
The Impact of Soft Resource Allocation on
n-Tier Application Scalability

Qingyang Wang, Simon Malkowski, Deepal Jayasinghe,
Pengcheng Xiong, Calton Pu

College of Computing
Georgia Institute of Technology

Atlanta, USA
{qywang, zmon, deepal, pxiong3, calton}@cc.gatech.edu

Yasuhiko Kanemasa, Motoyuki Kawaba, Lilian Harada
Research Center for Cloud Computing

Fujitsu Laboratories Ltd
Kawasaki, Japan

{kanemasa, kawaba, harada.lilian}@jp.fujitsu.com

Abstract—Good performance and efficiency, in terms of high
quality of service and resource utilization for example, are
important goals in a cloud environment. Through extensive
measurements of an n-tier application benchmark (RUBBoS), we
show that overall system performance is surprisingly sensitive
to appropriate allocation of soft resources (e.g., server thread
pool size). Inappropriate soft resource allocation can quickly
degrade overall application performance significantly. Concretely,
both under-allocation and over-allocation of thread pool can
lead to bottlenecks in other resources because of non-trivial
dependencies. We have observed some non-obvious phenomena
due to these correlated bottlenecks. For instance, the number
of threads in the Apache web server can limit the total useful
throughput, causing the CPU utilization of the C-JDBC clustering
middleware to decrease as the workload increases. We provide a
practical iterative solution approach to this challenge through
an algorithmic combination of operational queuing laws and
measurement data. Our results show that soft resource allocation
plays a central role in the performance scalability of complex
systems such as n-tier applications in cloud environments.

Keywords-bottleneck, configuration, n-tier, parallel processing,
scalability, and soft resource

I. INTRODUCTION

One of the major advantages of consolidated data centers
and cloud environments is scalability: the ability to allocate
more resources to an application if needed. For occasional
users that run an application only a few times, scalability
often compensates for lack of efficiency since achieving high
utilization rates is unimportant for them. However, for long
term users who run their applications often or continuously
(e.g., in electronic commerce), a high level of utilizationand
low operational costs are important requirements. Otherwise,
high operational costs due to inefficiencies in a cloud quickly
outweigh the savings from avoiding the capital expenditure
of setting up a dedicated cluster. Therefore, a shared cloud
environment needs both scalability and efficient utilization.

Efficient utilization of cloud resources requires intelligent
mapping of system resources to applications that need them.
This is a significant challenge since internet-scale applications
often have elastic workloads with peak load several times the
steady state. In addition, such applications also have Quality of
Service (QoS) requirements, often stated in terms of Service
Level Agreement (SLA) guarantees such as bounded response

time. At the hardware level, intelligent mappings of resources
have been previously studied as offline configuration plans [1]
and dynamic adaptation policies for run-time adjustments [2].

In this paper, we show that achieving efficient utilization of
cloud resources when running large scale n-tier applications
requires a unified exploration of each system layer, including
both hardware and software. This is primarily due to the com-
plex dependencies among software and hardware resources
from each tier. Concretely, we developed tools to monitor the
usage of soft resources such as application server thread pool
and its database (DB) connection pool. Then we analyzed
the relationship among throughput, response time, hardware
resource usage (CPU, memory, I/O), and soft resource usage
(thread/DB connection pool) by changing the size of each
thread/DB connection pool in web and application servers.

The first contribution of the paper is a quantitative evalua-
tion (based on measurements of the RUBBoS benchmark [3])
analyzing the impact of soft resource allocation on application
performance for given hardware configurations. For instance,
we show that sub-optimal allocation of soft resources such as
application server thread pool and its database connectionpool
can easily degrade the application performance between 28%
and 90%, depending on the SLA specifications (see Figure 2).

The second contribution of the paper is an impact analysis
of two naive soft resource allocation strategies. On one side,
a conservative (low) allocation of soft resources (e.g., too
small thread pool) often creates software bottlenecks thatlimit
overall system throughput, even though no hardware resources
are saturated. On the other side, a liberal (high) allocation
of soft resources often wastes hardware resources such as
CPU and memory. This degrades application performance at
high utilization levels. For example, in our experiments Java
Virtual Machine (JVM) garbage collection can consume up
to 9% of CPU when the number of threads reaches several
hundreds, reducing the achievable throughput (and lengthening
the response time) when CPU is near saturation.

The third contribution of the paper is a practical algo-
rithm for the allocation of soft resources. Our measurements
show that an optimal allocation (within our data set) for
one hardware configuration is often sub-optimal for other
hardware configurations. Consequently, static rule-of-thumb

allocations will be almost always sub-optimal in the presence
of volatile workloads. Our adaptive algorithm for the proper
soft resource allocation is analogous and complementary to
adaptive hardware resource configuration algorithms [4] [5].

In general, our results strongly suggest that in studies on
the efficient utilization of clouds, soft resources should be
considered integral components in determining overall appli-
cation performance due to the dependencies linking hardware
and software resources. In fact, complex applications can only
become truly scalable if soft resources are treated as first class
citizens (analogous to hardware resources) during the principal
component analysis of the overall system performance.

The rest of the paper is organized as follows. Section II
describes the impact of soft resource allocation on application
performance. Section III summarizes the utilization achieved
by various allocation strategies through measured resultswith
explanations. Section IV describes our proposed allocation
algorithm in detail. Section V summarizes related work and
Section VI concludes the paper.

II. BACKGROUND AND MOTIVATION

A. Background Information

1) Soft Resources in n-Tier Systems:Hardware resources
such as CPU, memory, disk, and network are well defined
components in performance evaluation studies. We use the
term soft resourcesto refer to system software components
that use hardware or synchronize the use of hardware. For
example,threadsuse CPU andTCP connectionsuse network
I/O. Expanding this definition, we also use the term soft
resources to refer to components that use (or synchronize the
use of) soft resources as well as a combination of hardware
and soft resources. For example, various locks synchronize
the access to shared data structures or resources. Usually,
soft resources are created to facilitate the sharing of hardware
resources in order to increase hardware utilization. For exam-
ple, threads facilitate multiprogramming to achieve a higher
utilization of the CPU. Consequently, soft resources are critical
path components that contribute to determining the level of
hardware resource utilization achievable in the system.

In this paper, we study the role of soft resources in determin-
ing n-tier application performance. The identification of soft
resources as explicit components in the critical path of system
execution is due to the long invocation chain of requests
in an n-tier system. Requests that originate from a client
machine arrive at the web server, which distributes it among
the application servers, which in turn ask the database servers
to carry out the query. The dependencies among the servers
are in the critical path and maintained by soft resources.

2) Experimental Environment:We run an n-tier benchmark
(RUBBoS) on our private cluster testbed. We summarize the
benchmark and experimental testbed in this section.

RUBBoS is a standard n-tier benchmark based on bulletin
board applications such as Slashdot. RUBBoS has been widely
used in numerous research efforts due to its real production
system significance. Figure 1 outlines the choices of software

components, hardware node, and a sample network topology
used in our experiments.

