
An Experimental Study of

Rapidly Alternating Bottleneck

in n-Tier Applications

Qingyang Wang, Yasuhiko Kanemasa, Jack Li,

Deepal Jayasinghe, Toshihiro Shimizu, Masazumi

Matsubara, Motoyuki Kawaba, Calton Pu

Scaling Web Applications

On-Demand in Cloud

2

Good performance + Cost efficiency

BottleneckBottleneck

High throughput + low

response time

High resource

utilization

What If No Bottleneck Was Detected?

3

CPU util. 79.2%

Disk I/O 0.5%

Memory 30%

 ……

CPU util. 78.1%

Disk I/O 0.5%

Memory 50%

 ……
CPU util. 34.6%

Disk I/O 0.5%

Memory 50%

 ……

CPU util. 26.7%

Disk I/O 0.5%

Memory 50%

 ……

How to scale a web application while
no bottleneck is identified?

Bad

performance

Rapidly Alternating Bottlenecks

4

Web server

App server

DB server

t0 t1 t2 t3 t

Bottleneck

Bottleneck

Bottleneck

Bottleneck

workload

Time

2. Duration of each bottleneck is short (e.g., < 100ms)

1. Throughput is limited with no saturated resources

Experimental Setup

5

 RUBBoS benchmark: a bulletin board

 system like Slashdot

 24 web interactions

 CPU intensive

 Workload consists of emulated clients

 Intel Xeon E5607

 2 quad-core 2.26 GHz

 16 GB memory

Motivational Example

6

 Response time & throughput of a 3-minute benchmark

on the 4-tier application with increasing workloads.

WL 14,000

WL 14,000

R
e
sp

o
n

se
 t

im
e
 [

s]

Workload [# users x1000]

T
h

ro
u

g
h

p
u

t
 [

re
q

/s
]

Workload [# users x1000]

No Obvious Bottleneck is Detected

at WL 14,000

7

CPU util. 79.2% CPU util. 78.1%

 Workload is CPU intensive

 Disk I/O utilization (<5%), network I/O utilization (<

20%), Memory usage (<40%);

CPU util. 34.6% CPU util. 26.7%

CJDBC

 Sources: We find that other than bursty

workload, system environmental conditions:

 JVM garbage collection

 VM collocation

 Detection and Visualization: We implement

a fine-grained monitoring method based on

passive network tracing.

 Negligible monitoring overhead for running

applications

Rapidly Alternating Bottleneck:

Sources and Detection

8

 Introduction & Motivation

 Detection and Visualization

 Fine-grained load/throughput analysis

 Two Observations of Rapidly Alternating

Bottlenecks

 JVM garbage collection (JVM GC)

 VM collocation

 Conclusion & Future Works

Outline

9

Two Steps for Detecting Rapidly Alternating

bottlenecks

10

1. Find the participating servers that present transient

bottlenecks(e.g., 50ms)

2. Check whether the transient bottlenecks of each

participating server occur in an alternating pattern

Passive Network Tracing Infrastructure

11

 Collect interaction messages in the system using

SysViz to measure fine-grained active load and

throughput on each server.

 Active load: The # of concurrent requests in a server

 Throughput: The # of completed requests of a server

Web AP DB

Network switch

Web server AP server DB server

01:58:20.039
01:58:20.053

01:58:20.072

01:58:20.081

01:58:20.090

01:58:20.124

01:58:20.134

01:58:20.142

01:58:20.154

01:58:20.161

01:58:20.182

01:58:20.193

SysViz
box

Fine-Grained Active Load

Calculation in a Server

SysViz

monitoring for

MySQL

50ms 50ms

12

 time
 arrival

timestamp

departure

timestamp

Saturation

area

Active load in a server

Active-Load/Throughput

Correlation Analysis

13

Se
rv

e
r

th
ro

u
gh

p
u
t

Saturation

point N*

TPmax

Non-

Saturation

area

Active-Load/Throughput Analysis

for MySQL at WL 14,000

14

MySQL active load [#]

 M
y
S

Q
L

 t
h

ro
u

g
h

p
u

t

[r
e
q

/s
]

Time [s]  Time [s] 

MySQL active load [#]

MySQL active load (every 50ms) MySQL throughput (every 50ms)

A
c
ti

v
e
 l
o

a
d

 [
#

]

T
h

ro
u

g
h

p
u

t
[r

e
q

/s
]

