The Impact of Soft Resource Allocation on
n-Tier Application Scalability

Qingyang Wang, Simon Malkowski, Deepal Jayasinghe,Yasuhiko Kanemasa, Motoyuki Kawaba, Lilian Harada

Pengcheng Xiong, Calton Pu Research Center for Cloud Computing
College of Computing Fujitsu Laboratories Ltd
Georgia Institute of Technology Kawasaki, Japan
Atlanta, USA {kanemasa, kawaba, harada.liff@jp.fujitsu.com

{qywang, zmon, deepal, pxiong3, cal}@cc.gatech.edu

Abstract—Good performance and efficiency, in terms of high time. At the hardware level, intelligent mappings of resmsr
quality of service and resource utilization for example, are have been previously studied as offline configuration plahs [
important goals in a cloud environment. Through extensive and dynamic adaptation policies for run-time adjustmen}s [

measurements of an n-tier application benchmark (RUBBo0S), we In thi how that achievi fficient utilizatid
show that overall system performance is surprisingly sensitive n this paper, we show that achieving efnicient utilizatian o

to appropriate allocation of soft resources (e.g., server thred cloud resources when running large scale n-tier applicatio
pool size). Inappropriate soft resource allocation can quickly requires a unified exploration of each system layer, inclgdi
degrade overall application performance significantly. Concretely poth hardware and software. This is primarily due to the com-
both under-allocation and over-allocation of thread pool can plex dependencies among software and hardware resources

lead to bottlenecks in other resources because of non-trivial h tier. C tel devel d tools t iter th
dependencies. We have observed some non-obvious phenomen]:a(Om each tier. Loncretely, we developed tools to moniter

due to these correlated bottlenecks. For instance, the number Usage of soft resources such as application server threzd po
of threads in the Apache web server can limit the total useful and its database (DB) connection pool. Then we analyzed
th_roughput, causing the CPU utilization of @he C-JDBC clusteri_ng the relationship among throughput, response time, haewar
middleware to decrease as the workload increases. We provide aresource usage (CPU, memory, 1/0), and soft resource usage

practical iterative solution approach to this challenge through . . .
an algorithmic combination of operational queuing laws and (thread/DB connection pool) by changing the size of each

measurement data. Our results show that soft resource allocatio thread/DB connection pool in web and application servers.
plays a central role in the performance scalability of complex The first contribution of the paper is a quantitative evalua-

systems such as n-tier applications in cloud environments. tion (based on measurements of the RUBB0S benchmark [3])
Keywords-bottleneck, configuration, n-tier, parallel processing, analyzing the impact of soft resource allocation on appibca
scalability, and soft resource performance for given hardware configurations. For insanc
we show that sub-optimal allocation of soft resources sch a
|. INTRODUCTION application server thread pool and its database connegotioh

One of the major advantages of consolidated data centeas easily degrade the application performance between 28%
and cloud environments is scalability: the ability to allee and 90%, depending on the SLA specifications (see Figure 2).
more resources to an application if needed. For occasionallhe second contribution of the paper is an impact analysis
users that run an application only a few times, scalabilityf two naive soft resource allocation strategies. On one,sid
often compensates for lack of efficiency since achievindnhiga conservative (low) allocation of soft resources (e.ga to
utilization rates is unimportant for them. However, for don small thread pool) often creates software bottleneckslitinitt
term users who run their applications often or continuoustwerall system throughput, even though no hardware ressurc
(e.g., in electronic commerce), a high level of utilizatiand are saturated. On the other side, a liberal (high) allopatio
low operational costs are important requirements. Otrerwi of soft resources often wastes hardware resources such as
high operational costs due to inefficiencies in a cloud dyickCPU and memory. This degrades application performance at
outweigh the savings from avoiding the capital expenditufeégh utilization levels. For example, in our experimentsala
of setting up a dedicated cluster. Therefore, a shared clodidtual Machine (JVM) garbage collection can consume up
environment needs both scalability and efficient utili@ati to 9% of CPU when the number of threads reaches several

Efficient utilization of cloud resources requires inteflig hundreds, reducing the achievable throughput (and lengtbe

mapping of system resources to applications that need thdéhe response time) when CPU is near saturation.
This is a significant challenge since internet-scale apptios The third contribution of the paper is a practical algo-
often have elastic workloads with peak load several times thithm for the allocation of soft resources. Our measuresient
steady state. In addition, such applications also haveitQudl show that an optimal allocation (within our data set) for
Service (QoS) requirements, often stated in terms of Serviene hardware configuration is often sub-optimal for other
Level Agreement (SLA) guarantees such as bounded respohaedware configurations. Consequently, static rule-ofvth

allocations will be almost always sub-optimal in the presen components, hardware node, and a sample network topology
of volatile workloads. Our adaptive algorithm for the propeused in our experiments.
soft resource allocation is analogous and complementary toThe RUBB0S benchmark application can be implemented as
adaptive hardware resource configuration algorithms [#1] [5 three-tier (web server, application server, and databarseg

In general, our results strongly suggest that in studies on four-tier (addition of clustering middleware such as C-
the efficient utilization of clouds, soft resources shoukl bJDBC [6]) system. The workload consists of 24 different
considered integral components in determining overalliappinteractions such as “view story”. The benchmark includes
cation performance due to the dependencies linking haelwawo kinds of workload modes: browsing-only and read/write
and software resources. In fact, complex applications cdyn ointeraction mixes. In our experiments each experiment tria
become truly scalable if soft resources are treated as fass$ ¢ consists of an 8 minute ramp-up, a 12-minute runtime, and a
citizens (analogous to hardware resources) during theipeh 30-second ramp-down. Performance measurements (e.g., CPU
component analysis of the overall system performance. utilization) are taken during the runtime period using SgsS

The rest of the paper is organized as follows. Section &k one second granularity. We use the functionality pravide
describes the impact of soft resource allocation on apica by JVM to monitor thread status in Java applications. To
performance. Section Ill summarizes the utilization aehie conveniently monitor the utilization of the DB connection
by various allocation strategies through measured resifts pool, we made slight changes to the RUBBoS benchmark:
explanations. Section IV describes our proposed allogatiall serviets share a global DB connection pool instead of
algorithm in detail. Section V summarizes related work andgsing an individual connection pool for each servlet. We als

Section VI concludes the paper. modified Apache server source code to record its detailed
internal processing time.
[I. BACKGROUND AND MOTIVATION The experiments used in this paper were run in the Emulab

