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Abstract	
Identifying	 the	 location	 of	 performance	 bottlenecks	 is	 a	 non‐trivial	 challenge	 when	 scaling	 n‐tier	 applications	 in	
computing	 clouds.	 Specifically,	 we	 observed	 that	 an	 n‐tier	 application	 may	 experience	 significant	 performance	 loss	
when	 bottlenecks	 alternate	 rapidly	 between	 component	 servers.	 Such	 rapidly	 alternating	 bottlenecks	 arise	 naturally	
and	often	from	resource	dependencies	in	an	n‐tier	system	and	bursty	workloads.	These	rapidly	alternating	bottlenecks	
are	 difficult	 to	 detect	 because	 the	 saturation	 in	 each	 participating	 server	 may	 have	 a	 very	 short	 lifespan	 (e.g.,	
milliseconds)	 compared	 to	 current	 system	monitoring	 tools	 and	 practices	 with	 sampling	 at	 intervals	 of	 seconds	 or	
minutes.	 Using	 passive	 network	 tracing	 at	 fine‐granularity	 (e.g.,	 aggregate	 at	 every	 50ms),	 we	 are	 able	 to	 correlate	
throughput	(i.e.,	request	service	rate)	and	queue	length	(i.e.,	number	of	concurrent	requests)	in	each	server	of	an	n‐tier	
system.	 Our	 experimental	 results	 show	 conclusive	 evidence	 of	 rapidly	 alternating	 bottlenecks	 caused	 by	 system	
software	(JVM	garbage	collection)	and	middleware	(VM	collocation).	
Keywords:		[bottleneck,	n‐tier,	performance	analysis,	scalability,	web	application]	
__________________________________________________________________________________________________________________	
1. INTRODUCTION	

Web-facing enterprise applications such as electronic 
commerce are not embarrassingly parallel (e.g., web 
indexing and data analytics).  They are typically 
implemented using an n-tier architecture with web server, 
application server, and database server tiers.  Such n-tier 
applications have implicit dependencies among their 
components, which create alternating bottlenecks (Balbo & 
Serazzi, 1997; Casale & Serazzi, 2004; Malkowski, Hedwig, 
& Pu, 2009; Mi, Casale, Cherkasova, & Smirni, 2008). 
These alternating bottlenecks are both interesting and 
challenging.  They are interesting because they cause the 
entire n-tier system to reach its performance limit (i.e., flat 
throughput) even though all system resources are 
measurably below 100% utilization.  They are challenging 
because classic queuing models that assume independent 
jobs predict single resource saturation bottlenecks, so they 
are inapplicable to alternating bottlenecks. 

The main hypothesis of this paper is that (contrary to 
previously common belief) alternating bottlenecks occur 
naturally in real application scenarios and they can be found 
by experimental measurements using appropriate tools.  
Alternating bottlenecks constitute an important problem 
because there is lingering skepticism about their prevalence 
(and even existence) in the real world, despite early 
theoretical predictions (Balbo & Serazzi, 1997; Casale & 
Serazzi, 2004; Mi et al., 2008).  In the past, observed 
evidence of alternating bottlenecks was rare and it was not 
easy to reproduce them reliably in experiments.  We report 
consistent experimental results which suggest that 

alternating bottlenecks may be far more common than 
previously believed.  The perception of rarity is simply due 
to many alternating bottlenecks being short-lived (on the 
order of tens of milliseconds).  Consequently, these 
interesting phenomena have been (and still are) completely 
invisible to normal monitoring tools that sample at time 
intervals measured in seconds or minutes. 

The main contribution of the paper is an unequivocal 
confirmation of our hypothesis through reproducible 
experimental observation of two rapidly alternating 
bottlenecks when running the standard n-tier RUBBoS 
benchmark ("RUBBoS: Bulletin board benchmark," 2004). 
Specifically, we found that bottlenecks alternate between 
the Tomcat tier and the MySQL tier at time interval of tens 
of milliseconds.  Our study further shows that alternating 
bottlenecks can be caused by factors at the software level 
(e.g., JVM garbage collection, see Section 4) and 
middleware level (e.g., VM collocation, see Section 5). 
Despite its relatively short duration, the impact of this 
alternating bottleneck becomes significant when the 
frequency and intensity of the alternating pattern increase. 
The detection of alternating bottlenecks required a novel 
method that differs from traditional bottleneck detection in 
two main aspects. First, since alternating bottlenecks may 
arise without any single resource saturation, our method is 
completely independent of any single resource saturation 
measurements.  Concretely, Section 2.2 shows an example 
in which the throughput of a four-tier system stops 
increasing even though the highest resource utilization in 
the system (MySQL CPU) is only 86.9%.  Second, our  
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(a)Average response time and   throughput at 
each workload 

 (b) Tomcat CPU utilization at WL14,000;        
the average is 86.9%. 

(c) MySQL CPU utilization at WL14,000; 
the average is 84.3%. 

Figure 1: A rapidly alternating bottleneck case of a 4-tier system with Browse-only workload (CPU intensive). The system 
achieves the highest throughput at WL 14,000 as shown in Figure 1(a) while no hardware resources are fully saturation as 
shown in Figure 1(b) and Figure 1(c). 

method works at an unprecedented fine time granularity 
(milliseconds), which is more precise than normal sampling 
tools (e.g., dstat consumes 12% of CPU at 20ms intervals).  
Our method uses passive network packet tracing, which 
captures the arrival and departure time of each request of 
each server at microsecond granularity with negligible 
impact on the servers.  By correlating the queue length and 
throughput of each server at millisecond granularity, our 
method is able to find short-lived alternating bottlenecks 
(lifetime of tens of milliseconds) that have been invisible to 
state-of-the-art sampling tools. 