The RUBBoS benchmark application can be implemented as
three-tier (web server, application server, and database server)
or four-tier (addition of clustering middleware such as C-
JDBC [6]) system. The workload consists of 24 different
interactions such as “view story”. The benchmark includes
two kinds of workload modes: browsing-only and read/write
interaction mixes. In our experiments each experiment trial
consists of an 8 minute ramp-up, a 12-minute runtime, and a
30-second ramp-down. Performance measurements (e.g., CPU
utilization) are taken during the runtime period using SysStat
at one second granularity. We use the functionality provided
by JVM to monitor thread status in Java applications. To
conveniently monitor the utilization of the DB connection
pool, we made slight changes to the RUBBoS benchmark:
all servlets share a global DB connection pool instead of
using an individual connection pool for each servlet. We also
modified Apache server source code to record its detailed
internal processing time.

The experiments used in this paper were run in the Emulab
testbed [7]. Figure 1(b) contains a summary of the hardware
used in our experiments. The experiments were carried out
by allocating a dedicated physical node to each server. We
use a four-digit notation#W/#A/#C/#D to denote the
number of web servers, application servers, clustering mid-
dleware servers, and database servers. A sample topology of
experiments with two clients, one web server, two application
servers, one clustering middleware server, two database servers
(i.e., 1/2/1/2) is shown in Figure 1(c). In our experiments,we
focus on how the allocation of soft resources such as threads
and DB connections affects n-tier system performance. Thus,
we change the allocation of those soft resources by changing
thread pool size in Apache servers, the thread pool and DB
connection pool size in Tomcat servers. For each hardware
provisioning#W/#A/#C/#D, we use #WT -#AT -#AC to
represent the thread pool size in web server, the thread pool
size in application server, and the DB connection pool size
in application server. For example, the hardware provisioning
can be 1/2/1/2. The corresponding soft resource allocation
#WT -#AT -#AC can be 200-100-100, which means the thread
pool size in a web server, the thread pool size and the DB
connection pool size in each application server is 200, 100,
100, respectively. The allocation of other soft resources are
fixed in order to limit the exponential experiment space.
Regarding the configuration of Apache, we chose worker
MPM as its multi processing module. It should be mentioned
that we turned off the keepAlive function because RUBBoS
workload only has a few consecutive http requests.

B. Performance Requirements Specified by SLA

In applications such as e-commerce, response time of re-
quests is critical for users. According to Aberdeen’s June 2008
report [8], response time longer than 5 seconds would likely
make 10% of potential customers navigate away. In this case,
only requests with a fast response time have positive impactto

Function

Web Server

Application Server

Cluster middleware

Software

Apache 2.0.54

Apache Tomcat 5.5.17

C-JDBC 2.0.2

System monitor Systat 7.0.2

Database server MySQL 5.0.51a

Sun JDK jdk1.6.0_14

Operating system
Redhat FC4

Kernel 2.6.12

(a) Software setup

Hardware

Processor

Memory

Network

Components

Xeon 3GHz 64-bit

2GB

1Gbps

Disk 2×146GB 10,000rpm

Server type PC3000 in Emulab

(b) Hardware node setup

Server

Server

Clients

Web

Server

App

Servers

Cluster-

middleware

DB

Servers

(c) Sample topology

Fig. 1: Details of the experimental setup on the Emulab cluster

service providers’ business. In shared infrastructures such as
cloud environments, service level agreements (SLAs) are com-
monly used for specifying desirable response times, typically
in the one to two seconds range. The SLA document usually
contains the service provider’s revenue model, determining the
earnings of the provider for SLA compliance (when request
response times are within the limit) as well as the penalties
in case of failure (when response times exceed the limit).
The provider’s revenue is the sum of all earnings minus all
penalties.

Different service providers may have different SLA models,
which would result in different conclusions from a perfor-
mance evaluation based on the system resource monitoring
data. A generic SLA model has been studied in our previous
work [1]. In this paper we use a simplified SLA model
to illustrate the revenue tradeoffs between throughput and
response time (i.e., the system performance). Even with this
simplified model, our results clearly show that increasing
throughput (and utilization) without other considerations leads
to significant drops in provider revenue through high response
times. A detailed study of the influence of different revenue-
based SLA models is beyond the scope of this paper and a
the subject of our future research.

For our simplified SLA model we set a single threshold for
the response time of requests (e.g., 1 second). Requests with
response time equal or below the threshold satisfy the SLA.
We call the throughput of these requestsgoodput. Requests
with response time higher than the threshold violate the SLA,
and the throughput of these requests is called badput. We note
that the sum of goodput and badput amounts to the traditional
definition of throughput.

A classic performance model that only considers the
throughput as a whole may be appropriate for a batch-oriented
workloads. However, for interactive applications such as e-
commerce the situation is more complex because the response
time increases significantly when a system resource reaches
full utilization. By refining our throughput model to consider
both goodput and badput, we are able to quantify user-
perceived response time, which yields a more realistic provider
revenue analysis.

C. Degradation with Simplified SLA Model

In this section, we apply the simplified SLA model to show
the magnitude of performance variations when soft resource
allocations are inappropriate. The goal of this section is to

illustrate the importance of the problem. The explanationswill
be described in Section III.

1) Impact of Under-Allocation:Figures 2(a), 2(b), and 2(c)
compare the goodput of the same hardware configuration
(1/2/1/2) and two different soft resource allocations (400-150-
60 and 400-6-6). The range of workload chosen (5000 to 6800)
captures the knee when the overall throughput curve stops
growing. All three figures show that the goodput of 400-6-6
starts to decrease (before 5000) much earlier than the case
400-150-60 (after 5600). An analysis of hardware resource
utilization (omitted due to space constraints) shows that no
hardware resources are saturated in the 400-6-6 case. This
confirms that the soft resource allocation of application server
cause the bottleneck (6-6 thread pool and DB connection
pool).

An experienced reader may immediately question the wis-
dom of attempting the 400-6-6 allocation, which appears to
be an “obviously low” number compared to the 400-150-60
“intuitive” choice of practitioners. As it happens, the situation
is more complex than it appears. Section II-C2 will show that
400-6-6 allocation is near optimal for hardware configuration
(1/4/1/4). The reasons for these differences will be explained
in Section III.

Applying the simplified SLA model, the three graphs show
the magnitude of the goodput difference between the two
soft resource allocations. At the workload of 6000 users, the
goodput of 400-150-60 allocation is about 28% higher than
the 400-6-6 allocation under the threshold of 2 seconds, 44%
higher under the 1-second threshold, and 93% higher under
the half-second threshold. Therefore, for the same overall
throughput there may be a significant difference in goodput,
depending on the SLA requirements.

2) Impact of Over-Allocation:Figures 3(a) and 3(b) show
the performance degradation of the same thread pool alloca-
tions of Section II-C1 for the 1/4/1/4 hardware configuration.
The figures show a crossover point. Before the crossover, 400-
150-60 has better performance due to better hardware resource
utilization achieved. After the crossover, 400-6-6 is better due
to smaller CPU consumption of the smaller thread pool. This
will be explained better in Section III. It may be unexpected
that Figure 3 shows the non-intuitive choice of 400-6-6 is
better when nearing saturation, which is just the opposite of
Figure 2.