testbed [7]. Figure 1(b) contains a summary of the hardware
used in our experiments. The experiments were carried out
1) Soft Resources in n-Tier Systentsardware resources py allocating a dedicated physical node to each server. We
such as CPU, memory, disk, and network are well defingde a four-digit notation W /# A/#C/#D to denote the
components in performance evaluation studies. We use th@mber of web servers, application servers, clustering- mid
term soft resourcedo refer to system software componentgieware servers, and database servers. A sample topology of
that use hardware or synchronize the use of hardware. beriments with two clients, one web server, two applicati
example threadsuse CPU and’CP connectionsise network servers, one clustering middleware server, two databagerse
I/0. Expanding this definition, we also use the term soft.e., 1/2/1/2) is shown in Figure 1(c). In our experiments,
resources to refer to components that use (or synchron&e ffcus on how the allocation of soft resources such as threads
use of) soft resources as well as a combination of hardwagd DB connections affects n-tier system performance. Thus
and soft resources. For example, various locks synchronige change the allocation of those soft resources by changing
the access to shared data structures or resources. Usum%ad p00| size in Apache servers, the thread p00| and DB
soft resources are created to facilitate the sharing ofwenel connection pool size in Tomcat servers. For each hardware
resources in order to increase hardware utilization. Famex provisioning #W/#A/#C/#D, we use #p-#Ap-#Aq to
ple, threads facilitate multiprogramming to achieve a Bighrepresent the thread pool size in web server, the thread pool
utilization of the CPU. Consequently, soft resources at&al size in application server, and the DB connection pool size
path components that contribute to determining the level pf application server. For example, the hardware proviepn
hardware resource utilization achievable in the system. can be 1/2/1/2. The corresponding soft resource allocation
In this paper, we study the role of soft resources in determigiy--#A-#A- can be 200-100-100, which means the thread
ing n-tier application performance. The identification ofts pool size in a web server, the thread pool size and the DB
resources as explicit components in the critical path ofesys connection pool size in each application server is 200, 100,
execution is due to the long invocation chain of request®0, respectively. The allocation of other soft resources a
in an n-tier system. Requests that originate from a cliefiked in order to limit the exponential experiment space.
machine arrive at the web server, which distributes it amomegarding the configuration of Apache, we chose worker
the application servers, which in turn ask the databaseserwIPM as its multi processing module. It should be mentioned
to carry out the query. The dependencies among the servgist we turned off the keepAlive function because RUBB0S
are in the critical path and maintained by soft resources. workload only has a few consecutive http requests.
2) Experimental EnvironmentVe run an n-tier benchmark . -
(RUBBO0S) on our private cluster testbed. We summarize the Performance Requirements Specified by SLA
benchmark and experimental testbed in this section. In applications such as e-commerce, response time of re-
RUBBOS is a standard n-tier benchmark based on bulletjuests is critical for users. According to Aberdeen’s Jub@82
board applications such as Slashdot. RUBBO0S has been widedport [8], response time longer than 5 seconds would likely
used in numerous research efforts due to its real productiorake 10% of potential customers navigate away. In this case,
system significance. Figure 1 outlines the choices of sofiwaonly requests with a fast response time have positive intpact

A. Background Information

Function Software | ‘Hardware Components
Web Server Apache 2.0.54
Application Server |Apache Tomcat 5.5.17 Server type PC3000 in Emulab
Cluster middleware |[C-JDBC 2.0.2 Processor Xeon 3GHz 64-bit
Database server MySQL 5.0.51a
Sun JDK jdk1.6.0 14 Memory 2GB
Operating system Redhat FC4 Network lepS

Kernel 2.6.12
System monitor Systat 7.0.2 Disk 2x146GB I0,000rpm

(a) Software setup

(b) Hardware node setup

sssss

Clients

Cluster-
middleware

App
Servers

(c) Sample topology

Fig. 1: Details of the experimental setup on the Emulab cluster

service providers’ business. In shared infrastructureh @s illustrate the importance of the problem. The explanatioitis
cloud environments, service level agreements (SLAS) ame cobe described in Section Il
monly used for specifying desirable response times, tylgica 1) Impact of Under-AllocationFigures 2(a), 2(b), and 2(c)
in the one to two seconds range. The SLA document usualgmpare the goodput of the same hardware configuration
contains the service provider's revenue model, determgittie (1/2/1/2) and two different soft resource allocations AG0-
earnings of the provider for SLA compliance (when requesd and 400-6-6). The range of workload chosen (5000 to 6800)
response times are within the limit) as well as the penaltieaptures the knee when the overall throughput curve stops
in case of failure (when response times exceed the limigrowing. All three figures show that the goodput of 400-6-6
The provider’s revenue is the sum of all earnings minus altarts to decrease (before 5000) much earlier than the case
penalties. 400-150-60 (after 5600). An analysis of hardware resource
Different service providers may have different SLA modelsytilization (omitted due to space constraints) shows that n
which would result in different conclusions from a perforhardware resources are saturated in the 400-6-6 case. This
mance evaluation based on the system resource monitoraogfirms that the soft resource allocation of applicatiowese
data. A generic SLA model has been studied in our previonause the bottleneck (6-6 thread pool and DB connection
work [1]. In this paper we use a simplified SLA modepool).
to illustrate the revenue tradeoffs between throughput andAn experienced reader may immediately question the wis-
response time (i.e., the system performance). Even with tliom of attempting the 400-6-6 allocation, which appears to
simplified model, our results clearly show that increasinge an “obviously low” number compared to the 400-150-60
throughput (and utilization) without other consideratideads “intuitive” choice of practitioners. As it happens, theusition
to significant drops in provider revenue through high resgonis more complex than it appears. Section [I-C2 will show that
times. A detailed study of the influence of different revenuel00-6-6 allocation is near optimal for hardware configunati
based SLA models is beyond the scope of this paper anq1#4/1/4). The reasons for these differences will be exgldi
the subject of our future research. in Section Il
For our simplified SLA model we set a single threshold for Applying the simplified SLA model, the three graphs show
the response time of requests (e.g., 1 second). Requests Wit magnitude of the goodput difference between the two
response time equal or below the threshold satisfy the SL#oft resource allocations. At the workload of 6000 users, th
We call the throughput of these requegtsodput Requests goodput of 400-150-60 allocation is about 28% higher than
with response time higher than the threshold violate the ,SL#ke 400-6-6 allocation under the threshold of 2 seconds, 44%
and the throughput of these requests is called badput. Vée nioigher under the 1-second threshold, and 93% higher under
that the sum of goodput and badput amounts to the traditiotlaé half-second threshold. Therefore, for the same overall
definition of throughput. throughput there may be a significant difference in goodput,
A classic performance model that only considers thdepending on the SLA requirements.
throughput as a whole may be appropriate for a batch-odente 2) Impact of Over-Allocation:Figures 3(a) and 3(b) show
workloads. However, for interactive applications such as the performance degradation of the same thread pool alloca-
commerce the situation is more complex because the respotises of Section 11-C1 for the 1/4/1/4 hardware configuratio
time increases significantly when a system resource reaché figures show a crossover point. Before the crossover, 400
full utilization. By refining our throughput model to consid 150-60 has better performance due to better hardware @sour
both goodput and badput, we are able to quantify usaurtilization achieved. After the crossover, 400-6-6 is dettue
perceived response time, which yields a more realisticigesv to smaller CPU consumption of the smaller thread pool. This
revenue analysis. will be explained better in Section Ill. It may be unexpected
]] o that Figure 3 shows the non-intuitive choice of 400-6-6 is
C. Degradation with Simplified SLA Model better when nearing saturation, which is just the opposdite o
In this section, we apply the simplified SLA model to showrigure 2.
the magnitude of performance variations when soft resourceln fact the performance difference between 400-6-6 and
allocations are inappropriate. The goal of this sectionois #00-150-60 showed in Figures 3(a) and 3(b) can be much

800 800 800

700 700 700

28% Diff
44% Diff

o
S
S
o
=]
S
o
S
S

93% Diff

Goodput [Reqgs/s]
8 3
8 8
Goodput [Reqs/s]
2
8

Goodput [Reqs/s]
3
8

N
k=
S
I
k=
S

w
S
S
w
o
S
w
S
S

—©-1/2/1/2(400-6-6) —©-1/2/1/2(400-6-6) —©-1/2/1/2(400-6-6)