The rest of the paper is organized as follows. Section 2 
introduces various kinds of bottlenecks. Section 3 shows our 
fine-grained performance analysis method. Section 4 and 5 
show the two case studies of our experimental observations 
of rapidly alternating bottlenecks. Section 6 shows our 
concrete solutions to resolve the observed rapidly 
alternating bottlenecks. Section 7 summarizes the related 
work and Section 8 concludes the paper. 

 

2. VARIOUS	KINDS	OF	BOTTLENECKS	
2.1 SINGLE	BOTTLENECKS		

A system bottleneck in an n-tier system is the place 
where requests start to be queued (or congested) and 
throughput is limited in the system. Classic queuing models 
assume independent jobs and predict single resource 
bottleneck in an n-tier system, in which the system achieves 
the maximum throughput when the single bottleneck 
resource is 100% utilized. Due to its simplicity and 
intuitiveness, classic queuing models have provided the 
foundation for system administrators to manage and predict 
system performance (Jung, Joshi, Hiltunen, Schlichting, & 
Pu, 2009; Urgaonkar, Shenoy, Chandra, & Goyal, 2005; 
Xiong et al., 2011). Despite their popularity, classic queuing 
models are based on assumptions (e.g., independent jobs 
among component servers in a system) that do not 
necessarily hold in an n-tier system in practice.  

 
 

Server/ 
Resource

CPU util 
(%) 

Disk I/O 
(%) 

Network receive/send 
(MB/s) 

Apache 45.9 0.5 23.8/39.9 
Tomcat 86.9 0.3 7.6/13.1 
CJDBC 36.2 0.2 11.2/14.3 
MySQL 84.3 0.4 0.8/4.6 

Table 1: Average resource utilization in each tier at WL 
14,000. Except Tomcat and MySQL CPU, the other system 
resources are far from saturation. 

2.2 MULTI‐BOTTLENECKS		
Multi-bottlenecks describe a phenomenon where an n-

tier system is saturated (i.e., achieves the maximum 
throughput) while no single hardware resource is fully 
utilized (Malkowski et al., 2009). We use an example to 
illustrate this phenomenon. The example was derived from a 
three-minute experiment of RUBBoS running on a four-tier 
configuration (1L/2S/1L/2S, see Figure 14(c)). The details 
of the experimental setup are in Appendix A.  

Figure 1(a) shows the system works well from a 
workload of 1,000 concurrent users to 13,000.  At 14,000, 
the average response time increases significantly and the 
throughput reaches a maximum. The interesting observation 
is that the saturated system does not have any single 
resource bottleneck. Since we use the CPU intensive 
Browse-only workload of this benchmark, we show the 
timeline graphs (with one second granularity) of CPU 
utilization. During the execution of the WL 14,000, both 
Tomcat (Figure 1(b) and MySQL (Figure 1(c) ) show less 
than full CPU utilization, with an average of 86.9% (Tomcat) 
and 84.3% (MySQL).  We also summarize the average 
usage of other main hardware resources of each server in 
Table 1. This table shows that except for Tomcat and 
MySQL CPU, the other system resources are far from 
saturation.   

This example shows that simply monitoring hardware 
resource utilization may be unable to identify the system 
bottleneck, since there is no single saturated resource. Later 
in Section 4 we explain that this is a rapidly alternating  
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Figure 2: Illustration of a rapidly alternating bottleneck case 
in a 3-tier web application. 

bottleneck case (a special case of multi-bottleneck) where 
the bottleneck alternates rapidly between MySQL and 
Tomcat. During normal processing, MySQL CPU is the 
primary system bottleneck, being fully utilized for 
processing requests sent from Tomcat.  However, the 
Tomcat JVM garbage collection process freezes request 
processing and consumes the server CPU (at the granularity 
of milliseconds).  Thus the Tomcat becomes the bottleneck 
during garbage collection.  In either case, the system 
throughput is limited. 
 
2.3 RAPIDLY	ALTERNATING	BOTTLENECKS	

Rapidly alternating bottlenecks are a special case of 
multi-bottlenecks that the bottleneck in an n-tier system 
alternates rapidly (on the order of tens of milliseconds) 
among multiple system resources while at any moment one 
system resource becomes the main bottleneck. Rapidly 
alternating bottlenecks arise due to the implicit 
dependencies among servers in an n-tier system. For 
example, requests that originate from a client arrive at the 
web server, which distributes them among the application 
servers, which in turn ask the database servers to carry out 
the query. The dependencies among the servers are in the 
long invocation chain (through RPC calls) of transaction 
processing in the system and maintained by soft resources 
(e.g., threads and database connections (Wang et al., 2011)). 
Such dependencies may cause requests to congest in 
different servers at different time period. For example, 
Figure 2 demonstrates a rapidly alternating bottleneck case 
in a 3-tier system. This figure shows that the bottleneck 
alternates between Tomcat and MySQL at tens of 
milliseconds level, thus monitoring resource utilization at 
every second can rarely detect any resource saturation 
(similar to what Figure 1(b) and Figure 1(c) show). 