In fact the performance difference between 400-6-6 and
400-150-60 showed in Figures 3(a) and 3(b) can be much

5000 5200 5400 5600 5800 6000 6200 6400 6600 6800
200

300

400

500

600

700

800

Workload [# Users]

G
o

o
d

p
u

t
[R

eq
s/

s]

1/2/1/2(400−6−6)

1/2/1/2(400−150−60)

93% Diff

(a) Threshold 500ms

5000 5200 5400 5600 5800 6000 6200 6400 6600 6800
200

300

400

500

600

700

800

Workload [# Users]

G
o

o
d

p
u

t
[R

eq
s/

s]

1/2/1/2(400−6−6)

1/2/1/2(400−150−60)

44% Diff

(b) Threshold 1s

5000 5200 5400 5600 5800 6000 6200 6400 6600 6800
200

300

400

500

600

700

800

Workload [# Users]

G
o

o
d

p
u

t
[R

eq
s/

s]

1/2/1/2(400−6−6)

1/2/1/2(400−150−60)

28% Diff

(c) Threshold 2s

Fig. 2: The goodput comparison of the same software source allocations.In these figures, each line represents the performance
of a specific combination of hardware configuration and soft resource allocation. The first set of four numbers separated by dash,
denotes hardware configuration. For example, 1/2/1/2 means one web server (apache), two application servers (tomcat), one database
clustering middleware (C-JDBC), and two database servers (MySQL). The following set of 3 numbers, separated by hyphens, denotes
software configuration. For example, 400-150-60 refers to thesize of thread pool (400) in one web server, the size of thread pool
(150) in one application server, and the size of DB connection pool (60) in the same application server. This setting (400-150-60) is
considered a good choice by practitioners from industry

6000 6200 6400 6600 6800 7000 7200 7400 7600 7800
400

500

600

700

800

900

1000

Workload [# Users]

G
o

o
d

p
u

t
[R

eq
s/

s]

1/4/1/4(400−6−6)

1/4/1/4(400−150−60)

37% Diff
Crossover

Point

15% Diff

(a) Threshold 500ms

6000 6200 6400 6600 6800 7000 7200 7400 7600 7800
400

500

600

700

800

900

1000

Workload [# Users]

G
o

o
d

p
u

t
[R

eq
s/

s]

1/4/1/4(400−6−6)

1/4/1/4(400−150−60)

Crossover
Point

16% Diff

(b) Threshold 1s

[0,0.2] [0.2,0.4][0.4,0.6][0.6,0.8] [0.8,1] [1,1.5] [1.5,2] > 2
0

100

200

300

400

500

600

700

800

900

Response time [s]

Th
ro

ug
hp

ut
 [R

eq
s/

s]

1/4/1/4(400−6−6)
1/4/1/4(400−150−60)

(c) RT distribution under WL 7000

Fig. 3: Performance degradation due to over-allocation of thread pool with 1/4/1/4 hardware configuration

more significant when a detailed response time analysis is
applied. For example, as shown in 3(c), the 400-6-6 allocation
has 130% higher goodput than the case 400-150-60 using 0.2
seconds as a threshold.

In general, SLA models correlate economic goals with
technical performance data to derive intuitive domain insights
at the real quality of services provided by service providers. In
order to facilitate our discussion with our experimental results,
unless stated otherwise, we apply the simplified SLA model
with 2-second threshold (a commonly used value for many
web applications) in the application performance evaluation.

In the following Section III we will explain the reasons for
the different performance results shown so far.

III. SENSITIVITY ANALYSIS OF SOFT RESOURCE

ALLOCATION STRATEGIES

In this section we analyze the influence of soft resource
allocation on the overall application performance in terms
of measured goodput. We observe some similarities and
differences between soft resources and hardware resources.
Section III-A describes an example of similarities, when scarce
soft resources become the system bottleneck. This is a problem
solvable by adding more soft resource capacity, analogous
to scarce hardware resources. Section III-B describes an ex-

ample of differences, when unused soft resources consume
too much of another critical resource (e.g., CPU), causing
the overall performance to decay. This is a problem solvable
by reducing the unused soft resource capacity, which reduces
the consumption of the critical resource and improves overall
goodput. Section III-C shows another interesting example of
similarities; hardware resources can be under-utilized bynon-
obvious low soft resource allocation in front tiers. In fact, we
show that high allocation of soft resources in front tiers acts
as a buffer that stabilizes bursty request flows and providesa
more even workload distribution to the back-end.

A. Analysis of Soft Resource Under-Allocation

The first naive soft resource allocation strategy we consider
is straight-forward resource minimization, i.e., choose asmall
capacity to not overload the system. Although this strategy
minimizes the overhead incurred by soft resources, it may
significantly hamper workload propagation. When there are
too few units of a soft resource, they become a bottleneck
and the situation is analogous to the saturation of hardware
resources. A soft resource bottleneck may cause the rest of the
system (e.g., all hardware resources) to become under-utilized.
Consequently, adding more hardware does not improve overall
performance (e.g., throughput).

5000 5200 5400 5600 5800 6000 6200 6400 6600 6800
450

500

550

600

650

700

750

800

850

900

950

Workload [# Users]

G
o

o
d

p
u

t
[R

eq
s/

s]
400−6−200

400−10−200

400−20−200

400−200−200

(a) Goodput

0
25

50
75

100
5000

5600
6200

6800

0

0.05

0.1

ThreadPool util [%]# Users

P
ro

ba
bi

lit
y

de
ns

ity

(b) Threadpool util 400-6-200

0
25

50
75

100
5000

5600
6200

6800

0

0.05

0.1

ThreadPool util [%]# Users

P
ro

ba
bi

lit
y

de
ns

ity

(c) Threadpool util 400-10-200

5000 5200 5400 5600 5800 6000 6200 6400 6600 6800
70

75

80

85

90

95

100

Workload [# Users]

C
P

U
 u

til
iz

at
io

n
[%

]

400−6−200
400−10−200
400−20−200
400−200−200

(d) CPU utilization of the first Tomcat

0
25

50
75

100
5000

5600
6200

6800

0

0.05

0.1

ThreadPool util [%]# Users

P
ro

ba
bi

lit
y

de
ns

ity

(e) Threadpool util 400-20-200

0
25

50
75

100
5000

5600
6200

6800

0

0.05

0.1

ThreadPool util [%]# Users

P
ro

ba
bi

lit
y

de
ns

ity

(f) Threadpool util 400-200-200

Fig. 4: Performance degradation due to under-allocation of thread poolwith 1/2/1/2 hardware configuration

We use the thread pool in Tomcat to illustrate the problem of
under-allocation of soft resources. The experiments described
here have fixed numbers of threads in the Apache server
(400), and the number of DB connections is fixed to 200 in
Tomcat servers. Therefore, these soft resources never become
the system bottlenecks. The only degree of freedom in the
experiments is the size of the Tomcat thread pool, ranging
between 6 to 200 threads. The hardware configuration is
chosen as 1/2/1/2. Figure 4(a) shows the goodput of increasing
allocations of threads in Tomcat. The goodput increases as
the size of the thread pool increases from 6 to 20. For
example, at a workload of 6000, the goodput of the 400-20-
200 configuration is about 40% higher than the goodput of
the 400-6-200 configuration. This is due to the better overall
hardware resource utilization achieved by 20 threads.

Figure 4(d) shows the average CPU usage of the first
Tomcat server. Note that given the load balancing provided
by the Apache web server, all the Tomcat servers have similar
behavior. Thus, it suffices to show a single representative graph
for this tier. The small thread pool size shows a corresponding
lower CPU utilization. For example, at workload 6000, the
Tomcat CPU utilization of configuration 400-6-200 is about
82% while the utilization exceeds 95% for configurations 400-
20-200 and 400-200-200. It is clear that in small thread pool
allocations all available threads in Tomcat are either busypro-
cessing the existing requests or busy waiting for response from
the lower tier (i.e., C-JDBC server). Consequently, the Tomcat
servers become idle and the throughput cannot increase even
when all hardware resources are idle.

