
International Journal of Cloud Computing (ISSN 2326-7550) Vol. 1, No. 1, July-September 2013			
	

http://hipore.com/ijcc	 	 13	
	

RAPIDLY	ALTERNATING	BOTTLENECKS:	A	STUDY	OF	TWO	CASES	IN	
N‐TIER	APPLICATIONS	

1Qingyang	Wang,	2Yasuhiko	Kanemasa,	1Jack	Li,	2Toshihiro	Shimizu,	2Masazumi	Matsubara,	3Motoyuki	
Kawaba,	1Calton	Pu	

1College	of	Computing,	Georgia	Institute	of	Technology	
2System	Software	Laboratories,	FUJITSU	LABORATORIES	LTD.	

3ICT	Systems	Laboratories,	FUJITSU	LABORATORIES	LTD.	
{qywang,	jack.li,	calton}@cc.gatech.edu,	{kanemasa,	shimizut,	matz,	kawaba}@jp.fujitsu.com		

	
Abstract	
Identifying	 the	 location	 of	 performance	 bottlenecks	 is	 a	 non‐trivial	 challenge	 when	 scaling	 n‐tier	 applications	 in	
computing	 clouds.	 Specifically,	 we	 observed	 that	 an	 n‐tier	 application	 may	 experience	 significant	 performance	 loss	
when	 bottlenecks	 alternate	 rapidly	 between	 component	 servers.	 Such	 rapidly	 alternating	 bottlenecks	 arise	 naturally	
and	often	from	resource	dependencies	in	an	n‐tier	system	and	bursty	workloads.	These	rapidly	alternating	bottlenecks	
are	 difficult	 to	 detect	 because	 the	 saturation	 in	 each	 participating	 server	 may	 have	 a	 very	 short	 lifespan	 (e.g.,	
milliseconds)	 compared	 to	 current	 system	monitoring	 tools	 and	 practices	 with	 sampling	 at	 intervals	 of	 seconds	 or	
minutes.	 Using	 passive	 network	 tracing	 at	 fine‐granularity	 (e.g.,	 aggregate	 at	 every	 50ms),	 we	 are	 able	 to	 correlate	
throughput	(i.e.,	request	service	rate)	and	queue	length	(i.e.,	number	of	concurrent	requests)	in	each	server	of	an	n‐tier	
system.	 Our	 experimental	 results	 show	 conclusive	 evidence	 of	 rapidly	 alternating	 bottlenecks	 caused	 by	 system	
software	(JVM	garbage	collection)	and	middleware	(VM	collocation).	
Keywords:		[bottleneck,	n‐tier,	performance	analysis,	scalability,	web	application]	
__	
1. INTRODUCTION	

Web-facing enterprise applications such as electronic
commerce are not embarrassingly parallel (e.g., web
indexing and data analytics). They are typically
implemented using an n-tier architecture with web server,
application server, and database server tiers. Such n-tier
applications have implicit dependencies among their
components, which create alternating bottlenecks (Balbo &
Serazzi, 1997; Casale & Serazzi, 2004; Malkowski, Hedwig,
& Pu, 2009; Mi, Casale, Cherkasova, & Smirni, 2008).
These alternating bottlenecks are both interesting and
challenging. They are interesting because they cause the
entire n-tier system to reach its performance limit (i.e., flat
throughput) even though all system resources are
measurably below 100% utilization. They are challenging
because classic queuing models that assume independent
jobs predict single resource saturation bottlenecks, so they
are inapplicable to alternating bottlenecks.

The main hypothesis of this paper is that (contrary to
previously common belief) alternating bottlenecks occur
naturally in real application scenarios and they can be found
by experimental measurements using appropriate tools.
Alternating bottlenecks constitute an important problem
because there is lingering skepticism about their prevalence
(and even existence) in the real world, despite early
theoretical predictions (Balbo & Serazzi, 1997; Casale &
Serazzi, 2004; Mi et al., 2008). In the past, observed
evidence of alternating bottlenecks was rare and it was not
easy to reproduce them reliably in experiments. We report
consistent experimental results which suggest that

alternating bottlenecks may be far more common than
previously believed. The perception of rarity is simply due
to many alternating bottlenecks being short-lived (on the
order of tens of milliseconds). Consequently, these
interesting phenomena have been (and still are) completely
invisible to normal monitoring tools that sample at time
intervals measured in seconds or minutes.

The main contribution of the paper is an unequivocal
confirmation of our hypothesis through reproducible
experimental observation of two rapidly alternating
bottlenecks when running the standard n-tier RUBBoS
benchmark ("RUBBoS: Bulletin board benchmark," 2004).
Specifically, we found that bottlenecks alternate between
the Tomcat tier and the MySQL tier at time interval of tens
of milliseconds. Our study further shows that alternating
bottlenecks can be caused by factors at the software level
(e.g., JVM garbage collection, see Section 4) and
middleware level (e.g., VM collocation, see Section 5).
Despite its relatively short duration, the impact of this
alternating bottleneck becomes significant when the
frequency and intensity of the alternating pattern increase.
The detection of alternating bottlenecks required a novel
method that differs from traditional bottleneck detection in
two main aspects. First, since alternating bottlenecks may
arise without any single resource saturation, our method is
completely independent of any single resource saturation
measurements. Concretely, Section 2.2 shows an example
in which the throughput of a four-tier system stops
increasing even though the highest resource utilization in
the system (MySQL CPU) is only 86.9%. Second, our

International Journal of Cloud Computing (ISSN 2326-7550) Vol. 1, No. 1, July-September 2013	
	

http://hipore.com/ijcc	 	 14	
	

						 								 	
(a)Average response time and throughput at
each workload

 (b) Tomcat CPU utilization at WL14,000;
the average is 86.9%.

(c) MySQL CPU utilization at WL14,000;
the average is 84.3%.

Figure 1: A rapidly alternating bottleneck case of a 4-tier system with Browse-only workload (CPU intensive). The system
achieves the highest throughput at WL 14,000 as shown in Figure 1(a) while no hardware resources are fully saturation as
shown in Figure 1(b) and Figure 1(c).

method works at an unprecedented fine time granularity
(milliseconds), which is more precise than normal sampling
tools (e.g., dstat consumes 12% of CPU at 20ms intervals).
Our method uses passive network packet tracing, which
captures the arrival and departure time of each request of
each server at microsecond granularity with negligible
impact on the servers. By correlating the queue length and
throughput of each server at millisecond granularity, our
method is able to find short-lived alternating bottlenecks
(lifetime of tens of milliseconds) that have been invisible to
state-of-the-art sampling tools.

The rest of the paper is organized as follows. Section 2
introduces various kinds of bottlenecks. Section 3 shows our
fine-grained performance analysis method. Section 4 and 5
show the two case studies of our experimental observations
of rapidly alternating bottlenecks. Section 6 shows our
concrete solutions to resolve the observed rapidly
alternating bottlenecks. Section 7 summarizes the related
work and Section 8 concludes the paper.