——1/2/1/2(400-150-60) ——1/2/1/2(400—150-60) ——1/2/1/2(400-150-60)
2005000 5200 5400 5600 5800 6000 6200 6400 6600 6800 20075500 5200 5400 5600 5800 6000 6200 6400 6600 6800 2005000 5200 5400 5600 5800 6000 6200 6400 6600 6800
Workload [# Users] Workload [# Users] Workload [# Users]
(a) Threshold 500ms (b) Threshold 1s (c) Threshold 2s

Fig. 2: The goodput comparison of the same software source allocationtn these figures, each line represents the performance
of a specific combination of hardware configuration and soft resorce allocation. The first set of four numbers separated by dash,
denotes hardware configuration. For example, 1/2/1/2 means one lwserver (apache), two application servers (tomcat), one datase
clustering middleware (C-JDBC), and two database servers (MySQ). The following set of 3 numbers, separated by hyphens, denae
software configuration. For example, 400-150-60 refers to theize of thread pool (400) in one web server, the size of thread ploo
(150) in one application server, and the size of DB connection poob@) in the same application server. This setting (400-150-60) is
considered a good choice by practitioners from industry

1000 1000 900 T T T T T T T T
Il 1/4/1/4(400-6-6)
900 900 8oor [_11/4/1/4(400-150-60)| |

7 16% Diff

15% Diff /

/
Crossover
700 Point

/

/
Crossover
600 Point

37% Diff

Goodput [Reqs/s]
Goodput [Reqs/s]
Throughput [Reqs/s]

—©-1/4/1/4(400—-6-6) -©-1/4/1/4(400-6-6)
—*—1/4/1/4(400—150-60) —*—1/4/1/4(400—150-60)

6000 6200 6400 6600 6800 7000 7200 7400 7600 7800 6000 6200 6400 6600 6800 7000 7200 7400 7600 7800 010021 0.20410.4.0.6106,08] (081] [1,15] [152] >2
Workload [# Users] Workload [# Users] Response time [s]

(a) Threshold 500ms (b) Threshold 1s (c) RT distribution under WL 7000

Fig. 3: Performance degradation due to over-allocation of thread pool vth 1/4/1/4 hardware configuration

more significant when a detailed response time analysisaisiple of differences, when unused soft resources consume
applied. For example, as shown in 3(c), the 400-6-6 allonatitoo much of another critical resource (e.g., CPU), causing
has 130% higher goodput than the case 400-150-60 using he overall performance to decay. This is a problem solvable
seconds as a threshold. by reducing the unused soft resource capacity, which reduce

In general, SLA models correlate economic goals witthe consumption of the critical resource and improves divera
technical performance data to derive intuitive domainghts goodput. Section 1lI-C shows another interesting example o
at the real quality of services provided by service prossdér similarities; hardware resources can be under-utilizeddny-
order to facilitate our discussion with our experimentalules, obvious low soft resource allocation in front tiers. In fase
unless stated otherwise, we apply the simplified SLA modshow that high allocation of soft resources in front tiertsac
with 2-second threshold (a commonly used value for mamg a buffer that stabilizes bursty request flows and provides
web applications) in the application performance evatuti more even workload distribution to the back-end.

In the following Section 11l we will explain the reasons for
the different performance results shown so far. A. Analysis of Soft Resource Under-Allocation

The first naive soft resource allocation strategy we comside
is straight-forward resource minimization, i.e., choosarell
capacity to not overload the system. Although this strategy

In this section we analyze the influence of soft resourerinimizes the overhead incurred by soft resources, it may
allocation on the overall application performance in termsgnificantly hamper workload propagation. When there are
of measured goodput. We observe some similarities atab few units of a soft resource, they become a bottleneck
differences between soft resources and hardware resoureasl the situation is analogous to the saturation of hardware
Section I1l-A describes an example of similarities, whearse resources. A soft resource bottleneck may cause the rds¢ of t
soft resources become the system bottleneck. This is agmobkystem (e.g., all hardware resources) to become undéezetil
solvable by adding more soft resource capacity, analogagensequently, adding more hardware does not improve dveral
to scarce hardware resources. Section IlI-B describes an pgrformance (e.g., throughput).

I11. SENSITIVITY ANALYSIS OF SOFT RESOURCE
ALLOCATION STRATEGIES

950
900 -&-400-6—-200
—£—-400-10-200 0.1 0.1
.. 0. .
8501 -=400-20-200 =
— oo ~*=400-200-200 | _ _ . g ..
5 - =
a3 o= - o
S 750 >
L7 >
==)
= 700 3 ..‘l', I’
5 g
2 < \..
g 650 8 <SG N,
<] <] == [[
3 2 S————~NI ~,
O 600 - S 2§§§§§§§§§§§%§§Mﬂﬂl *§§§‘§§§&$§aé§=u...
o = haa————-==
° = — =S~
550 T~ s _ S
oo S0 e 100 =
500 SS =SS
450 §§§§§§§ i§$§§§,
5000 5200 5400 5600 5800 6000 6200 6400 6600 6800 6800 0 : - .
Workload [# Users] # Users ThreadPool util [%)] # Users ThreadPool util [%)]
(a) Goodput (b) Threadpool util 400-6-200 (c) Threadpool util 400-10-200

100

o
[N
o
[N

951

90r

0.0

Wz
~6-400-6-200 | | 0
~£-400-10-200 || 5000

- 400-20-200
—+—-400-200-200
70 25

5000 5200 5400 5600 5800 6000 6200 6400 6600 6800
Workload [# Users] #Users 6800 0 ThreadPool util [%] #Users 6800 0 ThreadPool util [%]

(d) CPU utilization of the first Tomcat (e) Threadpool util 400-20-200 (f) Threadpool util 400-200-200

85r

80r

CPU utilization [%)]

751

Fig. 4: Performance degradation due to under-allocation of thread poolwith 1/2/1/2 hardware configuration

We use the thread pool in Tomcat to illustrate the problem ofsource utilization scenario more precisely [9]. Figut€s),
under-allocation of soft resources. The experiments de=itr 4(c), 4(e), and 4(f) show for which thread pool sizes this
here have fixed numbers of threads in the Apache sengaft resource becomes the system bottleneck. The analysis
(400), and the number of DB connections is fixed to 200 iof the figures shows that thread pool size 6 saturates before
Tomcat servers. Therefore, these soft resources nevemgecthe workload of 5000. In contrast, pool size 10 saturates at
the system bottlenecks. The only degree of freedom in theout 5600, and pool size 20 saturates at about 6000. We note
experiments is the size of the Tomcat thread pool, rangitigat the system performance symptoms of thread pool under-
between 6 to 200 threads. The hardware configuration adocation are similar to the symptoms of hardware resource
chosen as 1/2/1/2. Figure 4(a) shows the goodput of inergassaturation. Hence, it is necessary to monitor the thread poo
allocations of threads in Tomcat. The goodput increases w@dlization along with hardware resource utilization inder
the size of the thread pool increases from 6 to 20. Faw find this particular bottleneck. If only hardware utilizas
example, at a workload of 6000, the goodput of the 400-2@:,ere monitored, this bottleneck would remain hidden bdneat
200 configuration is about 40% higher than the goodput dfe underutilized hardware resources.
the 400-6-200 configuration. This is due to the better oVeral Figure 4(a) and 4(d) show another interesting phenomenon:
hardware resource utilization achieved by 20 threads. the highest goodput achieved by the thread pool size of 200 is