We use a resource utilization density graph to analyze this

resource utilization scenario more precisely [9]. Figures4(b),
4(c), 4(e), and 4(f) show for which thread pool sizes this
soft resource becomes the system bottleneck. The analysis
of the figures shows that thread pool size 6 saturates before
the workload of 5000. In contrast, pool size 10 saturates at
about 5600, and pool size 20 saturates at about 6000. We note
that the system performance symptoms of thread pool under-
allocation are similar to the symptoms of hardware resource
saturation. Hence, it is necessary to monitor the thread pool
utilization along with hardware resource utilization in order
to find this particular bottleneck. If only hardware utilizations
were monitored, this bottleneck would remain hidden beneath
the underutilized hardware resources.

Figure 4(a) and 4(d) show another interesting phenomenon:
the highest goodput achieved by the thread pool size of 200 is
lower than the goodput achieved by thread pool size 20. This
observation shows that monotonically increasing the thread
pool size eventually leads to sub-optimal allocations. This is
an example of differences between soft resources and hardware
resources, which are the subject of the next section.

B. Over-Allocation of Soft Resources

The second naive soft resource allocation strategy we con-
sider is straight-forward resource maximization, i.e., choose a
large capacity to enable full hardware utilization system.This
strategy clearly illustrates some of the differences between soft
and hardware resources. Unlike hardware resources, which
cannot consume other resources when idle, soft resources
actually may consume other system resources (e.g., CPU and
memory), regardless of whether they are being used or not.
Usually, the maintenance costs of soft resources are considered

6000 6200 6400 6600 6800 7000 7200 7400 7600 7800
650

700

750

800

850

900

950

1000

1050

Workload [# Users]

G
o

o
d

p
u

t
[R

e
q

s/
s]

400−200−6

400−200−50

400−200−100

400−200−200

(a) SLA througput

6000 6200 6400 6600 6800 7000 7200 7400 7600 7800
80

82

84

86

88

90

92

94

96

98

100

Workload [# Users]

C
P

U
 u

til
iz

at
io

n
[%

]

400−200−6
400−200−50
400−200−100
400−200−200

(b) CPU utilization in C-JDBC

6000 6200 6400 6600 6800 7000 7200 7400 7600 7800
0

10

20

30

40

50

60

70

80

90

Workload [# Users]

To
ta

l G
C

 ti
m

e
[s

]

400−200−6
400−200−50
400−200−100
400−200−200

(c) Total time for JVM GC in C-JDBC

Fig. 5: Performance degradation due to over-allocation of DB connectionpool with 1/4/1/4 hardware configuration

small, so the maximization strategy is considered reasonable
as long as there are no hardware bottlenecks in the system.

Our measurements show that when the system approaches
saturation, over-allocation of soft resources can degradesys-
tem performance significantly. For a thread pool size of
200, Figures 4(a) and 4(d) illustrate an example of such a
degradation. We keep the other parameters fixed and solely
vary the size of the database connection pool in the Tomcat
server (from 6 to 200) to illustrate the phenomenon. We
note that in these experiments, each time the Tomcat server
establishes a connection to the C-JDBC server, which balances
the load among the database servers, a thread is created by C-
JDBC to route the SQL query to a MySQL database server.
The MySQL server also creates a thread for actual processing.
Consequently, one database connection implies one thread in
the C-JDBC and one thread in MySQL server.

Figure 5(a) shows the system goodput for database connec-
tion pool sizes of 10, 50, 100, and 200 for a workload between
6000 to 7800. This figure show that the lowest allocation 400-
200-6 achieves the best performance. Under workload 7800,
the goodput of the 400-200-6 configuration is about 34%
higher than the throughput of the 400-200-200 configuration.
Figure 5(b) shows the average CPU utilization of the C-JDBC
server from workload 6000 to 7800. The highest goodput
achieved by each configuration is shown in Figure 5(a). The
goodput corresponds to about 95% of C-JDBC server CPU
utilization in Figure 5(b), which suggest that C-JDBC server
CPU is the system bottleneck.

A careful analysis of C-JDBC server CPU utilization shows
a super-linear increase for higher numbers of DB connections
in Tomcat as workload increases from 6000 to 7800. At
workload 7800, the C-JDBC server CPU utilization of the
400-200-6 configuration is the lowest while its goodput is
the highest. After a wide range search of candidate system
software components, we found that JVM garbage collection
played a major role degrading the C-JDBC server efficiency
as the number of DB connections in Tomcat servers increased.

The JVM garbage collection process may affect the sys-
tem goodput in two ways. First, since the C-JDBC server
CPU is the primary bottleneck, the CPU time used by the
garbage collector cannot be used for request processing. We
measured the time used by the JVM garbage collector directly.

Figure 5(c) shows the total time for JVM garbage collection
on the C-JDBC server. During a 12-minute experiment, at
workload 7800, the C-JDBC server’s JVM garbage collector
consumes nearly 70 seconds (9% of total) for the 400-200-
200 configuration, compared to less than 10 seconds (about
1% of total) for the 400-200-6 configuration. Second, the
JVM uses a synchronous garbage collector and it waits during
the garbage collection period, only starting the processing
requests after the garbage collection is finished [10]. Thisdelay
significantly lengthens the pending query response time—an
important component of the goodput.

C. Buffering Effect of Soft Resource

In this subsection we show that high allocation of soft
resources in front tiers of an n-tier system sometimes is
necessary to achieve good performance. Unlike the over-
utilization case as introduced in Section III-B, high allocation
of soft resources in front tiers (e.g., Apache server) may
function as a request buffer, which stabilizes the requestssent
to the back-end tiers under high workload and improves the
system performance.

We use the thread pool in Apache server to illustrate the
buffering effect phenomenon. The experiments described here
have a fixed number of threads (6) and DB connections (200)
in Tomcat server. The size of the Apache thread pool is in-
creased from 30 to 400. The hardware configuration is 1/4/1/4.
Figure 6(a) shows the system goodput for Apache thread pool
sizes of 30, 50, 100, 400 for a workload between 6000 and
7800. The goodput increases as the allocation of threads in the
Apache server increases. Under workload 7800, the goodput of
the 400-6-100 configuration is 76% higher than the goodput of
the 30-6-100 configuration. Intuitively, one may be misled to
believe that the latter example is an under-allocation scenario
analogous to the scenario in Section III-A. In other words, it
appears that a small thread pool in the Apache server limits
the number of concurrent requests going through the back-
end tiers, which leads to hardware resource under-utilization.
However, the following two phenomena show that this scenario
is, in fact, significantly more complex.

