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Abstract

Dynamic Voltage and Frequency Scaling (DVFS) has
been widely deployed and proven to reduce energy
consumption at low CPU utilization levels; however,
our measurements of the n-tier application bench-
mark (RUBBoS) performance showed significant per-
formance degradation at high utilization levels, with re-
sponse time several times higher and throughput loss of
up to 20%, when DVFS is turned on. Using a combi-
nation of benchmark measurements and simulation, we
found two kinds of problems: large response time fluc-
tuations due to push-back wave queuing in n-tier sys-
tems and throughput loss due to rapidly alternating bot-
tlenecks. These problems arise from anti-synchrony be-
tween DVFS adjustment period and workload burst cy-
cles (similar cycle length but out of phase). Simulation
results (confirmed by extensive measurements) show
the anti-synchrony happens routinely for a wide range
of configurations. We show that a workload-sensitive
DVFS adaptive control mechanism can disrupt the anti-
synchrony and reduce the performance impact of DVFS
at high utilization levels to 25% or less of the original.

1 Introduction

Dynamic Voltage and Frequency Scaling (DVFS) tech-
nologies (e.g., SpeedStep for Intel, Cool’n’Quiet and
PowerNow for AMD) have been widely deployed in cur-

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the Owner/Author.

TRIOS’13, November 03 2013, Farmington, PA, USA.
Copyright is held by the owner/author(s). Publication rights licensed
to ACM. ACM 978-1-4503-2463-2/13/11...$15.00.
http://dx.doi.org/10.1145/2524211.2524220

rent generation of processors used in data centers. Their
support for variable CPU clock rates and power con-
sumption levels enables power savings for low CPU uti-
lization levels. DVFS has a simple control algorithm:
reduce the CPU clock rate when utilization is low, and
raise the clock rate when utilization becomes high. Con-
trol of DVFS can be done in the operating system (OS)
kernel or firmware (e.g., BIOS), and it works well for
stable workloads for which the need for adjustments
arises infrequently [13, 20, 31].

However, there are important classes of applications
that have bursty workloads and computing infrastruc-
tures that should run at high utilization levels. Con-
cretely, web-facing applications (e.g., e-commerce and
news) are known to have bursty workloads.1 Bursty
workloads oscillate between high and low CPU require-
ments, causing potential mismatches with respect to
DVFS adjustments. Furthermore, data centers need to
run at high utilization levels to achieve high return on
investment. Our study shows that DVFS indeed has sig-
nificant impact on n-tier application performance at high
CPU utilization levels, a result that have high potential
impact on data centers.

The first contribution of the paper is an experimen-
tal measurement of DVFS impact on n-tier application
benchmark (RUBBoS) performance at high utilization.
We found two kinds of problems that cause the sig-
nificant performance losses. First, large response time
fluctuations happen, due to push-back wave queuing for
database (MySQL) and application servers (Tomcat) in
the n-tier system. Second, overall throughput decreases
by up to 20% due to rapidly alternating bottlenecks (a
form of multi-bottlenecks) between MySQL and Tom-
cat servers. These measurement results are refined by a
detailed simulation study of both problems.

The second contribution of the paper is a pair of simu-

1The popular term Slashdot effect describes a phenomenon where a
web page linked by a popular blog or media site suddenly experiences
a huge increase in web traffic [3].
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(a) Significant power savings with DVFS-On in Tomcat un-
der all workloads
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(b) Tomcat CPU utilzation; the variable widths of the DVFS-
On line represent different CPU clock rates.
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(c) System response time increases more due to DVFS-On
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(d) Power and SLA-sensitive throughput comparison (good-
put(2s)/power consumption).

Figure 1: Advantage and disadvantage of DVFS turned on. Figure 1(a) shows DVFS can save power at all work-
loads in the range while Figure 1(c) shows that DVFS leads to a significant response time increase after workload
5,000. Figure 1(d) shows DVFS power efficiency, which indicates that DVFS wins at low workload range (before
workload 10,000) while loses at high workload range (after workload 10,000). Goodput here means the throughput
with profitable response time (e.g., < 2s).

lation studies to determine an upper bound of DVFS im-
pact and methods to reduce it. The first study determined
an upper bound of DVFS impact for representative n-tier
application workloads, which happens when the work-
load burst cycles and DVFS adjustment periods are in
anti-synchrony. The second study evaluated the effec-
tiveness of two OS-level solutions to reduce the DVFS
impact. The first solution is increasing the frequency of
DVFS adjustments to eliminate the anti-synchronous cy-
cles. The second solution is a workload-sensitive adap-
tive control mechanism that changes the DVFS adjust-
ment period to disrupt anti-synchrony.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the problem of DVFS impact on n-
tier application performance. Section 3 describes the
two kinds of problems that cause DVFS-related perfor-
mance loss push-back wave queuing and rapidly alter-
nating bottlenecks. Section 4 presents the calculation
and simulation-based determination of an upper bound
of the DVFS impact. Section 5 describes two meth-
ods to reduce the DVFS impact by disrupting the anti-

synchrony: increasing DVFS adjustment frequency and
workload-sensitive adaptive control. Section 6 summa-
rizes related work. Section 7 concludes the paper.