1

2
3

1

2

3

1

2

3

N*

 Introduction & Motivation

 Detection and Visualization

 Fine-grained load/throughput analysis

 Two Observations of Rapidly Alternating

Bottlenecks

 JVM garbage collection (JVM GC)

 VM collocation

 Conclusion & Future Works

Outline

15

Active-Load/Throughput Analysis

at Workload 7,000

16

WL 7,000

S
y
st

e
m

 T
h

ro
u

g
h

p
u

t
[r

e
q

/s
]

System is far from

saturation at WL 7,000

Workload [# users x1000]

Tomcat active load [#]

T
o

m
c
a
t

th
ro

u
g
h

p
u

t
[r

e
q

/s
]

MySQL active load [#]

M
y
S

Q
L

 t
h

ro
u

g
h

p
u

t
[r

e
q

/s
]

Point of Interest (POI)

Active-Load/Throughput Analysis

at Workload 14,000

17

S
y
st

e
m

 T
h

ro
u

g
h

p
u

t
[r

e
q

/s
]

System achieves the

maximum throughput at

WL14,000

Workload [# users x1000]

WL 14,000

Tomcat active load [#]

T
o

m
c
a
t

th
ro

u
g
h

p
u

t
[r

e
q

/s
]

MySQL active load [#]

M
y
S

Q
L

 t
h

ro
u

g
h

p
u

t
[r

e
q

/s
]

POI

Timeline Analysis at Workload 14,000

18

A
c
ti

v
e
 l
o

a
d

 [
#

]

T
h

ro
u

g
h

p
u

t
[r

e
q

/s
]

Tomcat scatter graph

4
POI

4

Time (s) 

A
c
ti

v
e
 l
o

a
d

 [
#

]

T
o

m
c
a
t

G
C

ru
n

n
in

g
 r

a
ti

o
 [

%
]

Time (s) 

Timeline Analysis at Workload 14,000 (Cont.)

19

A
c
ti

v
e
 l
o

a
d

 [
#

]

Time (s) 

A
c
ti

v
e
 l
o

a
d

 [
#

]

T
h

ro
u

g
h

p
u

t
[r

e
q

/s
]

T
h

ro
u

g
h

p
u

t
[r

e
q

/s
]

MySQL scatter graph

Tomcat scatter graph

Time (s) 

4

4’

4

4’

POI

Correlation Analysis of Rapidly Alternating

Bottlenecks

20

T
o

m
c
a
t

a
c
ti

v
e
 l
o

a
d

 [
#

]

 M
y
S

Q
L

 a
c
ti

v
e
 l
o

a
d

 [
#

]

Time (s) 

Correlation coefficient: -0.42, negative correlation

suggests rapidly alternating bottleneck.

 Introduction & Motivation

 Detection and Visualization

 Fine-grained load/throughput analysis

 Two Observations of Rapidly Alternating

Bottlenecks

 JVM garbage collection (JVM GC)

 VM collocation

 Conclusion & Future Works

Outline

21

 Rapidly alternating bottlenecks can cause

non-trivial performance loss in an n-tier

system.

 We proposed a rapidly alternating bottleneck

detection and visualization method through

fine-grained active-load/throughput analysis

 Ongoing work: more analysis of different

types of workloads and more system factors

that cause rapidly alternating bottlenecks.

Conclusion & Future Work

22

Thank You. Any Questions?

Qingyang Wang

qywang@cc.gatech.edu

23

24

Backup slides

Resolving Rapidly Alternating Bottlenecks

25

MySQL active load [#]

M
y
S

Q
L

 t
h

ro
u

g
h

p
u

t
[r

e
q

/s
]

MySQL active load [#]

M
y
S

Q
L

 t
h

ro
u

g
h

p
u

t
[r

e
q

/s
]

Tomcat active load [#]

T
o

m
c
a
t

th
ro

u
g
h

p
u

t
[r

e
q

/s
]

T
o

m
c
a
t

th
ro

u
g
h

p
u

t
[r

e
q

/s
]

Tomcat active load [#]

Performance Gain After Resolving Rapidly

Alternating Bottlenecks

26

R
e
sp

o
n

se
 t

im
e
[s

]

Workload [# users x1000]
T

h
ro

u
g
h

p
u

t
[r

e
q

/s
]

Workload [# users x1000]

Active-Load/Throughput Analysis

at Workload 14,000

27

S
y
st

e
m

 T
h

ro
u

g
h

p
u

t
[r

e
q

/s
]

System achieves the

maximum throughput at

WL14,000

Workload [# users x1000]

WL 14,000