2. VARIOUS	KINDS	OF	BOTTLENECKS	
2.1 SINGLE	BOTTLENECKS		

A system bottleneck in an n-tier system is the place
where requests start to be queued (or congested) and
throughput is limited in the system. Classic queuing models
assume independent jobs and predict single resource
bottleneck in an n-tier system, in which the system achieves
the maximum throughput when the single bottleneck
resource is 100% utilized. Due to its simplicity and
intuitiveness, classic queuing models have provided the
foundation for system administrators to manage and predict
system performance (Jung, Joshi, Hiltunen, Schlichting, &
Pu, 2009; Urgaonkar, Shenoy, Chandra, & Goyal, 2005;
Xiong et al., 2011). Despite their popularity, classic queuing
models are based on assumptions (e.g., independent jobs
among component servers in a system) that do not
necessarily hold in an n-tier system in practice.

Server/
Resource

CPU util
(%)

Disk I/O
(%)

Network receive/send
(MB/s)

Apache 45.9 0.5 23.8/39.9
Tomcat 86.9 0.3 7.6/13.1
CJDBC 36.2 0.2 11.2/14.3
MySQL 84.3 0.4 0.8/4.6

Table 1: Average resource utilization in each tier at WL
14,000. Except Tomcat and MySQL CPU, the other system
resources are far from saturation.

2.2 MULTI‐BOTTLENECKS		
Multi-bottlenecks describe a phenomenon where an n-

tier system is saturated (i.e., achieves the maximum
throughput) while no single hardware resource is fully
utilized (Malkowski et al., 2009). We use an example to
illustrate this phenomenon. The example was derived from a
three-minute experiment of RUBBoS running on a four-tier
configuration (1L/2S/1L/2S, see Figure 14(c)). The details
of the experimental setup are in Appendix A.

Figure 1(a) shows the system works well from a
workload of 1,000 concurrent users to 13,000. At 14,000,
the average response time increases significantly and the
throughput reaches a maximum. The interesting observation
is that the saturated system does not have any single
resource bottleneck. Since we use the CPU intensive
Browse-only workload of this benchmark, we show the
timeline graphs (with one second granularity) of CPU
utilization. During the execution of the WL 14,000, both
Tomcat (Figure 1(b) and MySQL (Figure 1(c)) show less
than full CPU utilization, with an average of 86.9% (Tomcat)
and 84.3% (MySQL). We also summarize the average
usage of other main hardware resources of each server in
Table 1. This table shows that except for Tomcat and
MySQL CPU, the other system resources are far from
saturation.

This example shows that simply monitoring hardware
resource utilization may be unable to identify the system
bottleneck, since there is no single saturated resource. Later
in Section 4 we explain that this is a rapidly alternating

International Journal of Cloud Computing (ISSN 2326-7550) Vol. 1, No. 1, July-September 2013	
	

http://hipore.com/ijcc	 	 15	
	

Figure 2: Illustration of a rapidly alternating bottleneck case
in a 3-tier web application.

bottleneck case (a special case of multi-bottleneck) where
the bottleneck alternates rapidly between MySQL and
Tomcat. During normal processing, MySQL CPU is the
primary system bottleneck, being fully utilized for
processing requests sent from Tomcat. However, the
Tomcat JVM garbage collection process freezes request
processing and consumes the server CPU (at the granularity
of milliseconds). Thus the Tomcat becomes the bottleneck
during garbage collection. In either case, the system
throughput is limited.

2.3 RAPIDLY	ALTERNATING	BOTTLENECKS	

Rapidly alternating bottlenecks are a special case of
multi-bottlenecks that the bottleneck in an n-tier system
alternates rapidly (on the order of tens of milliseconds)
among multiple system resources while at any moment one
system resource becomes the main bottleneck. Rapidly
alternating bottlenecks arise due to the implicit
dependencies among servers in an n-tier system. For
example, requests that originate from a client arrive at the
web server, which distributes them among the application
servers, which in turn ask the database servers to carry out
the query. The dependencies among the servers are in the
long invocation chain (through RPC calls) of transaction
processing in the system and maintained by soft resources
(e.g., threads and database connections (Wang et al., 2011)).
Such dependencies may cause requests to congest in
different servers at different time period. For example,
Figure 2 demonstrates a rapidly alternating bottleneck case
in a 3-tier system. This figure shows that the bottleneck
alternates between Tomcat and MySQL at tens of
milliseconds level, thus monitoring resource utilization at
every second can rarely detect any resource saturation
(similar to what Figure 1(b) and Figure 1(c) show).

The identification of rapidly alternating bottlenecks as
an important phenomenon is due to its significant impact in
cloud computing environments, where hardware resources
are supposed to be “infinite” for applications to scale.
Detection of rapidly alternating bottlenecks poses
significant challenges to current state of the art monitoring
tools, which leads to inefficient performance management
of applications deployed in cloud.

	
Figure 3: An example of a transaction execution trace
captured by SysViz.

3. DETECTION	OF	RAPIDLY	ALTERNATING	
BOTTLENECK	

In this section, we briefly explain our fine-grained
analysis to detect rapidly alternating bottlenecks. This kind
of analysis is necessary to detect a bottleneck alternating on
the order of tens of milliseconds among servers. Later we
will show two case studies of applying our method to detect
rapidly alternating bottlenecks caused by JVM garbage
collection (Section 4) and VM collocation (Section 5).

3.1 TRACE	MONITORING	TOOL	

Our fine-grained analysis is based on the tracing of
client transaction executions of an n-tier system. Before we
start the details of the fine-grained analysis method, we first
briefly explain our tool (Fujitsu SysViz ("Fujitsu SysViz:
System Visualization," 2010)) for the tracing of transaction
executions in an n-tier system. A client transaction services
an entire web page requested by a client and may consist of
multiple interactions between different tiers. Figure 3 shows
an example of such a trace (numbered arrows) of a client
transaction execution in a three-tier system. SysViz is able
to reconstruct the entire trace of each transaction executed in
the system based on the traffic messages (odd-numbered
arrows) collected through a network switch which supports
passive network tracing. In our experimental environment,
all the servers are connected to the network switch, which
forwards all the traffic messages to a dedicated SysViz
server. Thus, the arrival/departure timestamps of each
request (small boxes with even-numbered arrows) for any
server can be recorded by the SysViz server.

SysViz requires no modification on application source
code and has a negligible performance impact on the target
n-tier application. We note that since the timestamps of all
messages are assigned by one dedicated SysViz server, the
precision of the derived processing time of each request in
any tier in the system is close to microsecond level. Thus,
the influence of clock errors between machines caused by
limited accuracy of NTP can be avoided.