The identification of rapidly alternating bottlenecks as 
an important phenomenon is due to its significant impact in 
cloud computing environments, where hardware resources 
are supposed to be “infinite” for applications to scale. 
Detection of rapidly alternating bottlenecks poses 
significant challenges to current state of the art monitoring 
tools, which leads to inefficient performance management 
of applications deployed in cloud. 

	
Figure 3: An example of a transaction execution trace 
captured by SysViz. 

3. DETECTION	OF	RAPIDLY	ALTERNATING	
BOTTLENECK	

In this section, we briefly explain our fine-grained 
analysis to detect rapidly alternating bottlenecks. This kind 
of analysis is necessary to detect a bottleneck alternating on 
the order of tens of milliseconds among servers. Later we 
will show two case studies of applying our method to detect 
rapidly alternating bottlenecks caused by JVM garbage 
collection (Section 4) and VM collocation (Section 5). 

 
3.1 TRACE	MONITORING	TOOL	

Our fine-grained analysis is based on the tracing of 
client transaction executions of an n-tier system. Before we 
start the details of the fine-grained analysis method, we first 
briefly explain our tool (Fujitsu SysViz ("Fujitsu SysViz: 
System Visualization," 2010)) for the tracing of transaction 
executions in an n-tier system. A client transaction services 
an entire web page requested by a client and may consist of 
multiple interactions between different tiers. Figure 3 shows 
an example of such a trace (numbered arrows) of a client 
transaction execution in a three-tier system. SysViz is able 
to reconstruct the entire trace of each transaction executed in 
the system based on the traffic messages (odd-numbered 
arrows) collected through a network switch which supports 
passive network tracing. In our experimental environment, 
all the servers are connected to the network switch, which 
forwards all the traffic messages to a dedicated SysViz 
server. Thus, the arrival/departure timestamps of each 
request (small boxes with even-numbered arrows) for any 
server can be recorded by the SysViz server. 

SysViz requires no modification on application source 
code and has a negligible performance impact on the target 
n-tier application. We note that since the timestamps of all 
messages are assigned by one dedicated SysViz server, the 
precision of the derived processing time of each request in 
any tier in the system is close to microsecond level. Thus, 
the influence of clock errors between machines caused by 
limited accuracy of NTP can be avoided. 

In fact the transaction tracing technology has been  
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(a) MySQL queue length average at 
every 50ms time interval in a 12-second 
time period.  

(b) MySQL throughput average at every 
50ms time interval in the same 12-second 

time period as in Figure 4(a). 

(c) MySQL queue length vs. throughput 
in the same 12-second time period as in 

Figure 4(a) and Figure 4(b).  

Figure 4: Fine-grained analysis of MySQL when the system is at WL 14,000. Figure 4(a) and Figure 4(b) show the MySQL 
queue length and throughput measured at the every 50ms time interval. Figure 4(c) is derived from Figure 4(a) and Figure 
4(b); each point in Figure 4(c) represents the MySQL queue length and throughput measured at the same 50ms time interval 
during the 12-second experimental time period. 

studied intensively in previous research (Barham, Donnelly, 
Isaacs, & Mortier, 2004; Fonseca, Porter, Katz, Shenker, & 
Stoica, 2007; Sambasivan et al., 2011; Sigelman et al., 
2010); the ongoing research trend is how to use the captured 
tracing information to diagnose system performance 
problem. 

 
3.2 FINE‐GRAINED	QUEUE‐LENGTH/THROUGHPUT	

ANALYSIS		
Since each participating server in a rapidly alternating 

bottleneck case only presents short-term saturations, a key 
point of detecting the rapidly alternating bottleneck is to 
find the participating short-term saturated servers. Instead of 
monitoring hardware resource utilizations, our approach 
measures a server's queue length and throughput in 
continuous fine-grained time intervals. The throughput of a 
server can be calculated by counting the number of 
completed requests in the server in a fixed time interval, 
which can be 50ms, 100ms, or 1s. Queue length is the 
average number of queued requests over the same time 
interval1 . Both these two metrics for each server in the 
system can be easily derived from the trace captured by 
SysViz. 

Figure 4(a) shows the MySQL queue length average at 
every 50ms time interval over a 12-second time period for 
the 1L/2S/1L/2S configuration case at WL 14,000 (See the 
case in Figure 1). This figure shows that a large number of 
requests are queued in MySQL from time to time, which 
suggests MySQL frequently presents short-term saturation. 
Figure 4(b) shows the MySQL throughput average at every 
50ms time interval over the same 12-second time period as 

																																																													
1 At each time tick, we know how many requests for a server have arrived, 
but not yet departed. This is the number of concurrent requests being 
processed by the server. Concurrent requests can also be thought as 
“queued” requests. More detailed fine-grained queue-length/throughput 
calculation can be found in (Wang, Kanemasa, Li, Jayasinghe, et al., 2013) 

in Figure 4(a). This figure shows that in some time intervals 
MySQL even produces zero throughput, which suggests 
MySQL is frequently under-utilized.  

To precisely diagnose in which time intervals a server 
presents short-term saturation, we need to correlate the 
server's queue length and throughput as shown in Figure 
4(c).  This figure is derived from Figure 4(a) and Figure 
4(b); each point in Figure 4(c) represents the MySQL 
queue-length/throughput measured at the same 50ms time 
interval during the 12-second experimental time period.  
This figure shows the clear trend of queue-
length/throughput correlation (we call the trend as main 
sequence curve), which is consistent with Denning et al.'s 
(Denning & Buzen, 1978) operational analysis result for the 
relationship between a server's queue length 2  and 
throughput. Specifically, a server's throughput increases as 
the queue length on the server increases until it reaches the 
maximum throughput TPmax.3 The saturation point N* is 
the minimum queue length beyond which the server starts to 
saturate. 