Figure 4(d) shows the average CPU usage of the filpver tha}n the goodput achieved py thr(_aad poql size 20. This
Tomcat server. Note that given the load balancing providé’@ser\{at'on shows that monotonlcally increasing the th.rea
by the Apache web server, all the Tomcat servers have simifg°! Size eventually leads to sub-optimal allocations sTibi
behavior. Thus, it suffices to show a single representataply example of _dlfferences between soft resources _and herdwa
for this tier. The small thread pool size shows a correspandi€SOUrces, which are the subject of the next section.
lower CPU utilization. For example, at workload 6000, thg. Over-Allocation of Soft Resources
Tomcat CPU utilization of configuration 400-6-200 is about e gecond naive soft resource allocation strategy we con-
82% while the utilization excgeds 95% for_conf|gurat|ons40gider is straight-forward resource maximization, i.eo@$e a
20-200 and 400-200-200. It is clear that in small thread poglye capacity to enable full hardware utilization systdinis
allocations all available threads in Tomcat are either ISy qiateqy clearly illustrates some of the differences betwaoft
cessing the existing requests or busy waiting for respawse f 4 hargware resources. Unlike hardware resources, which
the lower tier (i.e., C-JDBC server). Consequently, the @M .6t consume other resources when idle, soft resources
servers become idle and the throgghput cannot increase e?.{‘éfhally may consume other system resources (e.g., CPU and
when all hardware resources are idle. memory), regardless of whether they are being used or not.

We use a resource utilization density graph to analyze thissually, the maintenance costs of soft resources are anesid

1050 100 90
-& 400-200-6 [400—-200-6

1000 | —A—400-200—50 98 801" | [400-200-50 1

ssol| & 400-200-100 e 9 20l |[]400-200-100 o
= [L* 400-200-200} - O -el T o ol [C_]400-200-200 non |
A ’ g = 2ol
5 850 E 90 [S]
o El O 40t
B 800 5 88 s}
8 o 86 . 'E 301

750 © . -0 400-200-6

84 ° —£-400-200-50 |4 201
700 * @l o -5 400-200-100 | 10
*400-200-200)
650 6000 6200 6400 6600 6800 7000 7200 7400 7600 7800 80 6000 6200 6400 6600 6800 7000 7200 7400 7600 7800 o 6000 6200 6400 6600 6800 7000 7206 7406 7606 78067
Workload [# Users] Workload [# Users] Workload [# Users]
(a) SLA througput (b) CPU utilization in C-JDBC (c) Total time for JVM GC in C-JDBC

Fig. 5: Performance degradation due to over-allocation of DB connectiopool with 1/4/1/4 hardware configuration

small, so the maximization strategy is considered reagenabigure 5(c) shows the total time for JVM garbage collection
as long as there are no hardware bottlenecks in the systemn the C-JDBC server. During a 12-minute experiment, at
Our measurements show that when the system approacheskload 7800, the C-JDBC server's JVM garbage collector
saturation, over-allocation of soft resources can degeyde consumes nearly 70 seconds (9% of total) for the 400-200-
tem performance significantly. For a thread pool size @00 configuration, compared to less than 10 seconds (about
200, Figures 4(a) and 4(d) illustrate an example of suchl& of total) for the 400-200-6 configuration. Second, the
degradation. We keep the other parameters fixed and solé¥¥M uses a synchronous garbage collector and it waits during
vary the size of the database connection pool in the Tomdhe garbage collection period, only starting the processin
server (from 6 to 200) to illustrate the phenomenon. Wequests after the garbage collection is finished [10]. @aiay
note that in these experiments, each time the Tomcat sers@nificantly lengthens the pending query response time—an
establishes a connection to the C-JDBC server, which basangmportant component of the goodput.
the load among the database servers, a thread is created by C-)
JDBC to route the SQL query to a MySQL database servér. Buffering Effect of Soft Resource
The MySQL server also creates a thread for actual processingin this subsection we show that high allocation of soft
Consequently, one database connection implies one threaddsources in front tiers of an n-tier system sometimes is
the C-JDBC and one thread in MySQL server. necessary to achieve good performance. Unlike the over-
Figure 5(a) shows the system goodput for database connetitization case as introduced in Section 11I-B, high alition
tion pool sizes of 10, 50, 100, and 200 for a workload betweef soft resources in front tiers (e.g., Apache server) may
6000 to 7800. This figure show that the lowest allocation 400inction as a request buffer, which stabilizes the requssts
200-6 achieves the best performance. Under workload 78@®,the back-end tiers under high workload and improves the
the goodput of the 400-200-6 configuration is about 34%ystem performance.
higher than the throughput of the 400-200-200 configuration We use the thread pool in Apache server to illustrate the
Figure 5(b) shows the average CPU utilization of the C-JDBguiffering effect phenomenon. The experiments describeel he
server from workload 6000 to 7800. The highest goodpttve a fixed number of threads (6) and DB connections (200)
achieved by each configuration is shown in Figure 5(a). The Tomcat server. The size of the Apache thread pool is in-
goodput corresponds to about 95% of C-JDBC server CRigeased from 30 to 400. The hardware configuration is 1/4/1/4
utilization in Figure 5(b), which suggest that C-JDBC serveFigure 6(a) shows the system goodput for Apache thread pool
CPU is the system bottleneck. sizes of 30, 50, 100, 400 for a workload between 6000 and
A careful analysis of C-JDBC server CPU utilization showg800. The goodput increases as the allocation of threadi®in t
a super-linear increase for higher numbers of DB connestioApache server increases. Under workload 7800, the goodput o
in Tomcat as workload increases from 6000 to 7800. Ahe 400-6-100 configuration is 76% higher than the goodput of
workload 7800, the C-JDBC server CPU utilization of théhe 30-6-100 configuration. Intuitively, one may be misled t
400-200-6 configuration is the lowest while its goodput ibelieve that the latter example is an under-allocation @gen
the highest. After a wide range search of candidate systemalogous to the scenario in Section IlI-A. In other words, i
software components, we found that JVM garbage collectiappears that a small thread pool in the Apache server limits
played a major role degrading the C-JDBC server efficientiye number of concurrent requests going through the back-
as the number of DB connections in Tomcat servers increasedd tiers, which leads to hardware resource under-ufibzat
The JVM garbage collection process may affect the syslowever, the following two phenomena show that this scenari
tem goodput in two ways. First, since the C-JDBC servés, in fact, significantly more complex.
CPU is the primary bottleneck, the CPU time used by the First, Figure 6(b) shows that the C-JDBC CPU utilization
garbage collector cannot be used for request processing. datinuously decreases, in both the 30-6-100 and the 50-
measured the time used by the JVM garbage collector directlyl00 configurations after the workload exceeds a certain

100

-G -30-6—100
| | —2—50-6—100

-3 -100-6—100
* ' 400—6—100

*
=

Goodput [request/s]

400

o5

—A—50-6-100

-G -30-6-100 *

-&-100-6-100 *

90

CPU utilization [%]

O d

6000 6200 6400 6600 6800 7000

Workload [# Users]

(a) Goodput
Fig. 6: Performance degradation due

3500

3000 -

2500 -

N
=
]
S

1500 -

Number of requests

o
153
S

500 [~

[—# of processed requests |

7200

* - 400—6—100}
e 53 SRR

P R?!