First, Figure 6(b) shows that the C-JDBC CPU utilization
continuously decreases, in both the 30-6-100 and the 50-
6-100 configurations after the workload exceeds a certain

6000 6200 6400 6600 6800 7000 7200 7400 7600 7800
400

500

600

700

800

900

1000

1100

Workload [# Users]

G
oo

dp
ut

 [r
eq

ue
st

/s
]

30−6−100

50−6−100

100−6−100

400−6−100

(a) Goodput

6000 6200 6400 6600 6800 7000 7200 7400 7600 7800
70

75

80

85

90

95

100

Workload [# Users]

CP
U

ut
iliz

at
ion

 [%
]

30−6−100
50−6−100
100−6−100
400−6−100

(b) CPU utilization of C-JDBC server

Fig. 6: Performance degradation due to small buffer of threads in Apache server with 1/4/1/4 hardware configuration

240 250 260 270 280 290 300
0

500

1000

1500

2000

2500

3000

3500

Timeline [s]

N
u

m
b

er
 o

f r
eq

u
es

ts

of processed requests

(a) Processed requests in one second

240 250 260 270 280 290 300
0

5

10

15

20

25

30

35

Timeline [s]

Ti
m

e
[m

s]

PT_total
PT_connectingTomcat

(b) Response time

240 250 260 270 280 290 300
0

5

10

15

20

25

30

35

Timeline [s]

Th
re

ad
s

[#
]

Threads_active
Threads_connectingTomcat

(c) Parallelism

240 250 260 270 280 290 300
0

500

1000

1500

2000

2500

3000

3500

Timeline [s]

N
u

m
b

er
 o

f r
eq

u
es

ts

of processed requests

(d) Processed requests in one second

240 250 260 270 280 290 300
0

5

10

15

20

25

30

35

Timeline [s]

Ti
m

e
[m

s]

PT_total
PT_connectingTomcat

(e) Response time

240 250 260 270 280 290 300
0

5

10

15

20

25

30

35

Timeline [s]

Th
re

ad
s

[#
]

Threads_active
Threads_connectingTomcat

(f) Parallelism

Fig. 7: Performance degradation under high workload due to small buffer of threads in Apache server in 30-6-100 allocation.
Subfigures (a)–(c) show the results under workload 6000 while Subfigures (d)–(f) under workload 7400.

point. In the case of 30-6-100, the CPU utilization of the
C-JDBC server under workload 7800 is about 10% lower
than under workload 6000. This observation does not match
the intuitively expected characteristic that growing workload
implies monotonic growth of hardware resource utilization.

Second, Figure 6(a) shows that 30 threads in the Apache
server cause worse performance than 400 threads. We have to
point out that the size of the thread pool in a Tomcat server is
fixed to 6 in all configurations, which means that the Apache
server solely requires 24 threads for sending concurrent re-
quests to the four Tomcat servers. Although each request sent
to a RUBBoS Servlet is followed by two consecutive requests
for static content (e.g., image file RUBBoSlogo.jpg), such
requests can be handled by a small number of threads because
all small files with static content are cached in memory.
Therefore, it is hard to believe that the thread pool in Apache

server is too small, even in the 30-6-100 configuration.

A careful analysis of the Apache server runtime status
shows that both aforementioned phenomena are the result
of a too small request buffer (i.e., too low allocation of
soft resources in the Apache server). Figure 7 shows the
characteristics of the Apache server with 30 threads under
workload 6000 and 7400 during one minute of the experiment
runtime. Figures 7(a) and 7(d) show the timeline graphs of the
number of requests that the Apache server processed during
each second. Figures 7(b) and 7(e) show the average busy time
of a worker thread in Apache, and the average processing time
of HTTP contents. During processing time an Apache worker
thread is either occupying a Tomcat connection or waiting
to obtain a Tomcat connection from the connection pool in
order to interact with the lower tier. Figures 7(c) and 7(f)
show the total number of active worker threads and the number

240 250 260 270 280 290 300
0

500

1000

1500

2000

2500

3000

3500

Timeline [s]

N
u

m
b

er
 o

f r
eq

u
es

ts

of processed requests

(a) Processed requests in one second

240 250 260 270 280 290 300
0

20

40

60

80

100

120

140

160

180

Timeline [s]

Ti
m

e
[m

s]

PT_total
PT_connectingTomcat

(b) Response time

240 250 260 270 280 290 300
0

50

100

150

200

250

300

350

400

450

Timeline [s]

Th
re

ad
s

[#
]

Threads_active
Threads_connectingTomcat

(c) Parallelism

Fig. 8: Performance improvement due to large thread buffer in Apache server in 400-6-100 allocation under workload 7400

of worker threads interacting or waiting to interact with the
Tomcat tier. The cause of the performance difference between
the two workloads becomes evident through the comparison
of Figures 7(b) and 7(e). Under workload 7400, the average
processing time of a worker thread has many significant peaks
even though the actual average time spend in an interaction
state that requires a Tomcat connection is largely similar to
the 6000 workload scenario. Although an Apache worker
thread needs to perform some additional tasks apart from
processing HTTP contents (e.g., maintain TCP connections),
these additional task generally only take a short time under
low workload. Under workload 7400, the main contributor of
the high busy time peaks is the wait time for a FIN reply from
a client closing a TCP connection. Under high workload, this
wait time is much larger, which reduces the throughput of the
Apache server dramatically. This is shown in Figure 7(d). In
addition, long wait times for FIN replies result in the number
of active worker threads almost reaching the upper boundaryof
30 while the number of worker threads that actually interact
with the Tomcat tier is far less than 30. This is shown in
Figure 7(f). The drop in the worker threads interacting withthe
Tomcat tier results in the reduced number of requests pushed
to the lower tiers; therefore the CPU utilization of the C-JDBC
server reduces under higher workload.

In order to explain why a similar characteristic does not
appear in the 400-6-100 configuration scenario, the graphs in
Figure 8 show a similar analysis as in Figure 7 for the 400-6-
100 configuration under workload 7400. While the previously
introduced increase of wait time for a FIN reply also occurs in
this scenario (see Figure 8(b)), the average processing time in
this case is much larger than in the 30-6-100 case. This is due
to the high number of active threads, which results in long
waiting times for obtaining one of 24 Tomcat connections.
Therefore, the relative waiting time for a FIN reply is much
lower compared to the previous scenario. This results in a
relatively stable high number of worker threads interacting
(i.e., occupying or waiting a connection) with the Tomcat
tier. As shown in Figure 8(c), the number of worker threads
interacting with the Tomcat tier is always much higher than 24.
Therefore, the Apache server can push a much larger amount
of workload to lower tiers, which leads to high throughput as
shown in Figure 8(a).

IV. D ETERMINING SOFT RESOURCEALLOCATIONS

In the previous section, we showed that both under-
allocation and over-allocation of soft-resources may cause
performance degradation. In this section we will outline a
practical algorithm to choose a “Goldilocks” soft resource
allocation for each hardware configuration.

A. Challenges of Soft Resource Allocation

The discussion so far can be summarized as following.
Too-low soft resource allocations may cause under-utilization
of other resources. Too-high soft resource allocations may
waste critical system resources. Therefore, a proper allocation
range needs to be found that maximizes the utilization of the
system resources in the critical application execution path.
However, finding a good allocation range is non-trivial due
to the following three challenges:

1) The good soft resource allocation depends on location
of the critical hardware resource, which can be quite
different under different hardware configurations. The
critical system resources are the Tomcat CPU in 1/2/1/2
configuration (Section III-A) and the C-JDBC CPU in
1/4/1/4 configuration (Section III-B), for example.

2) Typically, the system performance is not sensitive to
over-allocation of soft resources until some critical hard-
ware resource is close to saturation.

3) The state space for a soft resource allocation is usually
very large (often unlimited). Thus, finding a good alloca-
tion by running experiments exhaustively is impractical.