Once N* is determined, we can judge in which time 
intervals a server is saturated based on the measured queue 
length. For example, Figure 4(c) highlights three points 
labeled 1, 2, and 3, each of which represents the queue-
length/throughput in a time interval that can match back to 
Figure 4(a) and Figure 4(b). Point 1 shows that MySQL is 
saturated in the corresponding time interval because the 
long queue length far exceeds N*. Point 2 shows that 
MySQL is not saturated due to the zero queue length and 
throughput. Point 3 also shows that MySQL is not saturated  

																																																													
2 The queue length in their definition is the load in a system, which means 
the number of jobs being processed concurrently. 
3 Due to the Utilization Law, the maximum throughput TPmax of a server is 
fixed by the bottleneck resource in terms of 1/d, where d is the service 
demand for the bottleneck resource per job(Denning & Buzen, 1978). 
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(a) Tomcat tier at WL 7,000 

 
(b) Tomcat tier at WL 14,000 

 
(c) Tomcat queue length vs. throughput at 

WL 14,000

       
(d) MySQL tier at WL 7,000 

 
(e) MySQL tier at 14,000 

 
(f) MySQL queue length vs. throughput at 
WL 14,000 

Figure 5: Fine-grained queue-length/throughput analysis for Tomcat and MySQL. Figure 5(c) and Figure 5(f) are derived 
from Figure 5(b) and Figure 5(e) respectively, with 3-minute experimental data. Figure 5(b) shows that there are some time 
intervals that Tomcat has high queue length but low throughput (see the point labeled 4), which correspond to the low queue 
length and throughput of MySQL as shown in Figure 5(e)(see the point labeled 4). 

            
(a) Tomcat queue length and MySQL Queue length; negative 

correlation ( = -0.42) suggests rapidly alternating bottleneck. 

 (b) Tomcat queue length and Tomcat GC running ratio in the 
same time period as in Figure 6(a); high GC running ratio 
causes long queue in Tomcat.

Figure 6: Correlation analysis of the rapidly alternating bottleneck between Tomcat and MySQL at WL 14,000. Figure 6(a) 
shows that Tomcat and MySQL queue length have strong negative correlation.  Figure 6(b) shows that the peaks of Tomcat 
queue length are due to frequent JVM GCs.

because the corresponding queue length is less than N* 
though it generates relatively high throughput. 

After we detect all the short-term saturated servers, the 
next step is to analyze whether the short-term saturation of 
each participating server occurs in an alternating pattern. 
We will illustrate this point in the following two case 
studies. 

 

4. RAPIDLY	ALTERNATING	BOTTLENECK	
CAUSED	BY	JVM	GC	

In this section we explain the rapidly alternating 
bottleneck mentioned in Section 2.2. In that example, the 
poor system performance is caused by the frequent short-
term saturations of both Tomcat and MySQL. Our further 
correlation analysis shows that the frequent JVM GCs in  
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Figure 7: Collocation strategy between SysA and SysB; 
SysA-App2 is collocated with SysB-DB. 

 
# 

SysA-App2 SysB-DB 

WL 
(users) 

Burstiness 
level 

CPU 
(%) 

WL 
(users) 

Burstiness 
level 

CPU 
(%) 

1 14,000 I = 1 74.1 0 Non-col 0 
2 14,000 I = 1 74.9 400 I = 1 10.2 
3 14,000 I = 1 74.7 400 I = 100 10.6 
4 14,000 I = 1 75.5 400 I = 200 10.5 

5 14,000 I = 1 75.2 400 I = 400 10.8 

Table 2: Workload of SysA and SysB in each of the five 
collocation experiments. SysA is at constant stable WL 
14,000 and SysB is at constant workload but with different 
burstiness levels (from I =1 to 400). 

Tomcat cause the bottleneck to alternate between Tomcat 
and MySQL. 

Figure 5 shows the fine-grained load/throughput 
analysis for Tomcat and MySQL at WL 7,000 and 14,000 
with the same system configuration as in Section 2.2. 
Figure 5(a) and Figure 5(d) show that both Tomcat and 
MySQL are not saturated at WL 7,000 since the load of 
each tier is below the corresponding saturation point N*, 
which is derived from Figure 5(c) and Figure 5(f) 
respectively. 

The interesting figures are Figure 5(b) and Figure 5(e), 
which show that at WL 14,000 both the Tomcat tier and the 
MySQL tier frequently present short-term saturations. 
Specially, Figure 5(b) shows that in some time intervals the 
Tomcat load is high (e.g., the point labeled 4) but the 
corresponding throughput is zero, which means that many 
requests are queued in Tomcat but no output responses 
(throughput). Figure 5(c), which is derived from Figure 5(b) 
but based on the 3-minute runtime experiments, shows that 
there are many time intervals when Tomcat has a high load 
but low or even zero throughput (POI inside the rectangular 
area). Since Tomcat is the upstream tier of MySQL, the 
output responses of Tomcat feeds the input requests of 
MySQL; thus having fewer output responses from Tomcat 
means there will be fewer input requests sent to MySQL, 
which leads to the under-utilization of MySQL. For 
example, the point labeled 4 in Figure 5(b) illustrates zero 
throughput in Tomcat, which leads to the zero throughput 
and load of MySQL (see the point labeled 4' in Figure 5(e)). 