In fact the transaction tracing technology has been

International Journal of Cloud Computing (ISSN 2326-7550) Vol. 1, No. 1, July-September 2013	
	

http://hipore.com/ijcc	 	 16	
	

(a) MySQL queue length average at
every 50ms time interval in a 12-second
time period.

(b) MySQL throughput average at every
50ms time interval in the same 12-second

time period as in Figure 4(a).

(c) MySQL queue length vs. throughput
in the same 12-second time period as in

Figure 4(a) and Figure 4(b).

Figure 4: Fine-grained analysis of MySQL when the system is at WL 14,000. Figure 4(a) and Figure 4(b) show the MySQL
queue length and throughput measured at the every 50ms time interval. Figure 4(c) is derived from Figure 4(a) and Figure
4(b); each point in Figure 4(c) represents the MySQL queue length and throughput measured at the same 50ms time interval
during the 12-second experimental time period.

studied intensively in previous research (Barham, Donnelly,
Isaacs, & Mortier, 2004; Fonseca, Porter, Katz, Shenker, &
Stoica, 2007; Sambasivan et al., 2011; Sigelman et al.,
2010); the ongoing research trend is how to use the captured
tracing information to diagnose system performance
problem.

3.2 FINE‐GRAINED	QUEUE‐LENGTH/THROUGHPUT	

ANALYSIS		
Since each participating server in a rapidly alternating

bottleneck case only presents short-term saturations, a key
point of detecting the rapidly alternating bottleneck is to
find the participating short-term saturated servers. Instead of
monitoring hardware resource utilizations, our approach
measures a server's queue length and throughput in
continuous fine-grained time intervals. The throughput of a
server can be calculated by counting the number of
completed requests in the server in a fixed time interval,
which can be 50ms, 100ms, or 1s. Queue length is the
average number of queued requests over the same time
interval1 . Both these two metrics for each server in the
system can be easily derived from the trace captured by
SysViz.

Figure 4(a) shows the MySQL queue length average at
every 50ms time interval over a 12-second time period for
the 1L/2S/1L/2S configuration case at WL 14,000 (See the
case in Figure 1). This figure shows that a large number of
requests are queued in MySQL from time to time, which
suggests MySQL frequently presents short-term saturation.
Figure 4(b) shows the MySQL throughput average at every
50ms time interval over the same 12-second time period as

																																																													
1 At each time tick, we know how many requests for a server have arrived,
but not yet departed. This is the number of concurrent requests being
processed by the server. Concurrent requests can also be thought as
“queued” requests. More detailed fine-grained queue-length/throughput
calculation can be found in (Wang, Kanemasa, Li, Jayasinghe, et al., 2013)

in Figure 4(a). This figure shows that in some time intervals
MySQL even produces zero throughput, which suggests
MySQL is frequently under-utilized.

To precisely diagnose in which time intervals a server
presents short-term saturation, we need to correlate the
server's queue length and throughput as shown in Figure
4(c). This figure is derived from Figure 4(a) and Figure
4(b); each point in Figure 4(c) represents the MySQL
queue-length/throughput measured at the same 50ms time
interval during the 12-second experimental time period.
This figure shows the clear trend of queue-
length/throughput correlation (we call the trend as main
sequence curve), which is consistent with Denning et al.'s
(Denning & Buzen, 1978) operational analysis result for the
relationship between a server's queue length 2 and
throughput. Specifically, a server's throughput increases as
the queue length on the server increases until it reaches the
maximum throughput TPmax.3 The saturation point N* is
the minimum queue length beyond which the server starts to
saturate.

Once N* is determined, we can judge in which time
intervals a server is saturated based on the measured queue
length. For example, Figure 4(c) highlights three points
labeled 1, 2, and 3, each of which represents the queue-
length/throughput in a time interval that can match back to
Figure 4(a) and Figure 4(b). Point 1 shows that MySQL is
saturated in the corresponding time interval because the
long queue length far exceeds N*. Point 2 shows that
MySQL is not saturated due to the zero queue length and
throughput. Point 3 also shows that MySQL is not saturated

																																																													
2 The queue length in their definition is the load in a system, which means
the number of jobs being processed concurrently.
3 Due to the Utilization Law, the maximum throughput TPmax of a server is
fixed by the bottleneck resource in terms of 1/d, where d is the service
demand for the bottleneck resource per job(Denning & Buzen, 1978).

International Journal of Cloud Computing (ISSN 2326-7550) Vol. 1, No. 1, July-September 2013	
	

http://hipore.com/ijcc	 	 17	
	

(a) Tomcat tier at WL 7,000

(b) Tomcat tier at WL 14,000

(c) Tomcat queue length vs. throughput at

WL 14,000

(d) MySQL tier at WL 7,000

(e) MySQL tier at 14,000

(f) MySQL queue length vs. throughput at
WL 14,000

Figure 5: Fine-grained queue-length/throughput analysis for Tomcat and MySQL. Figure 5(c) and Figure 5(f) are derived
from Figure 5(b) and Figure 5(e) respectively, with 3-minute experimental data. Figure 5(b) shows that there are some time
intervals that Tomcat has high queue length but low throughput (see the point labeled 4), which correspond to the low queue
length and throughput of MySQL as shown in Figure 5(e)(see the point labeled 4).

(a) Tomcat queue length and MySQL Queue length; negative

correlation ( = -0.42) suggests rapidly alternating bottleneck.

 (b) Tomcat queue length and Tomcat GC running ratio in the
same time period as in Figure 6(a); high GC running ratio
causes long queue in Tomcat.

Figure 6: Correlation analysis of the rapidly alternating bottleneck between Tomcat and MySQL at WL 14,000. Figure 6(a)
shows that Tomcat and MySQL queue length have strong negative correlation. Figure 6(b) shows that the peaks of Tomcat
queue length are due to frequent JVM GCs.

because the corresponding queue length is less than N*
though it generates relatively high throughput.

After we detect all the short-term saturated servers, the
next step is to analyze whether the short-term saturation of
each participating server occurs in an alternating pattern.
We will illustrate this point in the following two case
studies.

4. RAPIDLY	ALTERNATING	BOTTLENECK	
CAUSED	BY	JVM	GC	

In this section we explain the rapidly alternating
bottleneck mentioned in Section 2.2. In that example, the
poor system performance is caused by the frequent short-
term saturations of both Tomcat and MySQL. Our further
correlation analysis shows that the frequent JVM GCs in

International Journal of Cloud Computing (ISSN 2326-7550) Vol. 1, No. 1, July-September 2013	
	

http://hipore.com/ijcc	 	 18	
	

Figure 7: Collocation strategy between SysA and SysB;
SysA-App2 is collocated with SysB-DB.