T
© -0

To -y

7400 7600 7800

to small buffer of threads

70 L . L L L L L
6000 6200 6400 6600 6800 7000 7200 7400 7600 7800

Workload [# Users]

(o) CPU utilization of C-JDBC server

35

in Apacle server with 1/4/1/4 hardware configuration

35

— PT_total

30} —PT_connectingTomcat]

W
s}

Time [ms]

sl

150 E 3
107\/\/\[\/\/—/\/\/\/\[\/\/\/\/\/\/\/\} l

N
@

Mg

N
=}

Threads [#]
&

5r —Threads_active

— Threads_connectingTomcat

0
240 250 260 270

Timeline [s]

(a) Processed requests in one second

280 290 300

o)
240 250 260 280

270
Timeline [s]

(b) Response time

290 300 250 260 280

270
Timeline [s]

(c) Parallelism

290 300

3500 35

w
a

—PT_total
— PT_connectingTomcat

3000 - 1 301

W
o

N
3}

2500 -

N
1=}
15
S
N
=}

1500 [~

=
a

Number of requests
Time [ms]
Threads [#]

bl | 107\[\/\/\/\/\f/\,/\f\/\/\/\,-/"‘\«/\/\\/7 il
r 1 5r —Threads_active

— Threads_connectingTomcat]
260 280 290 300

500

[—# of processed requests |
260

0

L 0 L L "
240 250 280 290 300 240 260 280 290

270 270 270
Timeline [s] Timeline [s] Timeline [s]

(d) Processed requests in one second (e) Response time (f) Parallelism

Fig. 7: Performance degradation under high workload due to small buffer of threads in Apache server in 30-6-100 allocation.
Subfigures (a)—(c) show the results under workload 6000 while Stigures (d)—(f) under workload 7400.

point. In the case of 30-6-100, the CPU utilization of theerver is too small, even in the 30-6-100 configuration.
%"]DBC q serverklunczjer workloha}d 7b800 |s_abc;ut 10% lower 5 careful analysis of the Apache server runtime status
t an under workioa 6000. This 0 _servatlon 0€s not matgnows that both aforementioned phenomena are the result
the intuitively expected characteristic that growing Woad ¢ » 145 small request buffer (i.e., too low allocation of
implies monotonic growth of hardware resource utilization soft resources in the Apache server). Figure 7 shows the

Second, Figure 6(a) shows that 30 threads in the Apactigaracteristics of the Apache server with 30 threads under
server cause worse performance than 400 threads. We haverdokload 6000 and 7400 during one minute of the experiment
point out that the size of the thread pool in a Tomcat serverngntime. Figures 7(a) and 7(d) show the timeline graphs f th
fixed to 6 in all configurations, which means that the Apachmumber of requests that the Apache server processed during
server solely requires 24 threads for sending concurrent each second. Figures 7(b) and 7(e) show the average busy time
guests to the four Tomcat servers. Although each request sefna worker thread in Apache, and the average processing time
to a RUBBOS Servlet is followed by two consecutive requests HTTP contents. During processing time an Apache worker
for static content (e.g., image file RUBBdBgo.jpg), such thread is either occupying a Tomcat connection or waiting
requests can be handled by a small number of threads becdasebtain a Tomcat connection from the connection pool in
all small files with static content are cached in memorarder to interact with the lower tier. Figures 7(c) and 7(f)
Therefore, it is hard to believe that the thread pool in Agaclshow the total number of active worker threads and the number

3500 180 450
160 1 400 1
3000 -
o . \/\/\/\/\/\/\/_/\,_/\/—/\//—/\/\/\/\/\
., 2500 F
2 120 __ 300 1
g = R
g 2000 £, 1000 1 @ 250
ey @ I
% 1500 E 80r 9 200
38 = =]
B 60 150
Z 1000
40 q 100
500 1 20t —PT_total 50 —Threads_active
\ # of processed requests \ —PT_connectingTomcat| — Threads_connectingTomcat]
9 9

250 260 280 290 300

N
i
o

240 250 260 280 290 300 250 260 280 290 300

270 . 270 270
Timeline [s] Timeline [s] Timeline [s]

(a) Processed requests in one second (b) Response time (c) Parallelism

Fig. 8: Performance improvement due to large thread buffer in Apache sever in 400-6-100 allocation under workload 7400

of worker threads interacting or waiting to interact witreth IV. DETERMINING SOFT RESOURCEALLOCATIONS
Tomcat tier. The cause of the performance difference betwee |, the previous section, we showed that both under-

the two workloads becomes evident through the comparisgfiocation and over-allocation of soft-resources may eaus
of Figures 7(b) and 7(e). Under workload 7400, the averaggrformance degradation. In this section we will outline a

processing time of a worker thread has many significant peadgctical algorithm to choose a “Goldilocks” soft resource
even though the actual average time spend in an interactigication for each hardware configuration.

state that requires a Tomcat connection is largely simdar t

the 6000 workload scenario. Although an Apache workéy Challenges of Soft Resource Allocation

thread needs to perform some additional tasks apart fromThe discussion so far can be summarized as following.
processing HTTP contents (e.g., maintain TCP connection¥po-low soft resource allocations may cause under-utitiza
these additional task generally only take a short time undefr other resources. Too-high soft resource allocations may
low workload. Under workload 7400, the main contributor ofvaste critical system resources. Therefore, a properatltmt

the high busy time peaks is the wait time for a FIN reply fromange needs to be found that maximizes the utilization of the
a client closing a TCP connection. Under high workload, thisystem resources in the critical application executiorh.pat
wait time is much larger, which reduces the throughput of thi¢owever, finding a good allocation range is non-trivial due
Apache server dramatically. This is shown in Figure 7(d). ltw the following three challenges:

addition, long wait times for FIN replies result in the numbe 1) The good soft resource allocation depends on location
of active worker threads almost reaching the upper bounafary of the critical hardware resource, which can be quite
30 while the number of worker threads that actually interact different under different hardware configurations. The
with the Tomcat tier is far less than 30. This is shown in critical system resources are the Tomcat CPU in 1/2/1/2
Figure 7(f). The drop in the worker threads interacting wité configuration (Section I1I-A) and the C-JDBC CPU in

Tomcat tier results in the reduced number of requests pushed
to the lower tiers; therefore the CPU utilization of the CBID 2)
server reduces under higher workload.

In order to explain why a similar characteristic does not
appear in the 400-6-100 configuration scenario, the graphs i 3)
Figure 8 show a similar analysis as in Figure 7 for the 400-6-
100 configuration under workload 7400. While the previously

1/4/1/4 configuration (Section 11I-B), for example.
Typically, the system performance is not sensitive to
over-allocation of soft resources until some critical hard
ware resource is close to saturation.

The state space for a soft resource allocation is usually
very large (often unlimited). Thus, finding a good alloca-
tion by running experiments exhaustively is impractical.

introduced increase of wait time for a FIN reply also occurs i
this scenario (see Figure 8(b)), the average processirgitim _]))
this case is much larger than in the 30-6-100 case. This is duéUr algorithm is based on the following three assumptions:
to the high number of active threads, which results in long ¢« The system has a single hardware resource bottleneck.
waiting times for obtaining one of 24 Tomcat connections. « Our monitoring tools are able to monitor the bottlenecked
Therefore, the relative waiting time for a FIN reply is much ~ hardware resource when the system is saturated.

lower compared to the previous scenario. This results in ae Each individual server response time for every request is
relatively stable high number of worker threads interagtin logged.