To illustrate the rapidly alternating bottleneck between 
Tomcat and MySQL, Figure 6(a) shows the correlation  

	
Figure 8: SysA response time (at WL 14,000) when 
collocated with SysB (at WL 400 but with increased 
burstiness level). 

between the Tomcat load and the MySQL load over the 
same 12-second time period. This figure shows that these 
two metrics have a negative correlation (the Pearson 
correlation is -0.42), which suggests that the short-term 
saturation alternates between Tomcat and MySQL. Thus, 
the reason for the limited system throughput is clear: at any 
moment either Tomcat or MySQL becomes the bottleneck 
in the system. 

Our further analysis shows that the short-term 
saturations of Tomcat are caused by frequent JVM GC. In 
this set of experiments, the JVM in Tomcat (with JDK 1.5) 
uses a synchronous garbage collector; it waits during the 
garbage collection period and only starts processing requests 
after the garbage collection is finished. To confirm that 
JVM GC causes the bottleneck in Tomcat, Figure 6(b) 
shows the timeline graph which correlates the Java GC 
running ratio4  with the Tomcat load (50ms). This figure 
shows the occurrence of Tomcat JVM GC has a strong 
positive-correlation with the high load in Tomcat. The high 
peaks of JVM GC in Figure 6(b) stop Tomcat and make 
requests queued in Tomcat dramatically. We note that such 
long freeze times in Tomcat do not happen frequently when 
the system is under low workload as shown in Figure 5(a). 
This is because JVM GC has a non-linear relationship with 
the amount of workload (Wang, Kanemasa, Kawaba, & Pu, 
2012) 

 

5. RAPIDLY	ALTERNATING	BOTTLENECK	
CAUSED	BY	VM	COLLOCATION	

In this section we show another rapidly alternating 
bottleneck case due to VM collocation, i.e., collocating 
multiple under-utilized VMs into the same physical host so 
that VMs can share hardware resources. Although VM 
collocation can reduce infrastructure/maintenance  

 

																																																													
4 Java GC running ratio means the total time spent on Java GC during each 
monitoring time interval to the total monitoring time interval length. JVM 
provides a tool recording the starting/ending timestamp of every GC 
activity. 
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(a) Tomcat tier of SysA (SysA-App) 
when the burstiness level of SysB 
workload is I = 1              

 (b) Tomcat tier of SysA (SysA-App) 
when the burstiness level of SysB 
workload is I = 400 

(c) SysA-App queue length vs. 
throughput when the burstiness 
level of SysB workload is I = 400 

         
(d) MySQL tier of SysA (SysA-DB) 
when the burstiness level of SysB 
workload is I = 1    

(e) MySQL tier of SysA (SysA-DB) 
when the burstiness level of SysB 
workload is I = 400 

(f) SysA-DB queue length vs. 
throughput when the burstiness level 
of SysB workload is I = 400 

Figure 9: Fine-grained queue-length/throughput analysis for the Tomcat and MySQL of SysA in the collocation experiments. 
Figure 9(c) and Figure 9(f) are derived from Figure 9(b) and Figure 9(e) respectively, with 3-minute experimental data. 
Figure 9(a) and Figure 9(d) show that the queue length of the SysA Tomcat/MySQL tier is low when SysB workload is stable 
(I = 1). As the burstiness of SysB workload increases (I = 400), there are some time intervals that SysA‐App	 has high queue 
length but low throughput (see the point labeled 5 in Figure 9(b)), which correspond to the low queue-length/throughput of 
SysA‐DB	(see the point labeled 5' in Figure 9(e)). 

										 	
(a) The queue length of SysA-App and SysA-DB when SysB is 
at bursty workload (I = 400); negative correlation suggests 
rapidly alternating bottleneck in SysA. 

(b) SysA-App queue length vs. SysB-DB CPU; burst of SysB-
DB CPU utilization causes long queue in the SysA-App tier. 

Figure 10: Analysis of rapidly alternating bottleneck between SysA-App and SysA-DB. Figure 10(b) shows that the peaks of 
SysA-App queue length are caused by the burst of SysB-DB CPU utilization because SysA-App and SysB-DB are competing 
for CPU resources.

costs(Barham et al., 2003; Govindan, Liu, Kansal, & 
Sivasubramaniam, 2011), it may significantly hamper the 
performance of the collocated applications in a non-trivial 
way, especially when the workload for the collocated 
applications becomes bursty (Kanemasa, Wang, Li, 
Matsubara, & Pu, 2013; Malkowski et al., 2012). For 
example, rapidly alternating bottlenecks may occur in a 

foreground application if it is collocated with another 
application facing a bursty workload. 

We illustrate this problem by collocating two VMs, each 
of which is from a separate n-tier application, into the same 
host and with each VM sharing the same CPU core. Figure 
7 shows our collocation strategy of the two applications; 
SysA with 1L/2S/1L/2S configuration (4-tier) and SysB 
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with 1S/1S/1S configuration (3-tier). SysA keeps the same 
hardware configuration as in the previous section but with 
JDK1.6 in Tomcat.5 The VM of SysA-App2 is collocated 
with the VM of SysB-DB on the same ESXi host and they 
share the same CPU core; the VMs of the front tiers (one 
Apache and one Tomcat) of SysB are deployed in separate 
ESXi hosts from SysA in order to simplify the analysis. 
Table 2 shows the workload conditions and average CPU 
utilization of both SysA and SysB in the collocation 
experiments. SysA is at a constant stable workload of 
14,000 in all five experiments. Except for the first 
experiment (the non-collocation case), SysB is under 
constant WL 400 but with varying burstiness levels, which 
is represented by I.6 This table shows that the average CPU 
utilization of both the collocated VMs SysA-App2 and 
SysB-DB are almost constant and the total of the CPU 
utilization is less than 90%, which justifies the collocation 
strategy based on traditional bin packing practices. 

