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Scaling Web Applications  

On-Demand in Cloud 
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Good performance + Cost efficiency  
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What If No Bottleneck Was Detected? 
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CPU util. 79.2% 

Disk I/O 0.5% 

Memory 30% 

       …… 

CPU util. 78.1% 

Disk I/O 0.5% 

Memory 50% 

       …… 
CPU util. 34.6% 

Disk I/O 0.5% 

Memory 50% 

       …… 

CPU util. 26.7% 

Disk I/O 0.5% 

Memory 50% 

       …… 

 

How to scale a web application while 
no bottleneck is identified? 

Bad 

performance 



Rapidly Alternating Bottlenecks 
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2. Duration of each bottleneck is short (e.g., < 100ms) 

1. Throughput is limited with no saturated resources 



Experimental Setup 
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 RUBBoS benchmark: a bulletin board   

    system like Slashdot 

 24 web interactions 

     CPU intensive 

  Workload consists of emulated clients 

 Intel Xeon E5607 

     2 quad-core 2.26 GHz 

     16 GB memory 



Motivational Example 
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 Response time & throughput of a 3-minute benchmark 

on the 4-tier application with increasing workloads. 
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No Obvious Bottleneck is Detected  

at WL 14,000 
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CPU util. 79.2% CPU util. 78.1% 

 Workload is CPU intensive 

 Disk I/O utilization (<5%), network I/O utilization (< 

20%), Memory usage (<40%); 

CPU util. 34.6% CPU util. 26.7% 

CJDBC



 Sources: We find that other than bursty 

workload, system environmental conditions: 

 JVM garbage collection 

 VM collocation 

 Detection and Visualization: We implement 

a fine-grained monitoring method based on 

passive network tracing.  

 Negligible monitoring overhead for running 

applications 

 

Rapidly Alternating Bottleneck:  

Sources and Detection 
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 Introduction & Motivation 

 Detection and Visualization 

 Fine-grained load/throughput analysis 

 Two Observations of Rapidly Alternating 

Bottlenecks 

 JVM garbage collection (JVM GC) 

 VM collocation 

 Conclusion & Future Works 

Outline 
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Two Steps for Detecting Rapidly Alternating 

bottlenecks 
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1. Find the participating servers that present transient 

bottlenecks(e.g., 50ms) 

2. Check whether the transient bottlenecks of each 

participating server occur in an alternating pattern 

 

 



Passive Network Tracing Infrastructure 
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 Collect interaction messages in the system using 

SysViz  to measure fine-grained active load and 

throughput on each server. 

 Active load: The # of concurrent requests in a server 

 Throughput: The # of completed requests of a server 
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Fine-Grained Active Load  

Calculation in a Server 

SysViz 

monitoring for 

MySQL 

50ms 50ms 
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Saturation 

area  

Active load in a server 

Active-Load/Throughput  

Correlation Analysis 
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Active-Load/Throughput Analysis  

for MySQL at WL 14,000 
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 Introduction & Motivation 

 Detection and Visualization 

 Fine-grained load/throughput analysis 

 Two Observations of Rapidly Alternating 

Bottlenecks 

 JVM garbage collection (JVM GC) 

 VM collocation 

 Conclusion & Future Works 

Outline 
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Active-Load/Throughput Analysis  

at Workload 7,000 
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Active-Load/Throughput Analysis  

at Workload 14,000 

17 

S
y
st

e
m

 T
h

ro
u

g
h

p
u

t 
[r

e
q

/s
] 

System achieves the 

maximum throughput at 

WL14,000 

Workload [# users x1000] 

WL 14,000 

Tomcat active load [#] 

T
o

m
c
a
t 

th
ro

u
g
h

p
u

t 
[r

e
q

/s
] 

MySQL active load [#] 

M
y
S

Q
L

 t
h

ro
u

g
h

p
u

t 
[r

e
q

/s
] 

POI 



Timeline Analysis at Workload 14,000 
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Timeline Analysis at Workload 14,000 (Cont.) 
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Correlation Analysis of Rapidly Alternating 

Bottlenecks 
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Correlation coefficient: -0.42, negative correlation 

suggests rapidly alternating bottleneck.  



 Introduction & Motivation 

 Detection and Visualization 

 Fine-grained load/throughput analysis 

 Two Observations of Rapidly Alternating 

Bottlenecks 

 JVM garbage collection (JVM GC) 

 VM collocation 

 Conclusion & Future Works 

Outline 
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 Rapidly alternating bottlenecks can cause 

non-trivial performance loss in an n-tier 

system. 

 We proposed a rapidly alternating bottleneck 

detection and visualization method through 

fine-grained active-load/throughput analysis 

 Ongoing work: more analysis of different 

types of workloads and more system factors 

that cause rapidly alternating bottlenecks. 

Conclusion & Future Work 
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Thank You. Any Questions? 

 

Qingyang Wang 

qywang@cc.gatech.edu 
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Backup slides 

 



Resolving Rapidly Alternating Bottlenecks 
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Performance Gain After Resolving Rapidly 

Alternating Bottlenecks 
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Active-Load/Throughput Analysis  

at Workload 14,000 
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