(i.e., occupying or waiting a connection) with the Tomcat The first assumption excludes the complex multi-bottleneck
tier. As shown in Figure 8(c), the number of worker threadsases. In a multi-bottleneck scenario the saturation afviaare
interacting with the Tomcat tier is always much higher thdn 2resources may oscillate among multiple servers locating in
Therefore, the Apache server can push a much larger amodiferent tiers [9]. In these complex cases, our algorithm
of workload to lower tiers, which leads to high throughput asiay fail to determine the critical hardware resource since n
shown in Figure 8(a). single hardware resource is fully utilized when the system

B. Soft Resource Allocation Algorithm

is saturated. The algorithmic resource allocation in multi Algorithm 1: Pseudo-code for the allocation algorithm
bottleneck cases is highly challenging and will requireiadd, procedure FindCriticalResource
tional research. The second and third assumptions ass@amne thworkload = step, T Peurr = 0, T Praa = -1;

we have properly instrumented the system with monitoring fvhjlfi%g:Hg?TP o

tools such as SysStat and Log4j. 5 | TPuas =T Pourr:
The algorithm consists of the following three steps: 6 | (Bn,Bs, TP) = RunExperiment(H, S, workload);
1) Exposing the critical hardware resource in the systent, i (f h ZZ fgﬂig resource saturation » |

This step examines the hardware resource that wil Sreserve = S
saturate earliest in the system. Such hardware resourges | return By;
are critical because their saturation limits the entirg els'; S ftfe‘i)omiz caturation x |
system performance. 13 workload = step, TP =0, T Prmaz = -1;
2) Inferring a good allocation of local soft resourcebhis 14 5=285;
step allocates soft resources in the server that utilize tfje eTS(’Z}ork‘loa d = workload + step:
critical hardware resource directly. The critical hardevar; | end '
resource will be heavily utilized based on the associatedend
soft resources if they are over-allocated. 19 procedure InferMinConncurentJobs
3) Calculating a good allocation of other soft resources; g";’“’"“d:?ma”smp' =0, TPeurr =0, TPmaz = -1;
This step allocates soft resources to tiers other than feunie TP < TP, do
tier where the critical hardware resource resides. Tke | TPmax = T Peurr;
front tiers (e.g., Apache server) should provide enough Flziﬁ[Tl][i],ngOP?ﬁﬁ?aTdﬁcm) — RunExperiment(IT, S, workload)
soft resources to act as a buffer that stabilizes the requgst| workioad = workload + smallStep:
flow to the critical tier (see Section 1lI-C). The backe? | i++;
end tiers need tc_> prc_)wde enp_ugh s_oft resources to av@j@"}imm = InterventionAnalysis(W’ L, RTT);
request congestion in the critical tier. 30 minJobs = TP[W Lunin] * RS[W Lunin]:
Algorithm 1 shows the pseudo-code for the three steps, whighcriServer.threadpool = min.Jobs;
are explained in more detail in the following. % criserver.Connpool = min.Jobs;

) o) 33 procedure CalculateMinAllocation
1) Exposing the critical hardware resourceThis part 34 for server in front tiersdo

of the algorithm exposes the critical hardware resourée | serverthreadpool=minJobs * RTTratio/ Redratio;

. . . 36 | server.Connpool = minJobs * RT Trqtio/ Reqratio;
by increasing the workload step by step until through: ¢ng
put saturates. The initial soft resource allocation andd-haes for server in end tiersio
ware provisioning areS, and Hy, respectively. Func- ¥ | serverthreadpool= min.Jobs;
. . L .40 server.Connpool = minJobs;
tion RunExperiment(H, S, workload) initiates an experi- ,; aong
ment with input hardware/software configuration at specifie
workload, and at the same time, all hardware resource and
soft resource utilizations are monitored. During this jesx
saturated hardware and soft resources are recordgy #nd their limitation; the critical hardware resource will sedte the
Sy, respectively. IfB;, is not empty, the critical hardware earliest if the number of the concurrent jobs inside theeserv
resource has been successfully exposed and returngg.isf is too high. Each job inside a server needs to consume certain
not empty, the system hardware resources are under-dtilizeardware resources such as CPU, memory, or disk 1/O. In
due to the scarcity of some soft resource(s). In this cage, fractice each job in the server is delegated to one progessin
soft resource allocations are double, and the experimenttligead. The optimal number of threads in the critical server
repeated. If bothB,, and S, are empty, the workload offeredshould be equal to the minimum number of concurrent jobs
to the system is insufficient and needs to be increased by ahat can saturate the critical hardware resource. In thég,ca
workload step before a new iteration of the experiment. the critical hardware resource will neither be under-zsid

It is possible that none of the hardware resources wr over-utilized.

observed are fully utilized when system is saturated. ThisThe average number of jobs inside a server can be inferred
complex case may be due to multi-bottienecks [9] in theom the average throughput and response time of the seyver b
system or limitation of our monitoring tools. Dealing withapplying Little’s law. Throughput and response time of aesev
such complex case is one of our on-going research. can be obtained by checking the server log. Therefore,ysolel
2) Inferring a good allocation of local soft resource$he the minimum workload saturating the system (caused by the
InferMinConncurentJobs procedure infers a good allocatig'itical hardware resource saturation) needs to be detedni
of soft resources in the critical server (the server with the In order to approximate the exact workload that can saturate
critical hardware resource) based on the minimum numbertbg critical hardware resource, the procedure uses atitalis
concurrent jobs inside the server that can saturate thieatrit intervention analysis [11] on the SLO-satisfaction of atsys
hardware resource. Intuitively, all hardware resourcegehaThe main idea of such analysis is to evaluate the stability

CJDBC Server

tio between different tiers depends on the characterisfitise
workload. Suppose&RT T, i MeansRT Tiomeat/RT Tejane,

by combining Formula(1) and Formula (2), one can obtain
the following Formula:

Ltomcat = Lcjdbc * (RTTratio/ReQTatio) (3)

Formula 3 shows that the soft resource allocation in the
Tomcat tier should be no less th@n,,...:. The soft resource
allocation in tiers behind the C-JDBC server should be no
Fig. 9: A sample request process between a Tomcat server andless thanminJobs. The reason is to avoid request congestion
a C-JDBC server in front tiers, which leads to the critical hardware reseurc
under-utilization.

Tomcat Server
HTTP
request

[

t1°

th
MySQL server

,,,,,,,,,,,,,,,,,,,,,,

HTTP
response

of the SLO-satisfaction of the system as workload increas
the SLO-satisfaction should be nearly constant under lo
workload and start to deteriorate significantly once thekwor So far we have discussed our algorithm primarily in quali-
load saturates the critical hardware resource. Readersavehotative terms. Here we will show two case studies of applying
interested in more details can refer to our previous pagr [1the algorithm to find a good allocation of soft resources for
all tiers in the system.

After figuring out the minimum number of concurrent jobs Table | shows the result of applying the algorithm to our

(minJobs) that saturate the critical hardware resource, line $revious two cases 1/2/1/2 and 1/4/1/4. We can see that the

and 32 of the pseudo-code assign the value to the soft rBOLﬁ‘@tical hardware resource is Tomcat CPU under ConfingatiO
p00|s of the critical server. 1/2/1/2 while it is C-JDBC CPU under 1/4/1/4 Configuration.