2 Problem Description

We started our experimental study of DVFS to con-
firm its power savings for n-tier application workloads
such as the RUBBoS [1] benchmark based on Slashdot.
A sample 4-tier configuration (1/2/1/2) (Figure 19(c)
in Appendix A with other technical details) denotes
1 web server (Apache), 2 application servers (Tom-
cat), 1 database clustering middleware (C-JDBC), and
2 database servers (MySQL). The measurement results
(Figure 1(a)) show DVFS achieving expected power sav-
ings. The thick line in the figure represents DVFS off
(called FullSpeed) and the variable-width line represents
DVFS on (managed by Dell Active Power Controller at
BIOS level). The width of the DVFS-On line is propor-
tional to the actual CPU clock rate (thinnest = slowest
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clock, P8, and thickest = FullSpeed, P0). Figure 1(a)
and other subfigures in Figure 1) show the average CPU
clock rate of Tomcat in the DVFS-On case gradually in-
creasing as workload increases.

The performance degradation at high utilization levels
can be seen clearly in Figure 1(c). Starting from work-
load 5,000, DVFS-On response time becomes longer,
e.g., it is 126ms higher than FullSpeed at workload
8,000. This is an important practical problem since in a
data center (where the aggregated power consumption is
most conspicuous) we need high utilization levels in or-
der to achieve high return on investment (ROI). A more
careful calculation of cost-sensitive performance met-
rics showed that the performance loss problem is serious
even when we take into account the power savings.

Figure 1(d) shows an analysis of throughput that is
sensitive to power consumption and SLA (service level
agreement) specifying a revenue model [25] that lim-
its the profitable response time to 2 seconds. The lines
represent goodput divided by power consumption (prof-
itable jobs per watt). The constant line (FullSpeed)
shows that peak profit is achieved at 14,000 workload
(corresponding to about 90% CPU utilization) and the
variable line (DVFS-On) with peak profit at 10,000
workload (about 80% CPU at predominantly less than
full clock rate). This analysis shows that the power sav-
ings in Figure 1(a) actually carries a non-trivial cost in
performance degradation where it matters the most in a
data center (high utilization levels).

Figure 1(b) shows a direct comparison of the CPU uti-
lization levels of the Tomcat server as the workload in-
creases to 15,000 clients. Other than a small gap at the
very high end (DVFS-On tapering lower than FullSpeed
at 15,000 workload), the graph contains no obvious in-
dications of problems with DVFS. Taken together, the
graphs in Figure 1 show that the performance degrada-
tion due to DVFS at high utilization levels has clearly
visible symptoms, yet its causes are non-trivial.

Our investigation traced the performance degradation
to three intertwined problem factors. First, although
DVFS works well for steady workloads, the natural fluc-
tuations in web-facing application workloads cause mis-

matches between the DVFS setting and workload inten-
sity. Second, natural workload fluctuations (default set-
ting of RUBBoS) may cause large response time fluctua-
tions when in anti-synchrony (out of phase) with respect
to the DVFS periodic adjustments. Third, dependencies
among the n-tier servers (e.g., between the application
server and database server) may cause rapidly alternat-
ing bottlenecks and limit performance. These factors are
studied in the following sections.

3 Measurement Results: Two Per-
formance Problems

Our experiments measured the performance of the RUB-
BoS benchmark on Dell servers with Intel Xeon pro-
cessors (details in Appendix A), with SpeedStep (In-
tel’s DVFS) turned on and off. The main goal was to
evaluate the impact of DVFS with respect to the inter-
esting phenomena reported previously at the application
level: large response time fluctuations [32] and rapidly
alternating bottlenecks [33]. We used the RUBBoS de-
fault bursty workload generator (with a few bug fixes)
to make our experimental results comparable to previ-
ous work. At first glance, it seems rather unlikely that
DVFS would be a factor, since its time scale (tens to few
hundreds of milliseconds) was apparently too short for
application level measurements (often done at periods
of multiple seconds). We decided to proceed with the
study for two reasons. First, DVFS has not been ruled
out completely as a potential cause for those phenom-
ena. Second, the web interactions in RUBBoS and pro-
duction applications have become short (e.g., millisec-
onds) due to continual advances of processor and mem-
ory technologies. To study large response time fluctu-
ations (Section 3.1) and rapidly alternating bottlenecks
(Section 3.2), we monitor system events at fine time
granularity (microseconds). Detailed simulation-based
studies complement the measurements by enabling the
exploration of configurations and settings that escape
OS-level control.
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Figure 3: Experimental observation of small response
time fluctuations of the system with FullSpeed at work-
load 8,000.
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(a) Fine-grained response time measurements in each tier
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(b) Fine-grained queued request length measurements in each tier

