Chair endowment. Any opinions, findings, and conclusions or rec-

ommendations expressed in this material are those of the author(s)

and do not necessarily reflect the views of the National Science

Foundation or other funding agencies and companies mentioned

above.

REFERENCES
[1] Akamai. 2016. Akamai QUARTERLY SECURITY REPORTS. https:

//www.akamai.com/us/en/about/our-thinking/state-of-the-internet-report/

global-state-of-the-internet-security-ddos-attack-reports.jsp. (2016).

[2] Amazon. 2017. Amazon Auto Scaling. https://aws.amazon.com/documentation/

autoscaling. (2017).

[3] Amazon. 2017. Amazon EC2. https://aws.amazon.com/ec2/. (2017).

[4] Amazon. 2017. Amazon Elastic Load Balancing. https://aws.amazon.com/

elasticloadbalancing/. (2017).

[5] Chris Baraniuk. 2016. DDoS: Website-crippling cyber-attacks to rise in 2016.

http://www.bbc.com/news/technology-35376327/. (2016).

[6] Salman A Baset. 2012. Cloud SLAs: present and future. ACM SIGOPS Operating
Systems Review 46, 2 (2012), 57–66.

[7] Marco Bertoli, Giuliano Casale, and Giuseppe Serazzri. 2006. Java modelling

tools: an open source suite for queueing networkmodelling andworkload analysis.

In Proceedings of the 3rd International Conference on Quantitative Evaluation of
Systems (QEST’06). IEEE, Riverside, CA, USA, 119–120.

[8] Enrico Cambiaso, Gianluca Papaleo, and Maurizio Aiello. 2012. Taxonomy of

slow DoS attacks to web applications. In Proceedings of International Conference
on Security in Computer Networks and Distributed Systems (SNDS). Springer,
Trivandrum, India, 195–204.

[9] Cisco. 2017. Snort. https://www.snort.org/. (2017).

[10] Kristal Curtis, Peter Bodík, Michael Armbrust, Armando Fox, Mike Franklin,

Michael Jordan, and David Patterson. 2010. Determining SLO Violations at Compile
Time.

[11] Jeffrey Dean and Luiz André Barroso. 2013. The tail at scale. Commun. ACM 56,

2 (2013), 74–80.

[12] Mina Guirguis, Azer Bestavros, and IbrahimMatta. 2004. Exploiting the transients

of adaptation for RoQ attacks on Internet resources. In Proceedings of the 12th IEEE
International Conference on Network Protocols (ICNP’04). IEEE, Berlin, Germany,

184–195.

[13] Robert "RSnake" Hansen. 2017. Slowloris HTTP DoS. https://web.archive.org/

web/20090822001255/http://ha.ckers.org/slowloris/. (2017).

[14] Amir Herzberg and Haya Shulman. 2013. Socket overloading for fun and cache-

poisoning. In Proceedings of the 29th Annual Computer Security Applications
Conference. ACM, New Orleans, LA, USA, 189–198.

[15] Sabrina Hiller. 2015. Precise to the millisecond: NTP services

in the “Internet of Things". https://www.retarus.com/blog/en/

precise-to-the-millisecond-ntp-services-in-the-internet-of-things/. (2015).

[16] IETF. 2017. RFC 6298. https://tools.ietf.org/search/rfc6298/. (2017).

[17] Deepal Jayasinghe, SimonMalkowski, QingyangWang, Jack Li, Pengcheng Xiong,

and Calton Pu. 2011. Variations in performance and scalability when migrating

n-tier applications to different clouds. In Proceedings of the IEEE International
Conference on Cloud Computing (CLOUD’11). IEEE, Washington DC, USA, 73–80.

[18] Myeongjae Jeon, Yuxiong He, Hwanju Kim, Sameh Elnikety, Scott Rixner, and

Alan L Cox. 2016. TPC: Target-Driven Parallelism Combining Prediction and

Correction to Reduce Tail Latency in Interactive Services. In Proceedings of the
21st International Conference on Architectural Support for Programming Languages
and Operating Systems. ACM, Atlanta, GA, USA, 129–141.

[19] Jaeyeon Jung, Balachander Krishnamurthy, and Michael Rabinovich. 2002. Flash

crowds and denial of service attacks: Characterization and implications for CDNs

and web sites. In Proceedings of the 11th International Conference on World Wide
Web. ACM, Honolulu, Hawaii, USA, 293–304.

[20] Rudolph Emil Kalman et al. 1960. A new approach to linear filtering and prediction

problems. Journal of basic Engineering 82, 1 (1960), 35–45.

[21] Min Suk Kang, Soo Bum Lee, and Virgil D Gligor. 2013. The crossfire attack. In

Proceedings of the IEEE Symposium on Security and Privacy (S&P’13). IEEE, San
Francisco, CA, USA, 127–141.