.) In the second procedure of the algorithm, we get the response

3) Calculating a QOOd aIIo_cat|on of other soft reSources. e, throughput, average # of jobs for each individual serv
Soft.resource pools in each tier of an n-tier system contel tunder the saturation workload. The third procedure of the
maximum concurrent requests flow through the system. EVEfl ,ithm calculates the minimum size of thread/conn pools
if the optimal soft resource aIIoca}tlon IS setin Fhe critiger, for tiers other than the critical tier, which is shown in ttaet
the system performance may still be sub-optimal due to tlﬂﬁo rows of the table. We have to point out that we turned
improper soft resource allocation in other tiers. Too sreaft on the logging function of each server in order to get the
resources in front of the critical tier may limit the numbér Ocorresponding average response time and throughput, which
concurrent requests flowing through the critical resouoze tdegrades the system maximum throughput to about 100}0_20%.
much. Too small soft resources in tiers behind the critiieal t) Validation of 1/2/1/2 caseTable | shows that the optimal
may cause request congestion in fror'lF tigrs. Both cases | of one Tomcat thread pool under 1/2/1/2 configuration
to critical hardwarg resource under-utilization. is 13. This value matches the result in Figure 10(a), which

Th_e CaIcuIateMlnAIIoca_tlon proc:_adure calculates a goed hows the maximum throughput the system can achieve with
location of soft resources in other tiers based on the diluca increasing Tomcat thread pool size from 6 to 200. In this set
of soft resources in the critical server. _ of experiments we fixed the size of Apache thread pool and

Figure 9 shows a sample HTTP request processing betwagl,.at pg connecting pool to a relatively large value. The
a TomcaF server and a C-JDBC SErver. TET of the HTTP purpose is to keep enough concurrent requests flowing throug
request in the Tomcat server i while the RTT of the 4,0 tomcat tier when the size of Tomcat thread pool increases

following two interactions between the Tomcat server and C- 2) Validation of 1/4/1/4 caseTable | shows that the optimal

JDBC Server are; a”‘?'f’z- Th_us, the_re is a job in the_TompatSize of one C-JDBC thread pool under 1/2/1/2 configuration
server during the entire peridl while a job only resides in

_ i p is 8. However, there is no explicit thread pool in the C-JDBC
the C-JDBC server during periods and f;. Because each geryqr iy practice; the one-to-one mapping between Tomcat

job in the Tomcat server needs to occupy one DB connectigh,ase connection pool and C-JDBC request handlingthrea

to communicate with the C-JDBC server, the Tomcat SserVglaans that we control the maximum number of C-JDBC
needs to obtain at leas{, = T'/(t; + t3) DB connections in

) , threads by setting the Tomcat database connection pool size
order to keepNo'Jobs active the C-JDBC'server. . Table | shows that the minimum size of each Tomcat DB
_Infact, the ratio of soft resource allocation between @ffe nneciion pool is 8 (the total size is 32 since there are 4-Tom
tiers can be calculated by combining Little's law and thgg; servers). In fact 8 should be the optimal allocation bsea

Validation of Algorithm

Forced Flow Law [12]. we don't want to over-utilize C-JDBC CPU. Figure 10(b)
L =TPx*RTT (1) shows the maximum throughput the system can achieve with

increasing size of each Tomcat DB connection pool from 1
T Piomecat = TPejave/ Reqratio (2) to 200. We can see that the system can achieve the highest

The Regq,.1;0 denotes the average number of SQL querighroughput when the Tomcat DB pool size is 8, which matches
issued by one servlet request for each Tomcat server. Sich ahe output of our algorithm.

. . 1/2/1/2 1/4/1/4

Hardware Configuration H Apache Tomca< / (/:JDBC MySQL H Apache Tomcét/c/JDBC MySQL
Critical hardware resource CPU CPU
Saturation WL [# Users] 5,800 6,200
RTT [s] 0.137 0.0351 0.147 0.0378 0.0082
TP [Reqs/s] 740 740 847 847 2728
Average # of jobs inside 101.3 26 1245 32 224
Reqratio 1 1 3.22 3.22 1 1 3.22 3.22
Size of total threads/conns 101 26 26 26 125 32 22 22
Size of individual thread/conn pool 101 13 (x2) 26 13 (x2) 125 8 (x4) 22 6 (x4)

TABLE I:

1050

Output of the algorithm for hardware configuration 1/2/1/2 and 1/4/1/4

1000

Max throughput [Regs/s]

p [—— 1/2/1/2(400—#—200))|

6 8 10 13 20 30 60 100 150 200 1 2
Thread pool size in one Tomcat [#]

(a) Max TP vs. size of thread pool in Tomcat

[1/4/1/4(400—-200—#)] |

4 10 20 30 100 200
DB conn pool size in one Tomcat [#]

(b) Max TP vs. size of DBconn pool in Tomcat

Fig. 10: Validation of the optimal soft resource allocation for hardware corfiguration 1/2/1/2 and 1/4/1/4

V. RELATED WORK such as normal service times and disregard of multi-threadi
overhead such as context switching or JVM GC.
Multi-threaded architecture is Wlde|y adopted as Standal’dFeedback-C()ntrm approachqgg]_[z:l_] have been app“ed
design for internet servers such as Apache, Tomcat, a@doptimize soft resource allocation or hardware provisign
Knot [13] due to its simple and natural programming stylejuring run-time. The feedback is generated based on a given
Some other works [14]-[16] advocate that a good desi@) A specification such as response time limit or resource
for high concurrency servers should follow a Staged Evengtilization boundaries. However, feedback-control apptes
Driven Architecture (SEDA), which integrates both threadgre crucially dependent on system operators choosingatorre
and events. No matter which design an internet server adopisntrol parameters and defining correct reconciliatioiast
the allocation of soft resources such as threads plays &8 shown in our paper, determining suitable parameters of
important role for the control of concurrency in the requesiontrol is a highly challenging task. Applying correct acts
processing and has a significant impact on overall perfahen system performance starts to deteriorate is similarly
mance [13], [16], [17]. To the best of our knowledge, pregioucomplicated due to the threat of over-allocation and under-
works mainly focus on the performance impact of threagliocation of soft resources.
allocation for a single web server, which serves requedis on Experimental based approachésr optimal soft resource
for static content. More complex web applications such @§ocation are evidently closest to our study. Sopitkantol e
n-tier applications, which involve web servers, applioati | provide an ad-hoc experimental methodology to identify
servers, and DB servers are not discussed. As shown in QH{; configuration parameters that impact application serve
paper, soft resource allocation impacts the performance Qfrformance [22]. Raghavachari et al. present an expetahen
complex n-tier systems in a more intricate and subtle way. methodology, which explores the configuration space of an
Previous work on soft resource allocation can be classipplication server and finds the optimal configuration of the
fied based on three main approaches—analytical model-bagg@lication server based on linear regression technic®@s |
approach, feedback control-based approach, and expagamerDsogami et al. present an algorithm to reduce the measutemen
based approach. time for exploring a large configuration space and find a
Analytical model based approachbave been used to find near optimal configuration of a web server [24]. Zheng et al.
the optimal soft resource allocation for Internet servels [introduce an interesting framework to automate the geioerat
[18]. These approaches employ an analytical queuing moaél configurations of clusters of web servers based on a
to simulate different scenarios. The model is meant to captyparameter dependency graph [25]. However, most of these
significant performance differences based on the variatfon experimental based approaches lack a deep understanding of
workload, concurrency limits, or QoS requirements. Thoughe dependencies among soft and hardware resources and thei
these analytical models have been shown to work well fonplications for system performance. In contrast, our work
particular domains, they are typically hard to generalidere- clearly shows that optimal soft resource allocation is elps
over, analytical models are constrained by rigid assumptiorelated to the weakest hardware resource in the system.