Figure 4: Experimental observation of large response
time fluctuations of the system with DVFS-On at WL
8,000. The response time peaks in Figure 4(a) corre-
spond to the peaks of queued requests in Figure 4(b).

3.1 Large Response Time Fluctuations
Due to Push-Back Wave Queuing

One of the recent interesting discoveries that distinguish
n-tier applications from embarrassingly parallel appli-
cations such as MapReduce/Hadoop is the existence of
inter-tier resource dependencies [32], which can am-
plify load fluctuations across tiers. Specifically, small
response time fluctuations in the database tier can be
amplified and propagated to the front tiers, particularly
at high utilization levels, a phenomenon we call push-
back wave, since the increased response time propagates
from source (database server) towards the client. The
first question that we want to answer with our experi-
ments is whether DVFS adjustments will have any effect
in n-tier application response time, caused by push-back
waves. This is a long shot, since the DVFS adjustments
happen at short time intervals (sub-seconds or less) com-
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(a) MySQL CPU utilization and MySQL CPU P-state; “wrong” P-
state frequently causes short-term CPU saturations.
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(b) MySQL CPU utilization and MySQL queued requests; short-
term CPU saturations cause queued requests in MySQL.
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(c) Queued requests in MySQL and Tomcat; once queued requests
in MySQL reach a threshold (e.g., due to limited DB connections),
requests start to queue in Tomcat tier (pushed back).

Figure 5: Simulation analysis of large response time
fluctuations of the system with DVFS at WL 8,000.
“Wrong” P-state in MySQL (Figure 5(a)) not only
causes queued requests in MySQL (Figure 5(b)), but
also in Tomcat due to push-back waves (Figure 5(c)).

pared to observed push-back waves (seconds).
Our measurements with FullSpeed (DVFS off) con-

firm this first impression. Figure 3 contains a 10-second
representative segment of an experiment (workload of
8,000 with the graph drawn at 50ms time granularity),
which shows only small occasional response time fluc-
tuations. As a baseline, the graph shows that the default
workload is not overly bursty and the configuration set-
tings of the experiment are reasonable.

When we ran the same experiments with DVFS turned
on (Figure 4(a)), we were surprised by significant re-
sponse time fluctuations at fine-grain time intervals
(each “wave” lasting less than a second). Since the hard-
ware configuration, software configuration, and bench-
mark workload for these two sets of experiments are ex-



actly the same, and the only difference is DVFS being on
or off, we can conclude that DVFS is causing the large
response time fluctuations in Figure 4(a).

We confirmed that the large response time fluctua-
tions in Figure 4(a) are caused by the push-back wave
phenomenon through a detailed analysis of the wait-
ing queue length at each tier. Concretely, Figure 4(b)
shows the number of queued requests in each tier of the
system in the DVFS-On case. This figure shows that
many requests are frequently queued in each tier (es-
pecially Tomcat) of the system. The peaks in response
time in Figure 4(a) correlate strongly with high num-
bers of queued requests in Figure 4(b). Concretely, once
the queued requests in MySQL reach 5̃0, the queued re-
quests in Tomcat also increase significantly, since the
DB connection pool in Tomcat is fully used.

Due to the lack of on-chip hardware sensors, we use a
detailed simulator (Apendix B) to study the CPU clock
rate adjustments made by the DVFS mechanism as im-
plemented at the BIOS level in the Dell server. Fig-
ure 5(a) shows the CPU utilization of MySQL (near the
top) and CPU clock rate at the bottom. The graph shows
that a workload increase at the low clock rate (P8 state)
causes the CPU to become 100% utilized, leading to
clock rate adjustments to P4 and then P0 (fastest clock
rate). A combination of the fast CPU and workload de-
crease then reduces the CPU utilization, which triggers
the DVFS adjustment from P0 to P8. The cycle repeats
itself, with varied time periods in each state, but it re-
mains a stable cycle.