Figure 8 shows the average response time of SysA in all 
the five cases. This figure shows that the SysA response 
time is almost the same when the collocated SysB has the 
relatively stable workload (I = 1), and increases 
significantly when the burstiness level of the workload for 
SysB becomes high (e.g., I = 400). The significant increase 
in SysA response time may seem strange since the average 
CPU utilization remains constant as seen in Table 2. 

Figure 9(b) shows a similar interesting phenomenon as 
in the previous rapidly alternating bottleneck case that in 
some time intervals (e.g., between 52s and 53s) the SysA-
App has a long queue length but low throughput; the low 
throughput of SysA-App leads to the low queue length and 
throughput in SysA-DB during the same time period as 
shown in Figure 9(e). Figure 9(c) (derived from Figure 9(b) 
but based on 3-minute experimental data) suggests that there 
are many time intervals when SysA-App has a long queue 
length but low throughput (points in POI). During these 
time intervals, SysA-App presents short-term saturations 
and SysA-DB is under-utilized due to the low number of 
input requests sent from SysA-App (see Figure 9(f)).  

Figure 10(a) shows the correlation of the queue length 
between SysA-App and SysA-DB over the same 8-second 
time period. This figure shows that SysA-App queue length 
has a negative correlation ( = -0.46) with SysA-DB queue 
length, which suggests the bottleneck alternates rapidly 
between SysA-App and SysA-DB.  

Our further analysis shows that the short-term saturation 
of SysA-App is caused by the burst of SysB-DB CPU 
utilization. Figure 10(b) shows the timeline graph of the 
CPU utilization of SysB-DB (measured using VMware 

																																																													
5 The upgrade of JDK version in Tomcat solves the rapidly alternating 

bottleneck caused by frequent JVM GCs; see Section 6 for more details. 
6 Mi et al.(Mi, Casale, Cherkasova, & Smirni, 2009) introduced index of 
dispersion (abbreviated as I) to characterize the intensity of the traffic 
surges. The larger the I is, the longer the duration of the traffic surge. The 

burstiness level of the by default RUBBoS workload is I = 1. 

esxtop with 2s granularity) and the SysA-App queue length 
(measured at every 50ms time interval). This figure shows 
that the SysA-App queue length increases significantly 
when there is a spike in the SysB-DB CPU utilization7, 
which indicates that the Tomcat tier of SysA temporarily 
becomes the bottleneck due to the interference of SysB-DB. 
The detailed research about the race of CPU scheduling 
between collocated VMs has been provided in (Kanemasa et 
al., 2013). 
 

6. RESOLVING	RAPIDLY	ALTERNATING	
BOTTLENECKS	

Once we detect a rapidly alternating bottleneck, we can 
resolve the bottleneck through various ways, depending on 
whether we can find the exact cause for the rapidly 
alternating bottleneck. Specifically, we can simply scale-
out/up the participating servers if we cannot find the exact 
cause, or we can resolve the bottleneck by addressing the 
exact cause. For example, we can resolve the rapidly 
alternating bottleneck caused by frequent JVM GCs in 
Tomcat through upgrading the JDK version from 1.5 to 1.6, 
which has more efficient garbage collectors.8 We can also 
resolve the rapidly alternating bottleneck caused by VM 
collocation through VM migration. 

In this section we show the performance gain after we 
resolve the rapidly alternating bottleneck caused by frequent 
JVM GCs in Tomcat (Section 4). We choose to resolve the 
bottleneck by upgrading the JDK version from 1.5 to 1.6 in 
Tomcat since we know the exact cause. The experiments 
have the same hardware/software configuration as in 
Section 3.2 except for the Tomcat JDK version.  

Figure 11 shows the fine-grained queue-
length/throughput analysis for Tomcat and MySQL at WL 
14,000 and 16,000. Recall from Section 4 the system 
throughput reaches the maximum at WL 14,000 due to the 
rapidly alternating bottleneck between Tomcat and MySQL 
before the JDK version upgrade. After the JDK version 
upgrade, Figure 11(a) and Figure 11(d) show that only 
MySQL presents frequent short-term saturations at WL 
14,000; further workload increase to 16,000 leads to the full 
saturation of MySQL as shown in Figure 11(e) (the queue 
length is above the N* most of the time). Thus, the rapidly 
alternating bottleneck is resolved after the JDK upgrade in 
Tomcat. Specifically, the POIs in Figure 5(c) do not appear 
in Figure 11(c), which means Tomcat does not have long 
“freezing” periods. Accordingly, there are only a few time 
intervals with low queue length and low throughput in 
MySQL (see Figure 11(e)), which means MySQL is fully 
utilized. 