VI. CONCLUSIONS REFERENCES

])] [1] S. Malkowski, M. Hedwig, D. Jayasinghe, C. Pu, and D. Neoma
We studied the performance impact as a function of soft re- “Cloudxplor: a tool for configuration planning in clouds leas on

sources allocation. Impact was measured and quantifieg usin €Mpirical data” inSAC "10: Proc. of the 2010 ACM Symposium on
. . . Applied ComputingNew York, USA, 2010.
the n-tier benchmark RUBBo0S. We found several situation®) . Jung, K. R. Joshi, M. A. Hiltunen, R. D. Schlichting, €. Pu,

where an inappropriate allocation of soft resources cad lea “A cost-sensitive adaptation engine for server consdliatenf multitier

iynifi i i ithi applications,” inMiddleware '09 New York, USA, 2009.
to significant degradatlon in gOOdDUt (requests within SLﬁS] RUBBOS: Bulletin board benchmarkhttp://jmob.ow2.org/rubbos.html.

bound.) at high concurrency levels. Close to SySFem Sau"r’a'fi [4] K. Aberer, T. Risse, and A. Wombacher, “Configuration otdbuted
choosing an appropriate soft resource allocation to aehiev message converter systems using performance modelin@GecC '01:

good performance is a non-trivial problem. Too low and too Proc. of 20th International Performance, Computation andn®nuni-
) cation Conference2001.

high allocations may both cause performance degradatio; A peshmeh, J. Machina, and A. Sodan, “Adept scalabilitgydictor in
On the one side, if the thread pool allocation is too low, support of adaptive resource allocation,”IRDPS '10: IEEE Interna-

; _ tional Parallel and Distributed Processing Symposjwuapr. 2010.
goodput may drop by several tens of percent (Section llI 6] E. C. Julie,). Marguerite, and W. Zwaenepoel, “C-jdbdexible

and Section 11I-C). On the other side, too high allocations ™ gatabase clustering middleware,"lmProc. of the USENIX 2004 Annual
also cause the goodput to drop by several tens of percent Technical Conference2004.

Section I1I-B). To avoid such performance penalties, W%ﬂ EmuIab_—Network Emulation Testbedhttp://wwvy.emuIab.netl.
(.) p . P 8] A. R. Library, The Performance of Web Applications: Customers are
described a soft resource allocation algorithm. Won or Lost in One Second http://www.aberdeen.com/.

In this study, we found similarities and differences betwee [9] S. Malkowski, M. Hedwig, and C. Pu, “Experimental evaloat of n-

soft resources and hardware resources when the system ap-,t'oegr %Safr:}"nsétgnbsggatos%ag%gga'ys's of multi-bottlen2ahslISWC

proaches saturation. Similar to hardware resources, #tersy [10] Tuning Garbage Collection with the Java[tm] Virtual Mackin
needs sufficient soft resources to reach top performange. If _ http:/java.sun.com/docs/hotspot/gc5.0fgm-ing 5.

. . . [11] S. Malkowski, M. Hedwig, J. Parekh, C. Pu, and A. SahBittleneck
soft resource allocation is too low, it may become a botttene detection using statistical intervention analysis,D8OM’'07: Proc. of

due to scarcity. This kind of soft resource saturation can be the Distributed systems: operations and managemgatlin, Heidel-

detected analogously to hardware resource saturatiorthér o berg, 2007.

.. [12] P. J. Denning and J. P. Buzen, “The operational analgkigueueing
words, the soft resource bottleneck reaches full utilorati network models/ACM Comput. Surywol. 10, no. 3, 1978,

while other resources are only partially utilized. [13] R. von Behren, J. Condit, F. Zhou, G. C. Necula, and E.wBre

Unlike hardware resources, which do not consume other ;%flf”ﬁcsiz: Z%i‘)'gb'e threads for internet services,'S®SP '03 New
resources when idle, soft resources may compete for shered{4; m. welsh, D. Culler, and E. Brewer, “SEDA: an architettfor well-

sources such as CPU whether they are being used or not. In our conditioned, scalable internet serviceSOSP '01 pp. 230243, 2001.

experiments, when the size of thread pool reaches hundted§t®! D: Pariag, T. Brecht, A. Harji, P. Buhr, A. Shukla, and R. Cheriton,
Comparing the performance of web server architecturds,Proc.

increases JVM garbage collection overhead significantty (U gyrosys 07 2007.
to 9% of total CPU). This overhead reduces the total CPs] V.Beltran, J. Torres, and E. Ayguade, “Understandimgjrig complexity

i icati i _hi in multithreaded and hybrid web servers,”IIRDPS’'08: IEEE Interna-
available for application processing, and too-high thrpadl tional Parallel and Distributed Processing Symposjuzn08.

size reduces the maximum achievable goodput as mentioReq H. jamjoom, C.-T. Chou, and K. Shin, “The impact of concoese
above when the CPU approaches full utilization. More gener- gains on the analysis and control of multi-threaded inteseetices,” in
ally, for complex application scale-up soft resources have . NFOCOM 04 2004.

. e . {18] G. Franks, D. Petriu, M. Woodside, J. Xu, and P. Tregurthayered
become first class citizens (analogous to hardware) dunieg bottlenecks and their mitigation,” IQEST '06: Proc. of the 3rd

performance evaluation phase. international conference on the Quantitative Evaluatioh Systems
Washington, DC, USA, 2006.

[19] Y. Diao, J. Hellerstein, A. Storm, M. Surendra, S. Lighte, S. Parekh,
and C. Garcia-Arellano, “Using mimo linear control for loaddeing
in computing systems,” imerican Control Conference '0£2004.

[20] X. Liu, L. Sha, Y. Diao, S. Froehlich, J. L. Hellersteiand S. Parekh,

This research has been partially funded by National Science “‘Online response time optimization of apache web serveifNQoS’03:

Foundation by IUCRC, CyberTrust, CISE/CRI, and NetSE E;C:g;g;:‘; 3o ntemational conference on Qualfty ofvz: Berlin

programs, National Institutes of Health grant U54 RR 02438(1] D. Olshefski and J. Nieh, “Understanding the manageméntlient
01, PHS Grant (ULl RR025008, KL2 RR025009 or TL1 perceived response time,” BIGMETRICS '06/Performance '0®New
. . : York, NY, USA, 2006.

RR025010) from the Clinical and Translational Science AiNar[zz] M. Sopitkamol and D. Menagg “A method for evaluating the impact
program, National Center for Research Resources, and gifts of software configuration parameters on e-commerce siteg?tae. of
grants, or contracts from Wipro Technologies, Fujitsu Lab the 5th internati(_)nal wo_rkshop on Software arld performar2f®s.

. . . ;23] M. Raghavachari, D. Reimer, and R. Johnson, “The Depleyroblem:
Amazon Web Services in Education program, and Georgia Configuring Application Servers for Performance and Réligt}i 2003.
Tech Foundation through the John P. Imlay, Jr. Chair endoy24] T. Osogami and S. Kato, “Optimizing system configuratiqoickly by
ment. Any opinions, findings, and conclusions or recommer)- ~guessing at the performance,” $IGMETRICS '07NY, USA, 2007.
dations expressed in this material are those of the aubhoi%ssl W. zheng, R. Bianchini, and T. D. Nguyen, ‘Automatic cquiiation

a p of internet services,” irEuroSys 07 Lisbon, Portugal, 2007.

and do not necessarily reflect the views of the National
Science Foundation or other funding agencies and companies

mentioned above.

ACKNOWLEDGMENT