SysA-App2 SysB-DB

WL
(users)

Burstiness
level

CPU
(%)

WL
(users)

Burstiness
level

CPU
(%)

1 14,000 I = 1 74.1 0 Non-col 0
2 14,000 I = 1 74.9 400 I = 1 10.2
3 14,000 I = 1 74.7 400 I = 100 10.6
4 14,000 I = 1 75.5 400 I = 200 10.5

5 14,000 I = 1 75.2 400 I = 400 10.8

Table 2: Workload of SysA and SysB in each of the five
collocation experiments. SysA is at constant stable WL
14,000 and SysB is at constant workload but with different
burstiness levels (from I =1 to 400).

Tomcat cause the bottleneck to alternate between Tomcat
and MySQL.

Figure 5 shows the fine-grained load/throughput
analysis for Tomcat and MySQL at WL 7,000 and 14,000
with the same system configuration as in Section 2.2.
Figure 5(a) and Figure 5(d) show that both Tomcat and
MySQL are not saturated at WL 7,000 since the load of
each tier is below the corresponding saturation point N*,
which is derived from Figure 5(c) and Figure 5(f)
respectively.

The interesting figures are Figure 5(b) and Figure 5(e),
which show that at WL 14,000 both the Tomcat tier and the
MySQL tier frequently present short-term saturations.
Specially, Figure 5(b) shows that in some time intervals the
Tomcat load is high (e.g., the point labeled 4) but the
corresponding throughput is zero, which means that many
requests are queued in Tomcat but no output responses
(throughput). Figure 5(c), which is derived from Figure 5(b)
but based on the 3-minute runtime experiments, shows that
there are many time intervals when Tomcat has a high load
but low or even zero throughput (POI inside the rectangular
area). Since Tomcat is the upstream tier of MySQL, the
output responses of Tomcat feeds the input requests of
MySQL; thus having fewer output responses from Tomcat
means there will be fewer input requests sent to MySQL,
which leads to the under-utilization of MySQL. For
example, the point labeled 4 in Figure 5(b) illustrates zero
throughput in Tomcat, which leads to the zero throughput
and load of MySQL (see the point labeled 4' in Figure 5(e)).

To illustrate the rapidly alternating bottleneck between
Tomcat and MySQL, Figure 6(a) shows the correlation

	
Figure 8: SysA response time (at WL 14,000) when
collocated with SysB (at WL 400 but with increased
burstiness level).

between the Tomcat load and the MySQL load over the
same 12-second time period. This figure shows that these
two metrics have a negative correlation (the Pearson
correlation is -0.42), which suggests that the short-term
saturation alternates between Tomcat and MySQL. Thus,
the reason for the limited system throughput is clear: at any
moment either Tomcat or MySQL becomes the bottleneck
in the system.

Our further analysis shows that the short-term
saturations of Tomcat are caused by frequent JVM GC. In
this set of experiments, the JVM in Tomcat (with JDK 1.5)
uses a synchronous garbage collector; it waits during the
garbage collection period and only starts processing requests
after the garbage collection is finished. To confirm that
JVM GC causes the bottleneck in Tomcat, Figure 6(b)
shows the timeline graph which correlates the Java GC
running ratio4 with the Tomcat load (50ms). This figure
shows the occurrence of Tomcat JVM GC has a strong
positive-correlation with the high load in Tomcat. The high
peaks of JVM GC in Figure 6(b) stop Tomcat and make
requests queued in Tomcat dramatically. We note that such
long freeze times in Tomcat do not happen frequently when
the system is under low workload as shown in Figure 5(a).
This is because JVM GC has a non-linear relationship with
the amount of workload (Wang, Kanemasa, Kawaba, & Pu,
2012)

5. RAPIDLY	ALTERNATING	BOTTLENECK	
CAUSED	BY	VM	COLLOCATION	

In this section we show another rapidly alternating
bottleneck case due to VM collocation, i.e., collocating
multiple under-utilized VMs into the same physical host so
that VMs can share hardware resources. Although VM
collocation can reduce infrastructure/maintenance

																																																													
4 Java GC running ratio means the total time spent on Java GC during each
monitoring time interval to the total monitoring time interval length. JVM
provides a tool recording the starting/ending timestamp of every GC
activity.

International Journal of Cloud Computing (ISSN 2326-7550) Vol. 1, No. 1, July-September 2013	
	

http://hipore.com/ijcc	 	 19	
	

(a) Tomcat tier of SysA (SysA-App)
when the burstiness level of SysB
workload is I = 1

 (b) Tomcat tier of SysA (SysA-App)
when the burstiness level of SysB
workload is I = 400

(c) SysA-App queue length vs.
throughput when the burstiness
level of SysB workload is I = 400

(d) MySQL tier of SysA (SysA-DB)
when the burstiness level of SysB
workload is I = 1

(e) MySQL tier of SysA (SysA-DB)
when the burstiness level of SysB
workload is I = 400

(f) SysA-DB queue length vs.
throughput when the burstiness level
of SysB workload is I = 400

Figure 9: Fine-grained queue-length/throughput analysis for the Tomcat and MySQL of SysA in the collocation experiments.
Figure 9(c) and Figure 9(f) are derived from Figure 9(b) and Figure 9(e) respectively, with 3-minute experimental data.
Figure 9(a) and Figure 9(d) show that the queue length of the SysA Tomcat/MySQL tier is low when SysB workload is stable
(I = 1). As the burstiness of SysB workload increases (I = 400), there are some time intervals that SysA‐App	 has high queue
length but low throughput (see the point labeled 5 in Figure 9(b)), which correspond to the low queue-length/throughput of
SysA‐DB	(see the point labeled 5' in Figure 9(e)).

										 	
(a) The queue length of SysA-App and SysA-DB when SysB is
at bursty workload (I = 400); negative correlation suggests
rapidly alternating bottleneck in SysA.

(b) SysA-App queue length vs. SysB-DB CPU; burst of SysB-
DB CPU utilization causes long queue in the SysA-App tier.

Figure 10: Analysis of rapidly alternating bottleneck between SysA-App and SysA-DB. Figure 10(b) shows that the peaks of
SysA-App queue length are caused by the burst of SysB-DB CPU utilization because SysA-App and SysB-DB are competing
for CPU resources.

costs(Barham et al., 2003; Govindan, Liu, Kansal, &
Sivasubramaniam, 2011), it may significantly hamper the
performance of the collocated applications in a non-trivial
way, especially when the workload for the collocated
applications becomes bursty (Kanemasa, Wang, Li,
Matsubara, & Pu, 2013; Malkowski et al., 2012). For
example, rapidly alternating bottlenecks may occur in a

foreground application if it is collocated with another
application facing a bursty workload.