 

																																																													
7 We couldn’t measure the fine-grained CPU usage of SysB-DB because 2s 

is the finest granularity that the latest esxtop supports. 
8
JDK 1.6 uses garbage collection algorithms which support both parallel 

and concurrent garbage collection. 
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(a) Tomcat tier at WL 14,000 

	
(b) Tomcat tier at 16,000 (c) Tomcat queue length vs. throughput 

at WL 16,000 

				 				 	
(d) MySQL tier at WL 14,000 

 
(e) MySQL tier at 16,000 (f) MySQL queue length vs.throughput at 

WL 16,000 

Figure 11: Fine-grained queue-length/throughput analysis for Tomcat (with JDK 1.6) and MySQL. Figure 11(c) and Figure 
11(f) are derived from Figure 11(b) and Figure 11(e) respectively, with 3-minute experimental data. Figure 11(b) and Figure 
11(e) show that the rapidly alternating bottleneck is resolved and the MySQL tier becomes the single bottleneck. 

																 	
																										(a)	System	response	time	gain																																																								(b)	System	throughput	gain	

Figure 12: Performance improvement after resolving rapidly alternating bottleneck. 

Figure 12(a) and Figure 12(b) show the system response 
time and throughput gain after we resolve the rapidly 
alternating bottleneck. At WL 17,000, the system with JDK 
1.6 outperforms the system with JDK 1.5 by a 21.1% higher 
throughput while achieving an average response time that is 
about 71% lower (1500ms faster). 

We note we can resolve the rapidly alternating 
bottleneck caused by VM collocation described in Section 5 
through migrating the collocated VM to a different ESXi 
host. We should use this solution only when we detect the 
performance interference caused by collocated VMs. 

 

7. DISCUSSION	
So far we illustrated that rapidly alternating bottlenecks 

can be caused by system software level factors (e.g., JVM 

GC) and middleware level factors (VM collocation). In fact 
there are many other factors that can cause rapidly 
alternating bottlenecks such as Dynamic Voltage and 
Frequency Scaling (DVFS) technology at the architecture 
level (Wang, Kanemasa, Li, Lai, et al., 2013). The reason 
why rapidly alternating bottlenecks can happen frequently is 
because there are many factors that can cause short-term 
saturations of component servers in real systems, especially 
when the system is at high utilization.  The short-term 
saturations of component servers, compounded with 
dependencies among tiers in an n-tier system, create rapidly 
alternating bottlenecks in the system.  

The short-term saturation of a component server in an n-
tier system has a significant impact on the servers in other 
tiers of the system due to resource dependencies among tiers  
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(a)MySQL	tier	after	the	rapidly	alternating	
bottleneck	is	resolved;	the	queue	length	data	is	
derived	from	Figure 11(d).	
	

(b)MySQL	tier	in	the	rapidly	alternating	
bottleneck	case	caused	by	frequent	JVM	
GCs;	the	queue	length	data	is	derived	from	
Figure 4(e).	

(c)MySQL	tier	in	the	rapidly	alternating	
bottleneck	case	caused	by	VM	collocation;	
the	queue	length	data	is	derived	from	
Figure 9(e).	

Figure 13: The comparison of MySQL queue length distribution at WL 14,000 before and after resolving the rapidly 
alternating bottlenecks. Figure 13(b) and Figure 13(c) show that the MySQL tier encounters more frequent long queue length 
compared to the case in Figure 13(a), which suggests that the Tomcat tier sends more bursty workload into the MySQL tier 
and causes more frequent congestion in MySQL in a rapidly alternating bottleneck case.  

in the system. For example, the short-term saturation (either 
caused by JVM GC or VM collocation) of a server causes a 
bursty workload to the downstream tiers, causing 
downstream tiers to switch between a saturation and non-
saturation state.  Specifically, during the short-term 
saturation of a server, many requests start to queue in the 
server, which causes the downstream tiers to be under-
utilized (non-saturation state); after the short-term saturation 
period, the queued requests are pushed to the downstream 
tiers in a batch mode, which cause the short-term saturation 
of the downstream tiers; the short-term saturation may 
present an alternating pattern between the server and the 
downstream tiers once the frequency of the short-term 
saturations of the server becomes high. 

Figure 13 shows the comparison of MySQL queue 
length distribution before and after resolving the rapidly 
alternating bottlenecks caused by the short-term saturations 
of Tomcat (see Section 4 and Section 5). The system in all 
these three cases is under the same hardware configuration 
(1L/2S/1L/2S), at the same WL 14,000, and has the same 
amount of experimental time (3-minute). However, Figure 
13(b) and Figure 13(c) show that MySQL has more frequent 
long queue length compared to the case after we resolve the 
alternating bottleneck as shown in Figure 13(a). Specially, 
Figure 13(c) even shows a clear bi-modal distribution. This 
is because in a rapidly alternating bottleneck case the 
frequent short-term saturations of Tomcat augment the 
burstiness level of the workload to MySQL, which causes 
more frequent short-term saturations in MySQL. 

 

8. RELATED	WORK		
Performance debugging and scalability analysis for 

distributed systems such as n-tier systems has been widely 
studied in previous research efforts.  

Shifting/Alternating bottlenecks have been studied 
before in either multiclass queueing networks or n-tier 
enterprise systems. Balbo et al.(Balbo & Serazzi, 1997) and 

Casale et al.(Casale & Serazzi, 2004) use analytical 
approaches to illustrate that bottlenecks in a multiclass 
queueing network with load independent servers can switch 
to different servers, depending on the current workload mix. 
Malkowski et al.(Malkowski et al., 2009) showed an 
alternating bottleneck case where the bottleneck alternates 
among eight MySQL databases due to the unbalanced query 
dispatching from the upper tiers. As shown in this paper, 
alternating bottlenecks can be far more common than 
previously believed. The reason behind is that the detection 
of an alternating bottleneck becomes extremely difficult as 
the frequency of alternating pattern increases; such 
interesting phenomena are completely invisible to normal 
monitoring tools that sample at time intervals measured in 
seconds or minutes.  