[22] Yu-Ming Ke, Chih-Wei Chen, Hsu-Chun Hsiao, Adrian Perrig, and Vyas Sekar.

2016. CICADAS: Congesting the Internet with Coordinated and Decentralized

Pulsating Attacks. In Proceedings of the 11th ACM on Asia Conference on Computer
and Communications Security. ACM, Xi’an, China, 699–710.

[23] Leonard Kleinrock. 1976. Queueing systems, volume 2: Computer applications.
Vol. 66. John Wiley and Sons, New York.

[24] Ron Kohavi and Roger Longbotham. 2007. Online experiments: Lessons learned.

IEEE Computer Society 40, 9 (2007).

[25] Aleksandar Kuzmanovic and Edward W Knightly. 2003. Low-rate TCP-targeted

denial of service attacks: the shrew vs. the mice and elephants. In Proceedings of
the 2003 conference on Applications, technologies, architectures, and protocols for

computer communications (SIGCOMM’03). ACM, Karlsruhe, Germany, 75–86.

[26] Chien-An Lai, Josh Kimball, Tao Zhu, Qingyang Wang, and Calton Pu. 2017.

milliScope: a Fine-Grained Monitoring Framework for Performance Debugging

of n-Tier Web Services. In Proceedings of the IEEE 37th International Conference
on Distributed Computing Systems (ICDCS’17). IEEE, Atlanta, GA, USA, 92–102.

[27] Xiapu Luo and Rocky KC Chang. 2005. On a New Class of Pulsing Denial-of-

Service Attacks and the Defense. In Proceedings of Network and Distributed System
Security Symposium (NDSS’05). San Diego, CA, USA.

[28] Gabriel Maciá-Fernández, Jesús E Díaz-Verdejo, Pedro García-Teodoro, and Fran-

cisco de Toro-Negro. 2007. LoRDAS: A low-rate DoS attack against application

servers. In Proceedings of International Workshop on Critical Information Infras-
tructures Security. Springer, Málaga, Spain, 197–209.

[29] Microsoft. 2017. Microsoft Azure. https://azure.microsoft.com/en-us/?v=17.14.

(2017).

[30] Jelena Mirkovic and Peter Reiher. 2004. A taxonomy of DDoS attack and DDoS

defense mechanisms. ACM SIGCOMM Computer Communication Review 34, 2

(2004), 39–53.

[31] NSF. 2017. CloudLab. https://www.cloudlab.us. (2017).

[32] Brian J Odelson, Murali R Rajamani, and James B Rawlings. 2006. A new autoco-

variance least-squares method for estimating noise covariances. Automatica 42,
2 (2006), 303–308.

[33] Georgios Oikonomou and Jelena Mirkovic. 2009. Modeling human behavior

for defense against flash-crowd attacks. In Proceedings of the IEEE International
Conference on Communications (ICC’09). IEEE, Dresden, Germany, 1–6.

[34] OW2. 2017. RUBBoS. http://jmob.ow2.org/rubbos.html. (2017).

[35] Tao Peng, Christopher Leckie, and Kotagiri Ramamohanarao. 2007. Survey of

network-based defense mechanisms countering the DoS and DDoS problems.

ACM Computing Surveys (CSUR) 39, 1 (2007), 3.
[36] PhantomJS. 2017. PhantomJS. http://phantomjs.org/. (2017).

[37] Pratap Ramamurthy, Vyas Sekar, Aditya Akella, Balachander Krishnamurthy, and

Anees Shaikh. 2008. Remote Profiling of Resource Constraints of Web Servers

Using Mini-Flash Crowds.. In Proceedings of 2008 USENIX Annual Technical Con-
ference. Boston, MA, USA, 185–198.

[38] Supranamaya Ranjan, Ram Swaminathan, Mustafa Uysal, Antonio Nucci, and

Edward Knightly. 2009. DDoS-shield: DDoS-resilient scheduling to counter

application layer attacks. IEEE/ACM Transactions on Networking (TON) 17, 1
(2009), 26–39.

[39] Ryan Rasti, Mukul Murthy, Nicholas Weaver, and Vern Paxson. 2015. Temporal

lensing and its application in pulsing denial-of-service attacks. In Proceedings of
the IEEE Symposium on Security and Privacy (S&P’15). IEEE, San Jose, CA, USA,

187–198.

[40] Huasong Shan, Qingyang Wang, and Qiben Yan. 2017. Very Short Intermittent

DDoS Attacks in an Unsaturated System. In Proceedings of the 13th International
Conference on Security and Privacy in Communication Systems. Springer, Niagara
Falls, Canada.