We illustrate this problem by collocating two VMs, each
of which is from a separate n-tier application, into the same
host and with each VM sharing the same CPU core. Figure
7 shows our collocation strategy of the two applications;
SysA with 1L/2S/1L/2S configuration (4-tier) and SysB

International Journal of Cloud Computing (ISSN 2326-7550) Vol. 1, No. 1, July-September 2013	
	

http://hipore.com/ijcc	 	 20	
	

with 1S/1S/1S configuration (3-tier). SysA keeps the same
hardware configuration as in the previous section but with
JDK1.6 in Tomcat.5 The VM of SysA-App2 is collocated
with the VM of SysB-DB on the same ESXi host and they
share the same CPU core; the VMs of the front tiers (one
Apache and one Tomcat) of SysB are deployed in separate
ESXi hosts from SysA in order to simplify the analysis.
Table 2 shows the workload conditions and average CPU
utilization of both SysA and SysB in the collocation
experiments. SysA is at a constant stable workload of
14,000 in all five experiments. Except for the first
experiment (the non-collocation case), SysB is under
constant WL 400 but with varying burstiness levels, which
is represented by I.6 This table shows that the average CPU
utilization of both the collocated VMs SysA-App2 and
SysB-DB are almost constant and the total of the CPU
utilization is less than 90%, which justifies the collocation
strategy based on traditional bin packing practices.

Figure 8 shows the average response time of SysA in all
the five cases. This figure shows that the SysA response
time is almost the same when the collocated SysB has the
relatively stable workload (I = 1), and increases
significantly when the burstiness level of the workload for
SysB becomes high (e.g., I = 400). The significant increase
in SysA response time may seem strange since the average
CPU utilization remains constant as seen in Table 2.

Figure 9(b) shows a similar interesting phenomenon as
in the previous rapidly alternating bottleneck case that in
some time intervals (e.g., between 52s and 53s) the SysA-
App has a long queue length but low throughput; the low
throughput of SysA-App leads to the low queue length and
throughput in SysA-DB during the same time period as
shown in Figure 9(e). Figure 9(c) (derived from Figure 9(b)
but based on 3-minute experimental data) suggests that there
are many time intervals when SysA-App has a long queue
length but low throughput (points in POI). During these
time intervals, SysA-App presents short-term saturations
and SysA-DB is under-utilized due to the low number of
input requests sent from SysA-App (see Figure 9(f)).

Figure 10(a) shows the correlation of the queue length
between SysA-App and SysA-DB over the same 8-second
time period. This figure shows that SysA-App queue length
has a negative correlation ( = -0.46) with SysA-DB queue
length, which suggests the bottleneck alternates rapidly
between SysA-App and SysA-DB.

Our further analysis shows that the short-term saturation
of SysA-App is caused by the burst of SysB-DB CPU
utilization. Figure 10(b) shows the timeline graph of the
CPU utilization of SysB-DB (measured using VMware

																																																													
5 The upgrade of JDK version in Tomcat solves the rapidly alternating

bottleneck caused by frequent JVM GCs; see Section 6 for more details.
6 Mi et al.(Mi, Casale, Cherkasova, & Smirni, 2009) introduced index of
dispersion (abbreviated as I) to characterize the intensity of the traffic
surges. The larger the I is, the longer the duration of the traffic surge. The

burstiness level of the by default RUBBoS workload is I = 1.

esxtop with 2s granularity) and the SysA-App queue length
(measured at every 50ms time interval). This figure shows
that the SysA-App queue length increases significantly
when there is a spike in the SysB-DB CPU utilization7,
which indicates that the Tomcat tier of SysA temporarily
becomes the bottleneck due to the interference of SysB-DB.
The detailed research about the race of CPU scheduling
between collocated VMs has been provided in (Kanemasa et
al., 2013).

6. RESOLVING	RAPIDLY	ALTERNATING	
BOTTLENECKS	

Once we detect a rapidly alternating bottleneck, we can
resolve the bottleneck through various ways, depending on
whether we can find the exact cause for the rapidly
alternating bottleneck. Specifically, we can simply scale-
out/up the participating servers if we cannot find the exact
cause, or we can resolve the bottleneck by addressing the
exact cause. For example, we can resolve the rapidly
alternating bottleneck caused by frequent JVM GCs in
Tomcat through upgrading the JDK version from 1.5 to 1.6,
which has more efficient garbage collectors.8 We can also
resolve the rapidly alternating bottleneck caused by VM
collocation through VM migration.

In this section we show the performance gain after we
resolve the rapidly alternating bottleneck caused by frequent
JVM GCs in Tomcat (Section 4). We choose to resolve the
bottleneck by upgrading the JDK version from 1.5 to 1.6 in
Tomcat since we know the exact cause. The experiments
have the same hardware/software configuration as in
Section 3.2 except for the Tomcat JDK version.

Figure 11 shows the fine-grained queue-
length/throughput analysis for Tomcat and MySQL at WL
14,000 and 16,000. Recall from Section 4 the system
throughput reaches the maximum at WL 14,000 due to the
rapidly alternating bottleneck between Tomcat and MySQL
before the JDK version upgrade. After the JDK version
upgrade, Figure 11(a) and Figure 11(d) show that only
MySQL presents frequent short-term saturations at WL
14,000; further workload increase to 16,000 leads to the full
saturation of MySQL as shown in Figure 11(e) (the queue
length is above the N* most of the time). Thus, the rapidly
alternating bottleneck is resolved after the JDK upgrade in
Tomcat. Specifically, the POIs in Figure 5(c) do not appear
in Figure 11(c), which means Tomcat does not have long
“freezing” periods. Accordingly, there are only a few time
intervals with low queue length and low throughput in
MySQL (see Figure 11(e)), which means MySQL is fully
utilized.

																																																													
7 We couldn’t measure the fine-grained CPU usage of SysB-DB because 2s

is the finest granularity that the latest esxtop supports.
8
JDK 1.6 uses garbage collection algorithms which support both parallel

and concurrent garbage collection.

International Journal of Cloud Computing (ISSN 2326-7550) Vol. 1, No. 1, July-September 2013	
	

http://hipore.com/ijcc	 	 21	
	

				 				 	
(a) Tomcat tier at WL 14,000

	
(b) Tomcat tier at 16,000 (c) Tomcat queue length vs. throughput

at WL 16,000

				 				 	
(d) MySQL tier at WL 14,000

(e) MySQL tier at 16,000 (f) MySQL queue length vs.throughput at

WL 16,000

Figure 11: Fine-grained queue-length/throughput analysis for Tomcat (with JDK 1.6) and MySQL. Figure 11(c) and Figure
11(f) are derived from Figure 11(b) and Figure 11(e) respectively, with 3-minute experimental data. Figure 11(b) and Figure
11(e) show that the rapidly alternating bottleneck is resolved and the MySQL tier becomes the single bottleneck.

																 	
																										(a)	System	response	time	gain																																																								(b)	System	throughput	gain	

Figure 12: Performance improvement after resolving rapidly alternating bottleneck.

Figure 12(a) and Figure 12(b) show the system response
time and throughput gain after we resolve the rapidly
alternating bottleneck. At WL 17,000, the system with JDK
1.6 outperforms the system with JDK 1.5 by a 21.1% higher
throughput while achieving an average response time that is
about 71% lower (1500ms faster).