Analytical models have been proposed for bottleneck 
detection and performance prediction of n-tier systems. 
Urgaonkar et al.(Urgaonkar, Pacifici, Shenoy, Spreitzer, & 
Tantawi, 2005; Urgaonkar, Shenoy, et al., 2005) present a 
novel dynamic provisioning technique for n-tier systems 
that employs a flexible queuing model to determine how 
much resources to allocate to each tier of the application. 
However, such model is based on Mean Value Analysis 
(MVA), which has difficulties dealing with alternating 
bottleneck cases in the system. Mi et al.(Mi et al., 2008) 
propose a more sophisticated analytical model that considers 
bottleneck shifting in an n-tier system due to bursty 
workloads. One challenge of this work is to precisely map 
the bursty characteristics of a workload to the queuing 
model with multiple service rates for each queue in the 
system. As shown in this paper, without fine-grained 
monitoring (sub-second level) granularity, the bursty 
characteristics of a workload can be largely masked. 

Software mis-configuration and failure detection of 
distributed system have been studied in (Attariyan & Flinn, 
2010; Oliveira, Tjang, Bianchini, Martin, & Nguyen, 2010). 
Attariyan et al. (Attariyan & Flinn, 2010) present a tool that  
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                      (a) Software setup                                      (b)ESXi host and VM setup;                         (c) 1L/2S/1L/2S sample topology 

Figure 14: Details of the experimental setup	

locates the root cause of configuration errors by applying 
dynamic information flow analysis within process (mainly) 
in the runtime. Oliveira et al. (Oliveira et al., 2010) propose 
a mistake-aware management framework for protecting n-
tier systems against operator mistakes by facilitating the 
previous correct operations. All these works differ from our 
work in that they focus more on faults or anomalous 
behavior of system components rather than the system 
performance problem. 

Perhaps the work closest to ours is Aguilera et al.'s 
performance debugging based on Black boxes (Aguilera, 
Mogul, Wiener, Reynolds, & Muthitacharoen, 2003). The 
authors propose a statistical method that derives causal 
paths (the trace of a transaction) in a distributed system (not 
limited to n-tier system) from the communication messages 
between different nodes. By measuring the delay of request 
processing in each node, they detect the “bottlenecked” 
server as the node where a request has the longest delay in 
the system. Though this approach can be effective to detect 
the single bottleneck case, it may fail to detect rapidly 
alternating bottlenecks since requests can wait in multiple 
servers in an alternating pattern.  

 

9. CONCLUSIONS	
We observed that the performance of an n-tier system 

may degrade significantly due to rapidly alternating 
bottlenecks between multiple tiers. We found that rapidly 
alternating bottlenecks can be caused by various factors at 
different levels of an n-tier application; for instance, JVM 
GC at the software level (Section 3.2), VM collocation at 
the middleware level (Section 3.3). Solving those rapidly 
alternating bottlenecks leads to significant performance 
improvement (Section 4). We proposed a novel bottleneck 
detection method to detect these rapidly alternating 
bottlenecks (Section 5), where the effectiveness of our 
approach is validated through the two case studies in 
Section 3. More generally, our work is an important 
contribution towards scaling complex n-tier applications 
under elastic workloads in cloud environments. 
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APPENDIX	A:	EXPERIMENTAL	SETUP	
In our experiments we adopt the RUBBoS standard n-

tier benchmark("RUBBoS: Bulletin board benchmark," 
2004), based on bulletin board applications such as Slashdot. 
RUBBoS has been widely used in numerous research 
projects due to its design, derived from a real web-facing 
application. RUBBoS can be configured as a three-tier (web 
server, application server, and database server) or four-tier 
(addition of clustering middleware such as C-JDBC(Cecchet, 
Marguerite, & Zwaenepole, 2004)) system. The benchmark 
includes two kinds of workload modes: browse-only and 
read/write interaction mixes. We use browse-only workload 
in this paper. The closed-loop workload generator of this 
benchmark generates a request rate that follows a Poisson 
distribution parameterized by a number of emulated clients 
and a fixed user thinking time. Such workload generator has 
a similar design as other standard n-tier benchmarks such as 
RUBiS, TPC-W, Cloudstone etc. 

We run the RUBBoS benchmark on our virtualized 
testbed. Figure 14 outlines the software components, ESXi 
host and virtual machine (VM) configuration, and a sample 
topology used in the experiments. We use a four-digit 
notation #W/#A/#C/#D to denote the number of web servers, 
application servers, clustering middleware servers, and 
database servers. Each server runs on top of one VM. We 
have two types of VMs: ``L'' and ``S'', each of which 
represents a different size of processing power. Figure 14(c) 
shows a sample 1L/2S/1L/2S topology. Each ESXi host 
runs the VMs from the same tier of the application. The 
VMs from the same tier are pinned to separate CPU cores to 
minimize the interference between VMs. Hardware resource 
utilization measurements (e.g., CPU) are taken during the 
runtime period using Sysstat at one second granularity and 
VMware esxtop at two second granularity (the minimum 
granularity provided by the tool). The esxtop is used to 
monitor the CPU utilization of each VM in the VM 
collocation experiments (see Section 5). 
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