B. Soft Resource Allocation Algorithm

Our algorithm is based on the following three assumptions:
• The system has a single hardware resource bottleneck.
• Our monitoring tools are able to monitor the bottlenecked

hardware resource when the system is saturated.
• Each individual server response time for every request is

logged.
The first assumption excludes the complex multi-bottleneck

cases. In a multi-bottleneck scenario the saturation of hardware
resources may oscillate among multiple servers locating in
different tiers [9]. In these complex cases, our algorithm
may fail to determine the critical hardware resource since no
single hardware resource is fully utilized when the system

is saturated. The algorithmic resource allocation in multi-
bottleneck cases is highly challenging and will require addi-
tional research. The second and third assumptions assume that
we have properly instrumented the system with monitoring
tools such as SysStat and Log4j.

The algorithm consists of the following three steps:
1) Exposing the critical hardware resource in the system.

This step examines the hardware resource that will
saturate earliest in the system. Such hardware resources
are critical because their saturation limits the entire
system performance.

2) Inferring a good allocation of local soft resources.This
step allocates soft resources in the server that utilize the
critical hardware resource directly. The critical hardware
resource will be heavily utilized based on the associated
soft resources if they are over-allocated.

3) Calculating a good allocation of other soft resources.
This step allocates soft resources to tiers other than the
tier where the critical hardware resource resides. The
front tiers (e.g., Apache server) should provide enough
soft resources to act as a buffer that stabilizes the request
flow to the critical tier (see Section III-C). The back-
end tiers need to provide enough soft resources to avoid
request congestion in the critical tier.

Algorithm 1 shows the pseudo-code for the three steps, which
are explained in more detail in the following.

1) Exposing the critical hardware resource:This part
of the algorithm exposes the critical hardware resource
by increasing the workload step by step until through-
put saturates. The initial soft resource allocation and hard-
ware provisioning areS0 and H0, respectively. Func-
tion RunExperiment(H,S,workload) initiates an experi-
ment with input hardware/software configuration at specific
workload, and at the same time, all hardware resource and
soft resource utilizations are monitored. During this process
saturated hardware and soft resources are recorded inBh and
Sh, respectively. IfBh is not empty, the critical hardware
resource has been successfully exposed and returned. IfSh is
not empty, the system hardware resources are under-utilized
due to the scarcity of some soft resource(s). In this case, the
soft resource allocations are double, and the experiment is
repeated. If bothBh andSh are empty, the workload offered
to the system is insufficient and needs to be increased by one
workload step before a new iteration of the experiment.

It is possible that none of the hardware resources we
observed are fully utilized when system is saturated. This
complex case may be due to multi-bottlenecks [9] in the
system or limitation of our monitoring tools. Dealing with
such complex case is one of our on-going research.

2) Inferring a good allocation of local soft resources:The
InferMinConncurentJobs procedure infers a good allocation
of soft resources in the critical server (the server with the
critical hardware resource) based on the minimum number of
concurrent jobs inside the server that can saturate the critical
hardware resource. Intuitively, all hardware resources have

Algorithm 1: Pseudo-code for the allocation algorithm
1 procedure FindCriticalResource
2 workload = step, TPcurr = 0, TPmax = -1;
3 S = S0, H = H0;
4 while TPcurr > TPmax do
5 TPmax = TPcurr ;
6 (Bh,Bs, TP) = RunExperiment(H, S, workload);
7 if (Bh 6= φ) then
8 / ∗ hardware resource saturation ∗ /
9 Sreserve = S;

10 return Bh;
11 else if(Bs 6= φ) then
12 / ∗ soft resource saturation ∗ /
13 workload = step, TP = 0, TPmax = -1;
14 S = 2S;
15 else
16 workload = workload + step;
17 end
18 end

19 procedure InferMinConncurentJobs
20 workload = smallStep, i = 0, TPcurr = 0, TPmax = -1;
21 S = Sreserve;
22 while TPcurr > TPmax do
23 TPmax = TPcurr ;
24 WL[i] = workload;
25 (RTT [i], TP [i], TPcurr) = RunExperiment(H, S, workload);
26 workload = workload + smallStep;
27 i++;
28 end
29 WLmin = InterventionAnalysis(WL, RTT);
30 minJobs = TP[WLmin] * RS[WLmin];
31 criServer.threadpool = minJobs;
32 criServer.Connpool = minJobs;

33 procedure CalculateMinAllocation
34 for server in front tiersdo
35 server.threadpool= minJobs * RTTratio/Reqratio;
36 server.Connpool = minJobs * RTTratio/Reqratio;
37 end
38 for server in end tiersdo
39 server.threadpool= minJobs;
40 server.Connpool = minJobs;
41 end

their limitation; the critical hardware resource will saturate the
earliest if the number of the concurrent jobs inside the server
is too high. Each job inside a server needs to consume certain
hardware resources such as CPU, memory, or disk I/O. In
practice each job in the server is delegated to one processing
thread. The optimal number of threads in the critical server
should be equal to the minimum number of concurrent jobs
that can saturate the critical hardware resource. In this case,
the critical hardware resource will neither be under-utilized
nor over-utilized.

The average number of jobs inside a server can be inferred
from the average throughput and response time of the server by
applying Little’s law. Throughput and response time of a sever
can be obtained by checking the server log. Therefore, solely
the minimum workload saturating the system (caused by the
critical hardware resource saturation) needs to be determined.

In order to approximate the exact workload that can saturate
the critical hardware resource, the procedure uses a statistical
intervention analysis [11] on the SLO-satisfaction of a system.
The main idea of such analysis is to evaluate the stability

Tomcat Server CJDBC Server

t1

t2

t3

T

HTTP

request

HTTP

response

t1'

t2'

Interaction with

MySQL server
D

B
C

on
n

bu
sy

pe
rio

d

Fig. 9: A sample request process between a Tomcat server and
a C-JDBC server

of the SLO-satisfaction of the system as workload increases;
the SLO-satisfaction should be nearly constant under low
workload and start to deteriorate significantly once the work-
load saturates the critical hardware resource. Readers whoare
interested in more details can refer to our previous paper [11].

After figuring out the minimum number of concurrent jobs
(minJobs) that saturate the critical hardware resource, line 31
and 32 of the pseudo-code assign the value to the soft resource
pools of the critical server.

3) Calculating a good allocation of other soft resources:
Soft resource pools in each tier of an n-tier system control the
maximum concurrent requests flow through the system. Even
if the optimal soft resource allocation is set in the critical tier,
the system performance may still be sub-optimal due to the
improper soft resource allocation in other tiers. Too smallsoft
resources in front of the critical tier may limit the number of
concurrent requests flowing through the critical resource too
much. Too small soft resources in tiers behind the critical tier
may cause request congestion in front tiers. Both cases lead
to critical hardware resource under-utilization.

The CalculateMinAllocation procedure calculates a good al-
location of soft resources in other tiers based on the allocation
of soft resources in the critical server.

Figure 9 shows a sample HTTP request processing between
a Tomcat server and a C-JDBC server. TheRTT of the HTTP
request in the Tomcat server isT while the RTT of the
following two interactions between the Tomcat server and C-
JDBC server aret′

1
andt′

2
. Thus, there is a job in the Tomcat

server during the entire periodT while a job only resides in
the C-JDBC server during periodst′

1
and t′

2
. Because each

job in the Tomcat server needs to occupy one DB connection
to communicate with the C-JDBC server, the Tomcat server
needs to obtain at leastN0 ∗ T/(t

′

1
+ t′

2
) DB connections in

order to keepN0 jobs active the C-JDBC server.
In fact, the ratio of soft resource allocation between different

tiers can be calculated by combining Little’s law and the
Forced Flow Law [12].