We note we can resolve the rapidly alternating
bottleneck caused by VM collocation described in Section 5
through migrating the collocated VM to a different ESXi
host. We should use this solution only when we detect the
performance interference caused by collocated VMs.

7. DISCUSSION	
So far we illustrated that rapidly alternating bottlenecks

can be caused by system software level factors (e.g., JVM

GC) and middleware level factors (VM collocation). In fact
there are many other factors that can cause rapidly
alternating bottlenecks such as Dynamic Voltage and
Frequency Scaling (DVFS) technology at the architecture
level (Wang, Kanemasa, Li, Lai, et al., 2013). The reason
why rapidly alternating bottlenecks can happen frequently is
because there are many factors that can cause short-term
saturations of component servers in real systems, especially
when the system is at high utilization. The short-term
saturations of component servers, compounded with
dependencies among tiers in an n-tier system, create rapidly
alternating bottlenecks in the system.

The short-term saturation of a component server in an n-
tier system has a significant impact on the servers in other
tiers of the system due to resource dependencies among tiers

International Journal of Cloud Computing (ISSN 2326-7550) Vol. 1, No. 1, July-September 2013	
	

http://hipore.com/ijcc	 	 22	
	

					 					 	
(a)MySQL	tier	after	the	rapidly	alternating	
bottleneck	is	resolved;	the	queue	length	data	is	
derived	from	Figure 11(d).	
	

(b)MySQL	tier	in	the	rapidly	alternating	
bottleneck	case	caused	by	frequent	JVM	
GCs;	the	queue	length	data	is	derived	from	
Figure 4(e).	

(c)MySQL	tier	in	the	rapidly	alternating	
bottleneck	case	caused	by	VM	collocation;	
the	queue	length	data	is	derived	from	
Figure 9(e).	

Figure 13: The comparison of MySQL queue length distribution at WL 14,000 before and after resolving the rapidly
alternating bottlenecks. Figure 13(b) and Figure 13(c) show that the MySQL tier encounters more frequent long queue length
compared to the case in Figure 13(a), which suggests that the Tomcat tier sends more bursty workload into the MySQL tier
and causes more frequent congestion in MySQL in a rapidly alternating bottleneck case.

in the system. For example, the short-term saturation (either
caused by JVM GC or VM collocation) of a server causes a
bursty workload to the downstream tiers, causing
downstream tiers to switch between a saturation and non-
saturation state. Specifically, during the short-term
saturation of a server, many requests start to queue in the
server, which causes the downstream tiers to be under-
utilized (non-saturation state); after the short-term saturation
period, the queued requests are pushed to the downstream
tiers in a batch mode, which cause the short-term saturation
of the downstream tiers; the short-term saturation may
present an alternating pattern between the server and the
downstream tiers once the frequency of the short-term
saturations of the server becomes high.

Figure 13 shows the comparison of MySQL queue
length distribution before and after resolving the rapidly
alternating bottlenecks caused by the short-term saturations
of Tomcat (see Section 4 and Section 5). The system in all
these three cases is under the same hardware configuration
(1L/2S/1L/2S), at the same WL 14,000, and has the same
amount of experimental time (3-minute). However, Figure
13(b) and Figure 13(c) show that MySQL has more frequent
long queue length compared to the case after we resolve the
alternating bottleneck as shown in Figure 13(a). Specially,
Figure 13(c) even shows a clear bi-modal distribution. This
is because in a rapidly alternating bottleneck case the
frequent short-term saturations of Tomcat augment the
burstiness level of the workload to MySQL, which causes
more frequent short-term saturations in MySQL.

8. RELATED	WORK		
Performance debugging and scalability analysis for

distributed systems such as n-tier systems has been widely
studied in previous research efforts.

Shifting/Alternating bottlenecks have been studied
before in either multiclass queueing networks or n-tier
enterprise systems. Balbo et al.(Balbo & Serazzi, 1997) and

Casale et al.(Casale & Serazzi, 2004) use analytical
approaches to illustrate that bottlenecks in a multiclass
queueing network with load independent servers can switch
to different servers, depending on the current workload mix.
Malkowski et al.(Malkowski et al., 2009) showed an
alternating bottleneck case where the bottleneck alternates
among eight MySQL databases due to the unbalanced query
dispatching from the upper tiers. As shown in this paper,
alternating bottlenecks can be far more common than
previously believed. The reason behind is that the detection
of an alternating bottleneck becomes extremely difficult as
the frequency of alternating pattern increases; such
interesting phenomena are completely invisible to normal
monitoring tools that sample at time intervals measured in
seconds or minutes.

Analytical models have been proposed for bottleneck
detection and performance prediction of n-tier systems.
Urgaonkar et al.(Urgaonkar, Pacifici, Shenoy, Spreitzer, &
Tantawi, 2005; Urgaonkar, Shenoy, et al., 2005) present a
novel dynamic provisioning technique for n-tier systems
that employs a flexible queuing model to determine how
much resources to allocate to each tier of the application.
However, such model is based on Mean Value Analysis
(MVA), which has difficulties dealing with alternating
bottleneck cases in the system. Mi et al.(Mi et al., 2008)
propose a more sophisticated analytical model that considers
bottleneck shifting in an n-tier system due to bursty
workloads. One challenge of this work is to precisely map
the bursty characteristics of a workload to the queuing
model with multiple service rates for each queue in the
system. As shown in this paper, without fine-grained
monitoring (sub-second level) granularity, the bursty
characteristics of a workload can be largely masked.

Software mis-configuration and failure detection of
distributed system have been studied in (Attariyan & Flinn,
2010; Oliveira, Tjang, Bianchini, Martin, & Nguyen, 2010).
Attariyan et al. (Attariyan & Flinn, 2010) present a tool that

International Journal of Cloud Computing (ISSN 2326-7550) Vol. 1, No. 1, July-September 2013	
	

http://hipore.com/ijcc	 	 23	
	

 (a) Software setup (b)ESXi host and VM setup; (c) 1L/2S/1L/2S sample topology

Figure 14: Details of the experimental setup	

locates the root cause of configuration errors by applying
dynamic information flow analysis within process (mainly)
in the runtime. Oliveira et al. (Oliveira et al., 2010) propose
a mistake-aware management framework for protecting n-
tier systems against operator mistakes by facilitating the
previous correct operations. All these works differ from our
work in that they focus more on faults or anomalous
behavior of system components rather than the system
performance problem.

Perhaps the work closest to ours is Aguilera et al.'s
performance debugging based on Black boxes (Aguilera,
Mogul, Wiener, Reynolds, & Muthitacharoen, 2003). The
authors propose a statistical method that derives causal
paths (the trace of a transaction) in a distributed system (not
limited to n-tier system) from the communication messages
between different nodes. By measuring the delay of request
processing in each node, they detect the “bottlenecked”
server as the node where a request has the longest delay in
the system. Though this approach can be effective to detect
the single bottleneck case, it may fail to detect rapidly
alternating bottlenecks since requests can wait in multiple
servers in an alternating pattern.