[41] Qingyang Wang, Yasuhiko Kanemasa, Jack Li, Deepal Jayasinghe, Toshihiro

Shimizu, MasazumiMatsubara, Motoyuki Kawaba, and Calton Pu. 2013. Detecting

transient bottlenecks in n-tier applications through fine-grained analysis. In

Proceedings of the IEEE 33th International Conference on Distributed Computing
Systems (ICDCS’13). IEEE, Philadelphia, PA, USA, 31–40.

[42] Qingyang Wang, Yasuhiko Kanemasa, Jack Li, Chien-An Lai, Chien-An Cho, Yuji

Nomura, and Calton Pu. 2014. Lightning in the cloud: A study of very short

bottlenecks on n-tier web application performance. In Proceedings of USENIX
Conference on Timely Results in Operating Systems. Broomfield, CO, USA.

[43] Qingyang Wang, Chien-An Lai, Yasuhiko Kanemasa, Shungeng Zhang, and Cal-

ton Pu. 2017. A Study of Long-Tail Latency in n-Tier Systems: RPC vs. Asyn-

chronous Invocations. In Proceedings of the IEEE 37th International Conference on
Distributed Computing Systems (ICDCS’17). IEEE, Atlanta, GA, USA, 207–217.

[44] Yi Xie and Shun-Zheng Yu. 2009. Monitoring the application-layer DDoS attacks

for popular websites. IEEE/ACM Transactions on Networking (TON) 17, 1 (2009),
15–25.

[45] Ying Xuan, Incheol Shin, My T Thai, and Taieb Znati. 2010. Detecting application

denial-of-service attacks: A group-testing-based approach. IEEE Transactions on
parallel and distributed systems 21, 8 (2010), 1203–1216.

[46] Chengxu Ye and Kesong Zheng. 2011. Detection of application layer distributed

denial of service. In Proceedings of the IEEE International Conference on Computer
Science and Network Technology, Vol. 1. IEEE, Harbin, China, 310–314.

[47] Jie Yu, Zhoujun Li, Huowang Chen, and Xiaoming Chen. 2007. A detection

and offense mechanism to defend against application layer DDoS attacks. In

Proceedings of the IEEE 3rd International Conference on Networking and Services
(ICNS’07). IEEE, Athens, Greece, 54–54.

[48] Saman Taghavi Zargar, James Joshi, and David Tipper. 2013. A survey of defense

mechanisms against distributed denial of service (DDoS) flooding attacks. IEEE
communications surveys & tutorials 15, 4 (2013), 2046–2069.

[49] Ying Zhang, Zhuoqing Morley Mao, and Jia Wang. 2007. Low-Rate TCP-Targeted

DoS Attack Disrupts Internet Routing.. In Proceedings of Network and Distributed
System Security Symposium (NDSS’07). San Diego, CA, USA.

https://www.akamai.com/us/en/about/our-thinking/state-of-the-internet-report/global-state-of-the-internet-security-ddos-attack-reports.jsp
https://www.akamai.com/us/en/about/our-thinking/state-of-the-internet-report/global-state-of-the-internet-security-ddos-attack-reports.jsp
https://www.akamai.com/us/en/about/our-thinking/state-of-the-internet-report/global-state-of-the-internet-security-ddos-attack-reports.jsp
https://aws.amazon.com/documentation/autoscaling
https://aws.amazon.com/documentation/autoscaling
https://aws.amazon.com/ec2/
https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/elasticloadbalancing/
http://www.bbc.com/news/technology-35376327/
https://www.snort.org/
https://web.archive.org/web/20090822001255/http://ha.ckers.org/slowloris/
https://web.archive.org/web/20090822001255/http://ha.ckers.org/slowloris/
https://www.retarus.com/blog/en/precise-to-the-millisecond-ntp-services-in-the-internet-of-things/
https://www.retarus.com/blog/en/precise-to-the-millisecond-ntp-services-in-the-internet-of-things/
https://tools.ietf.org/search/rfc6298/
https://azure.microsoft.com/en-us/?v=17.14
https://www.cloudlab.us
http://jmob.ow2.org/rubbos.html
http://phantomjs.org/

	Abstract
	1 Introduction
	2 Scenario and Motivations
	3 Tail Attacks Modeling
	3.1 Model
	3.2 Numerically Solve Attack Parameters
	3.3 Simulation Experiments

	4 Tail Attacks Implementation
	4.1 Overview
	4.2 Estimator
	4.3 Controller

	5 Real Cloud Production Evaluation
	5.1 Tail Attacks in Real Production Settings
	5.2 Tail Attacks under IDS/IPS systems

	6 Detection and Defense
	7 Discussions
	8 Related Work
	9 Conclusion
	A Derivation of millibottleneck length
	Acknowledgments
	References