L = TP ∗RTT (1)

TPtomcat = TPcjdbc/Reqratio (2)

The Reqratio denotes the average number of SQL queries
issued by one servlet request for each Tomcat server. Such a ra-

tio between different tiers depends on the characteristicsof the
workload. SupposeRTTratio meansRTTtomcat/RTTcjdbc,
by combining Formula(1) and Formula (2), one can obtain
the following Formula:

Ltomcat = Lcjdbc ∗ (RTTratio/Reqratio) (3)

Formula 3 shows that the soft resource allocation in the
Tomcat tier should be no less thanLtomcat. The soft resource
allocation in tiers behind the C-JDBC server should be no
less thanminJobs. The reason is to avoid request congestion
in front tiers, which leads to the critical hardware resource
under-utilization.

C. Validation of Algorithm

So far we have discussed our algorithm primarily in quali-
tative terms. Here we will show two case studies of applying
the algorithm to find a good allocation of soft resources for
all tiers in the system.

Table I shows the result of applying the algorithm to our
previous two cases 1/2/1/2 and 1/4/1/4. We can see that the
critical hardware resource is Tomcat CPU under configuration
1/2/1/2 while it is C-JDBC CPU under 1/4/1/4 configuration.
In the second procedure of the algorithm, we get the response
time, throughput, average # of jobs for each individual server
under the saturation workload. The third procedure of the
algorithm calculates the minimum size of thread/conn pools
for tiers other than the critical tier, which is shown in the last
two rows of the table. We have to point out that we turned
on the logging function of each server in order to get the
corresponding average response time and throughput, which
degrades the system maximum throughput to about 10%-20%.

1) Validation of 1/2/1/2 case:Table I shows that the optimal
size of one Tomcat thread pool under 1/2/1/2 configuration
is 13. This value matches the result in Figure 10(a), which
shows the maximum throughput the system can achieve with
increasing Tomcat thread pool size from 6 to 200. In this set
of experiments we fixed the size of Apache thread pool and
Tomcat DB connecting pool to a relatively large value. The
purpose is to keep enough concurrent requests flowing through
the Tomcat tier when the size of Tomcat thread pool increases.

2) Validation of 1/4/1/4 case:Table I shows that the optimal
size of one C-JDBC thread pool under 1/2/1/2 configuration
is 8. However, there is no explicit thread pool in the C-JDBC
server in practice; the one-to-one mapping between Tomcat
database connection pool and C-JDBC request handling thread
means that we control the maximum number of C-JDBC
threads by setting the Tomcat database connection pool size.

Table I shows that the minimum size of each Tomcat DB
connection pool is 8 (the total size is 32 since there are 4 Tom-
cat servers). In fact 8 should be the optimal allocation because
we don’t want to over-utilize C-JDBC CPU. Figure 10(b)
shows the maximum throughput the system can achieve with
increasing size of each Tomcat DB connection pool from 1
to 200. We can see that the system can achieve the highest
throughput when the Tomcat DB pool size is 8, which matches
the output of our algorithm.

Hardware Configuration
1/2/1/2 1/4/1/4

Apache Tomcat CJDBC MySQL Apache Tomcat CJDBC MySQL

Critical hardware resource CPU CPU
Saturation WL [# Users] 5,800 6,200
RTT [s] 0.137 0.0351 0.147 0.0378 0.0082
TP [Reqs/s] 740 740 847 847 2728
Average # of jobs inside 101.3 26 124.5 32 22.4
Reqratio 1 1 3.22 3.22 1 1 3.22 3.22
Size of total threads/conns 101 26 26 26 125 32 22 22
Size of individual thread/conn pool 101 13 (×2) 26 13 (×2) 125 8 (×4) 22 6 (×4)

TABLE I: Output of the algorithm for hardware configuration 1/2/1/2 and 1/4/1/4

6 8 10 13 20 30 60 100 150 200
730

740

750

760

770

780

790

800

810

820

830

Thread pool size in one Tomcat [#]

M
ax

 th
ro

ug
hp

ut
 [R

eq
s/s

]

1/2/1/2(400−#−200)

(a) Max TP vs. size of thread pool in Tomcat

1 2 4 8 10 20 30 60 100 200
550

600

650

700

750

800

850

900

950

1000

1050

DB conn pool size in one Tomcat [#]

M
ax

 th
ro

ug
hp

ut
 [R

eq
s/

s]

1/4/1/4(400−200−#)

(b) Max TP vs. size of DBconn pool in Tomcat

Fig. 10: Validation of the optimal soft resource allocation for hardware configuration 1/2/1/2 and 1/4/1/4

V. RELATED WORK

Multi-threaded architecture is widely adopted as standard
design for internet servers such as Apache, Tomcat, and
Knot [13] due to its simple and natural programming style.
Some other works [14]–[16] advocate that a good design
for high concurrency servers should follow a Staged Event-
Driven Architecture (SEDA), which integrates both threads
and events. No matter which design an internet server adopts,
the allocation of soft resources such as threads plays an
important role for the control of concurrency in the request
processing and has a significant impact on overall perfor-
mance [13], [16], [17]. To the best of our knowledge, previous
works mainly focus on the performance impact of thread
allocation for a single web server, which serves requests only
for static content. More complex web applications such as
n-tier applications, which involve web servers, application
servers, and DB servers are not discussed. As shown in our
paper, soft resource allocation impacts the performance of
complex n-tier systems in a more intricate and subtle way.

Previous work on soft resource allocation can be classi-
fied based on three main approaches—analytical model-based
approach, feedback control-based approach, and experimental-
based approach.

Analytical model based approacheshave been used to find
the optimal soft resource allocation for Internet servers [4],
[18]. These approaches employ an analytical queuing model
to simulate different scenarios. The model is meant to capture
significant performance differences based on the variationof
workload, concurrency limits, or QoS requirements. Though
these analytical models have been shown to work well for
particular domains, they are typically hard to generalize.More-
over, analytical models are constrained by rigid assumptions

such as normal service times and disregard of multi-threading
overhead such as context switching or JVM GC.

Feedback-control approaches[19]–[21] have been applied
to optimize soft resource allocation or hardware provisioning
during run-time. The feedback is generated based on a given
SLA specification such as response time limit or resource
utilization boundaries. However, feedback-control approaches
are crucially dependent on system operators choosing correct
control parameters and defining correct reconciliation actions.
As shown in our paper, determining suitable parameters of
control is a highly challenging task. Applying correct actions
when system performance starts to deteriorate is similarly
complicated due to the threat of over-allocation and under-
allocation of soft resources.

Experimental based approachesfor optimal soft resource
allocation are evidently closest to our study. Sopitkamol et
al. provide an ad-hoc experimental methodology to identify
key configuration parameters that impact application server
performance [22]. Raghavachari et al. present an experimental
methodology, which explores the configuration space of an
application server and finds the optimal configuration of the
application server based on linear regression techniques [23].
Osogami et al. present an algorithm to reduce the measurement
time for exploring a large configuration space and find a
near optimal configuration of a web server [24]. Zheng et al.
introduce an interesting framework to automate the generation
of configurations of clusters of web servers based on a
parameter dependency graph [25]. However, most of these
experimental based approaches lack a deep understanding of
the dependencies among soft and hardware resources and their
implications for system performance. In contrast, our work
clearly shows that optimal soft resource allocation is closely
related to the weakest hardware resource in the system.