9. CONCLUSIONS	
We observed that the performance of an n-tier system

may degrade significantly due to rapidly alternating
bottlenecks between multiple tiers. We found that rapidly
alternating bottlenecks can be caused by various factors at
different levels of an n-tier application; for instance, JVM
GC at the software level (Section 3.2), VM collocation at
the middleware level (Section 3.3). Solving those rapidly
alternating bottlenecks leads to significant performance
improvement (Section 4). We proposed a novel bottleneck
detection method to detect these rapidly alternating
bottlenecks (Section 5), where the effectiveness of our
approach is validated through the two case studies in
Section 3. More generally, our work is an important
contribution towards scaling complex n-tier applications
under elastic workloads in cloud environments.

10. REFERENCES	
Aguilera, M. K., Mogul, J. C., Wiener, J. L., Reynolds, P., &
Muthitacharoen, A. (2003). Performance debugging for distributed systems
of black boxes. Paper presented at the ACM SIGOPS Operating Systems
Review, 37(5), 74-89.

Attariyan, M., & Flinn, J. (2010). Automating Configuration
Troubleshooting with Dynamic Information Flow Analysis. Paper
presented at the 9th USENIX Symposium on Operating Systems Design and
Implementation. Vancouver, BC, Canada, Oct. 2010, 237-250

Balbo, G., & Serazzi, G. (1997). Asymptotic analysis of multiclass closed
queueing networks: multiple bottlenecks. Perform. Eval., 30(3), 115-152.

Barham, P., Donnelly, A., Isaacs, R., & Mortier, R. (2004). Using Magpie
for Request Extraction and Workload Modelling. Paper presented at the 6th
USENIX Symposium on Operating Systems Design and Implementation.
San Francisco, CA, Dec, 2004, 18-31

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., . . .
Warfield, A. (2003). Xen and the art of virtualization. ACM SIGOPS
Operating Systems Review, 37(5), 164-177.

Casale, G., & Serazzi, G. (2004). Bottlenecks Identification in Multiclass
Queueing Networks Using Convex Polytopes. Paper presented at the
Proceedings of the The IEEE Computer Society's 12th Annual
International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunications Systems. Volendam, The Netherlands,
Oct. 2004, 223-230

Denning, P. J., & Buzen, J. P. (1978). The operational analysis of queueing
network models. ACM Computing Surveys (CSUR), 10(3), 225-261.

Fonseca, R., Porter, G., Katz, R. H., Shenker, S., & Stoica, I. (2007). X-
trace: A pervasive network tracing framework. Paper presented at the
Proceedings of the 4th USENIX Symposium on Networked Systems Design
and Implementation. Cambridge, MA, April 2007, 20-30

Fujitsu SysViz: System Visualization. (2010). from
"http://www.google.com/patents?id=0pGRAAAAEBAJ&zoom=4&pg=PA
1#v=onepage&q&f=false "

Govindan, S., Liu, J., Kansal, A., & Sivasubramaniam, A. (2011). Cuanta:
quantifying effects of shared on-chip resource interference for consolidated
virtual machines. Paper presented at the Proceedings of the 2nd ACM
Symposium on Cloud Computing.Cascais, Portugal, Oct. 2011, 22-34

Jung, G., Joshi, K. R., Hiltunen, M. A., Schlichting, R. D., & Pu, C. (2009).
A cost-sensitive adaptation engine for server consolidation of multitier
applications Middleware 2009 (pp. 163-183): Springer.

Kanemasa, Y., Wang, Q., Li, J., Matsubara, M., & Pu, C. (2013).
Revisiting Performance Interference among Consolidated n-Tier
Applications: Sharing is Better than Isolation. Paper presented at the
Service Computing (SCC), 2012 IEEE 10th International Conference
on.Santa Clara, CA, USA, July 2013.

International Journal of Cloud Computing (ISSN 2326-7550) Vol. 1, No. 1, July-September 2013	
	

http://hipore.com/ijcc	 	 24	
	

Malkowski, S., Hedwig, M., & Pu, C. (2009). Experimental evaluation of
N-tier systems: Observation and analysis of multi-bottlenecks. Paper
presented at the Workload Characterization, 2009. IISWC 2009. IEEE
International Symposium on.

Malkowski, S., Kanemasa, Y., Chen, H., Yamamoto, M., Wang, Q.,
Jayasinghe, D., . . . Kawaba, M. (2012). Challenges and opportunities in
consolidation at high resource utilization: non-monotonic response time
variations in n-tier applications. Paper presented at the Cloud Computing
(CLOUD), 2012 IEEE 5th International Conference on. Honolulu, Hawaii,
USA, June 2012, 162-169

Mi, N., Casale, G., Cherkasova, L., & Smirni, E. (2008). Burstiness in
multi-tier applications: symptoms, causes, and new models. Paper
presented at the Proceedings of the 9th ACM/IFIP/USENIX International
Conference on Middleware, Leuven, Belgium. Dec. 2008, 265-286

Mi, N., Casale, G., Cherkasova, L., & Smirni, E. (2009). Injecting realistic
burstiness to a traditional client-server benchmark. Paper presented at the
Proceedings of the 6th international conference on Autonomic computing.
Barcelona, Spain, June 2009 149-158

Oliveira, F., Tjang, A., Bianchini, R., Martin, R. P., & Nguyen, T. D.
(2010). Barricade: Defending systems against operator mistakes. Paper
presented at the Proceedings of the 5th European conference on Computer
systems, Paris, France, April 2010, 83-96

RUBBoS: Bulletin board benchmark. (2004). from
"http://jmob.ow2.org/rubbos.htm"

Sambasivan, R. R., Zheng, A. X., De Rosa, M., Krevat, E., Whitman, S.,
Stroucken, M., . . . Ganger, G. R. (2011). Diagnosing performance changes
by comparing request flows. Paper presented at the Proceedings of the 8th
USENIX conference on Networked systems design and implementation,
Boston, MA, March 2011, 43-56

Sigelman, B. H., Barroso, L. A., Burrows, M., Stephenson, P., Plakal, M.,
Beaver, D., . . . Shanbhag, C. (2010). Dapper, a large-scale distributed
systems tracing infrastructure. Google research, 2010.

Urgaonkar, B., Pacifici, G., Shenoy, P., Spreitzer, M., & Tantawi, A.
(2005). An analytical model for multi-tier internet services and its
applications. Paper presented at the ACM SIGMETRICS Performance
Evaluation Review.