VI. CONCLUSIONS

We studied the performance impact as a function of soft re-
sources allocation. Impact was measured and quantified using
the n-tier benchmark RUBBoS. We found several situations
where an inappropriate allocation of soft resources can lead
to significant degradation in goodput (requests within SLA
bound) at high concurrency levels. Close to system saturation,
choosing an appropriate soft resource allocation to achieve
good performance is a non-trivial problem. Too low and too
high allocations may both cause performance degradation.
On the one side, if the thread pool allocation is too low,
goodput may drop by several tens of percent (Section III-A
and Section III-C). On the other side, too high allocations
also cause the goodput to drop by several tens of percent
(Section III-B). To avoid such performance penalties, we
described a soft resource allocation algorithm.

In this study, we found similarities and differences between
soft resources and hardware resources when the system ap-
proaches saturation. Similar to hardware resources, the system
needs sufficient soft resources to reach top performance. Ifa
soft resource allocation is too low, it may become a bottleneck
due to scarcity. This kind of soft resource saturation can be
detected analogously to hardware resource saturation. In other
words, the soft resource bottleneck reaches full utilization
while other resources are only partially utilized.

Unlike hardware resources, which do not consume other
resources when idle, soft resources may compete for shared re-
sources such as CPU whether they are being used or not. In our
experiments, when the size of thread pool reaches hundreds,it
increases JVM garbage collection overhead significantly (up
to 9% of total CPU). This overhead reduces the total CPU
available for application processing, and too-high threadpool
size reduces the maximum achievable goodput as mentioned
above when the CPU approaches full utilization. More gener-
ally, for complex application scale-up soft resources haveto
become first class citizens (analogous to hardware) during the
performance evaluation phase.

ACKNOWLEDGMENT

This research has been partially funded by National Science
Foundation by IUCRC, CyberTrust, CISE/CRI, and NetSE
programs, National Institutes of Health grant U54 RR 024380-
01, PHS Grant (UL1 RR025008, KL2 RR025009 or TL1
RR025010) from the Clinical and Translational Science Award
program, National Center for Research Resources, and gifts,
grants, or contracts from Wipro Technologies, Fujitsu Labs,
Amazon Web Services in Education program, and Georgia
Tech Foundation through the John P. Imlay, Jr. Chair endow-
ment. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National
Science Foundation or other funding agencies and companies
mentioned above.

REFERENCES

[1] S. Malkowski, M. Hedwig, D. Jayasinghe, C. Pu, and D. Neumann,
“Cloudxplor: a tool for configuration planning in clouds based on
empirical data,” inSAC ’10: Proc. of the 2010 ACM Symposium on
Applied Computing, New York, USA, 2010.

[2] G. Jung, K. R. Joshi, M. A. Hiltunen, R. D. Schlichting, and C. Pu,
“A cost-sensitive adaptation engine for server consolidation of multitier
applications,” inMiddleware ’09, New York, USA, 2009.

[3] RUBBoS: Bulletin board benchmark. http://jmob.ow2.org/rubbos.html.
[4] K. Aberer, T. Risse, and A. Wombacher, “Configuration of distributed

message converter systems using performance modeling,” inIPCCC ’01:
Proc. of 20th International Performance, Computation and Communi-
cation Conference, 2001.

[5] A. Deshmeh, J. Machina, and A. Sodan, “Adept scalability predictor in
support of adaptive resource allocation,” inIPDPS ’10: IEEE Interna-
tional Parallel and Distributed Processing Symposium, apr. 2010.

[6] E. C. Julie, J. Marguerite, and W. Zwaenepoel, “C-jdbc: Flexible
database clustering middleware,” inIn Proc. of the USENIX 2004 Annual
Technical Conference, 2004.

[7] Emulab–Network Emulation Testbed. http://www.emulab.net/.
[8] A. R. Library, The Performance of Web Applications: Customers are

Won or Lost in One Second. http://www.aberdeen.com/.
[9] S. Malkowski, M. Hedwig, and C. Pu, “Experimental evaluation of n-

tier systems: Observation and analysis of multi-bottlenecks,” in IISWC
’09, Washington, DC, USA, 2009.

[10] Tuning Garbage Collection with the Java[tm] Virtual Machine.
http://java.sun.com/docs/hotspot/gc5.0/gctun-ing 5.

[11] S. Malkowski, M. Hedwig, J. Parekh, C. Pu, and A. Sahai, “Bottleneck
detection using statistical intervention analysis,” inDSOM’07: Proc. of
the Distributed systems: operations and management, Berlin, Heidel-
berg, 2007.

[12] P. J. Denning and J. P. Buzen, “The operational analysisof queueing
network models,”ACM Comput. Surv., vol. 10, no. 3, 1978.

[13] R. von Behren, J. Condit, F. Zhou, G. C. Necula, and E. Brewer,
“Capriccio: scalable threads for internet services,” inSOSP ’03, New
York, USA, 2003.

[14] M. Welsh, D. Culler, and E. Brewer, “SEDA: an architecture for well-
conditioned, scalable internet services,”SOSP ’01, pp. 230–243, 2001.

[15] D. Pariag, T. Brecht, A. Harji, P. Buhr, A. Shukla, and D.R. Cheriton,
“Comparing the performance of web server architectures,”In Proc.
EuroSys ’07, 2007.

[16] V. Beltran, J. Torres, and E. Ayguade, “Understanding tuning complexity
in multithreaded and hybrid web servers,” inIPDPS’08: IEEE Interna-
tional Parallel and Distributed Processing Symposium, 2008.

[17] H. Jamjoom, C.-T. Chou, and K. Shin, “The impact of concurrency
gains on the analysis and control of multi-threaded internetservices,” in
INFOCOM ’04, 2004.

[18] G. Franks, D. Petriu, M. Woodside, J. Xu, and P. Tregunno, “Layered
bottlenecks and their mitigation,” inQEST ’06: Proc. of the 3rd
international conference on the Quantitative Evaluation of Systems,
Washington, DC, USA, 2006.

[19] Y. Diao, J. Hellerstein, A. Storm, M. Surendra, S. Lightstone, S. Parekh,
and C. Garcia-Arellano, “Using mimo linear control for load balancing
in computing systems,” inAmerican Control Conference ’04, 2004.

[20] X. Liu, L. Sha, Y. Diao, S. Froehlich, J. L. Hellerstein,and S. Parekh,
“Online response time optimization of apache web server,” inIWQoS’03:
Proc. of the 11th international conference on Quality of service, Berlin,
Heidelberg, 2003.

[21] D. Olshefski and J. Nieh, “Understanding the management of client
perceived response time,” inSIGMETRICS ’06/Performance ’06, New
York, NY, USA, 2006.

[22] M. Sopitkamol and D. Menascé, “A method for evaluating the impact
of software configuration parameters on e-commerce sites,” inProc. of
the 5th international workshop on Software and performance, 2005.

[23] M. Raghavachari, D. Reimer, and R. Johnson, “The Deployer’s Problem:
Configuring Application Servers for Performance and Reliability,” 2003.

[24] T. Osogami and S. Kato, “Optimizing system configurationsquickly by
guessing at the performance,” inSIGMETRICS ’07, NY, USA, 2007.

[25] W. Zheng, R. Bianchini, and T. D. Nguyen, “Automatic configuration
of internet services,” inEuroSys ’07, Lisbon, Portugal, 2007.