Urgaonkar, B., Shenoy, P., Chandra, A., & Goyal, P. (2005). Dynamic
provisioning of multi-tier internet applications. Paper presented at the
Autonomic Computing, 2005. ICAC 2005. Proceedings. Second ACM
International Conference on, Seattle, WA, USA, June 2005.217-228

Wang, Q., Kanemasa, Y., Kawaba, M., & Pu, C. (2012). When average is
not average: large response time fluctuations in n-tier systems. Paper
presented at the Proceedings of the 9th ACM international conference on
Autonomic computing, San Jose, CA, USA, September 2012. 33-42

Wang, Q., Kanemasa, Y., Li, J., Jayasinghe, D., Shimizu, T., Matsubara,
M., . . . Pu, C. (2013). Detecting transient bottlenecks in n-tier applications
through fine-grained analysis. Paper presented at the Distributed
Computing Systems (ICDCS), 2013 33st IEEE International Conference
on.. Philadelphia, USA, July 2013,

Wang, Q., Kanemasa, Y., Li, J., Lai, C. A., Matsubara, M., & Pu, C.
(2013). Impact of DVFS on n-Tier Application Performance. Paper
presented at the 1st ACM international conference on Timely Results in
Operating Systems, Farmington, Pennsylvania, USA, November, 2013

Wang, Q., Malkowski, S., Kanemasa, Y., Jayasinghe, D., Xiong, P., Pu, C.,
Harada, L. (2011). The impact of soft resource allocation on n-tier
application scalability. Paper presented at the Parallel & Distributed
Processing Symposium (IPDPS), 2011 25th IEEE International. Anchorage,
Alaska, 1034-1045

Xiong, P., Wang, Z., Malkowski, S., Wang, Q., Jayasinghe, D., & Pu, C.
(2011). Economical and robust provisioning of n-tier cloud workloads: A
multi-level control approach. Paper presented at the Distributed Computing

Systems (ICDCS), 2011 31st IEEE International Conference on,
Minneapolis, Minnesota, USA, June, 2011, 571-580

	

APPENDIX	A:	EXPERIMENTAL	SETUP	
In our experiments we adopt the RUBBoS standard n-

tier benchmark("RUBBoS: Bulletin board benchmark,"
2004), based on bulletin board applications such as Slashdot.
RUBBoS has been widely used in numerous research
projects due to its design, derived from a real web-facing
application. RUBBoS can be configured as a three-tier (web
server, application server, and database server) or four-tier
(addition of clustering middleware such as C-JDBC(Cecchet,
Marguerite, & Zwaenepole, 2004)) system. The benchmark
includes two kinds of workload modes: browse-only and
read/write interaction mixes. We use browse-only workload
in this paper. The closed-loop workload generator of this
benchmark generates a request rate that follows a Poisson
distribution parameterized by a number of emulated clients
and a fixed user thinking time. Such workload generator has
a similar design as other standard n-tier benchmarks such as
RUBiS, TPC-W, Cloudstone etc.

We run the RUBBoS benchmark on our virtualized
testbed. Figure 14 outlines the software components, ESXi
host and virtual machine (VM) configuration, and a sample
topology used in the experiments. We use a four-digit
notation #W/#A/#C/#D to denote the number of web servers,
application servers, clustering middleware servers, and
database servers. Each server runs on top of one VM. We
have two types of VMs: ``L'' and ``S'', each of which
represents a different size of processing power. Figure 14(c)
shows a sample 1L/2S/1L/2S topology. Each ESXi host
runs the VMs from the same tier of the application. The
VMs from the same tier are pinned to separate CPU cores to
minimize the interference between VMs. Hardware resource
utilization measurements (e.g., CPU) are taken during the
runtime period using Sysstat at one second granularity and
VMware esxtop at two second granularity (the minimum
granularity provided by the tool). The esxtop is used to
monitor the CPU utilization of each VM in the VM
collocation experiments (see Section 5).

Authors	
Qingyang Wang received the BS
degree in computer science from
Wuhan University, China, in 2004, and
the MS degree in computer science
from Chinese Academy of Sciences, in
2007. He is currently a computer
science PhD candidate in College of
Computing, Georgia Institute of
Technology, Atlanta, Georgia. His

research focuses on performance debugging and scalability
analysis for distributed systems, especially multitier
enterprise systems

International Journal of Cloud Computing (ISSN 2326-7550) Vol. 1, No. 1, July-September 2013	
	

http://hipore.com/ijcc	 	 25	
	

Yasuhiko Kanemasa received the
B.Eng. degree in computer engineering
from Tokyo Institute of Technology
(Tokyo, Japan) in 1996, and the M.S.
degree in computer science from Japan
Advanced Institute of Science and
Technology (Nomi, Japan) in 1998. He
has been working for Fujitsu
Laboratories Ltd. (Kawasaki, Japan) as

a researcher since 1998. His research interests are in the
areas of database systems, performance analysis of
enterprise computer systems, and cloud computing. He is a
member of IPSJ and DBSJ.

Jack Li is a PhD student in the College
of Computing at the Georgia Institute
of Technology. He received a BSE in
electrical and computer engineering
from Duke in 2010. His current
research interests distributed and cloud
computing, hypervisors and
virtualization, MapReduce, and n-tier
application performance and

scalability.

Toshihiro Shimizu received his B.S.
and M.S. in Computer Science from the
University of Tokyo in 1994 and 1996,
respectively. He has been working for
Fujitsu Laboratories Ltd. since 1999.
His current major research interests are
in verification and testing of software
systems.

Masazumi Matsubara received the BE,
ME and PhD in Engineering from
University of Tsukuba in 1996, 1998
and 2001, respectively. He has been
working for Fujitsu Laboratories Ltd.
(Kawasaki, Japan) as a researcher since
2001. His research interests are in the
areas of parallel computing, system
management, and cloud computing. He

is a member of IPSJ.

Motoyuki Kawaba received the B.E
degree in Electronic Engineering from
the University of Tokyo in 1989, and
the M.E. degree in Information
Engineering from the University of
Tokyo in 1991. He joined Fujitsu
Laboratories Ltd., Kawasaki, Japan in
1991 and has been engaged in research

and developments of computer systems and architectures.
His research interests include storage systems, data
management systems, and performance analysis of
commercial workloads.

Calton Pu was born in Taiwan and grew
up in Brazil. He received his PhD from
University of Washington in 1986 and
served on the faculty of Columbia
University and Oregon Graduate
Institute. Currently, he is holding the
position of Professor and John P. Imlay,
Jr. Chair in Software in the College of
Computing, Georgia Tech. He has
worked on several projects in systems

and database research. His contributions to systems research
include program specialization and software feedback. His
contributions to database research include extended
transaction models and their implementation. His recent
research has focused on automated system management in
clouds (Elba project) and document quality, including spam
processing. He has collaborated extensively with scientists
and industry researchers. He has published more than 70
journal papers and book chapters, 200 conference and
refereed workshop papers.