We also use the simulator to confirm our hypothesis
that push-back waves are indeed related to the large re-
sponse time fluctuations. Figure 5(b) shows MySQL
CPU utilization and the number of queued requests in
MySQL. The simulation data shows that when MySQL
CPU is 100% utilized (regardless of CPU clock rate), re-
quests start to queue in MySQL until it exhausts the DB
thread pool to handle DB connections from Tomcat (set
at 50 to match the measurements described above). The
push-back waves can be seen explicitly in Figure 5(c),
which superimposes the number of queued requests in
both MySQL and Tomcat. The simulation data confirms
that once the queued requests in MySQL reaches 50, ad-
ditional requests are queued in Tomcat, which confirms
the experimental data in Figure 4(b).

An astute reader might have noticed two kinds of
waves in Figure 5(c). The first kind is the superim-
posed (single peak) wave described above, e.g., waves
with peaks at markers 2 and 5 on the X-axis. The second
kind of waves has a small notch in addition to the main
peak, e.g., waves with peaks at 1 and 4. In contrast to the
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Figure 6: Experimental observation of significant
throughput loss of the system with DVFS-On.

main peak (when both queues increase and decrease at
the same time), the small notch indicates that the Tomcat
queue length increased while the MySQL queue length
decreased. For the second kind of wave, the first peak
shows the push-back and the small notch indicates a new
phenomenon: the rapidly alternating bottleneck that we
describe in the following section (3.2).

Readers may also wonder why can’t we just increase
the number of DB connections in Tomcat to avoid the
push-back waves from MySQL to Tomcat. As Wang et
al. [34] pointed out that purely increasing the allocation
of soft resources (including DB connections in Tomcat)
in an n-tier system can cause significant overhead for
the bottleneck resources of the system and degrade the
system performance.

3.2 Throughput Loss Due to Rapidly Al-
ternating Bottlenecks

Rapidly alternating bottlenecks are a kind of multi-
bottleneck [33] that arises in n-tier systems due to the
inter-dependencies among the tiers. Multi-bottlenecks
are difficult to diagnose, since the overall throughput be-
comes limited, but there is no identifiable single satu-
rated resource in the system. Although systematic meth-
ods to find multi-bottlenecks in general remain an active
research challenge, we have found concrete examples of
rapidly alternating bottlenecks.

Figure 6 compares the overall RUBBoS throughput
between the FullSpeed (DVFS off) and the DVFS-On
cases. The two curves overlap (despite response time
differences analyzed earlier) from 1,000 up to 9,000
workload. From 10,000, the throughput of FullSpeed
starts to visibly outpace DVFS-On. The throughput ad-
vantage of FullSpeed reaches about 20% at workload
14,000 and stabilizes. This large difference would not
have appeared, had the DVFS control algorithm been
able to maintain the CPU clock rate at the maximum (P0
state). The appearance of rapidly alternating bottlenecks
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(a) CPU saturation alternatives rapidly between Tomcat and MySQL
(the pearson correlation coefficient is -0.97), which indicates an al-
ternating bottleneck in the system.
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(b) Short-term saturations of CPU in MySQL (caused by “wrong”
P-state) make requests queued in MySQL.
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(c) Once queued requests in MySQL reach a threshold, requests are
pushed back to Tomcat, which decelerates Tomcat’s request process-
ing thus the Tomcat CPU util. decreases.
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Figure 7: Simulation analysis of the rapidly alternating bottleneck in the system at workload 14,000. Figure 7(b) 7(c),
and 7(d) show that due to the dependency between Tomcat and MySQL through soft resources, DVFS can lead to the
rapid alternation of CPU saturation between Tomcat and MySQL as shown in Figure 7(a).

are suggested by this fact and the small notch in peaks 1
and 4 of Figure 5(c), showing Tomcat queue increasing
while MySQL queue decreasing.

Our simulation data shows that rapidly alternating
bottlenecks develop between MySQL and Tomcat at
high utilization levels, with Figure 7 showing a repre-
sentative scenario at 14,000 workload. The graph shows
a 8-second snippet of a benchmark run similar to previ-
ous graphs 3, 4, and 5. We can see that effectively one
of the servers is saturated (at 100% CPU utilization) all
the time, although the other one is not. The Pearson cor-
relation coefficient between these two metrics is -0.97,
which is a strong negative correlation. Since one of the
mutually-dependent servers is bottlenecked at all times,
the overall system throughput cannot increase although
no single system resource is fully saturated.

Although Figure 7(a) is an interesting confirmation of
multi-bottleneck phenomenon, the multi part is less im-
portant than the rapid part in the current context. For the
DVFS study, the important problem is the rapid alterna-
tion. Figure 7(b) shows that MySQL CPU utilization is
nearly fully utilized (at the top), but the MySQL queue
(the thin line) grows and shrinks rapidly between max-

imum (50 in these experiments) and minimum (empty).
Between markers 0 and 7 (7 seconds elapsed time), the
queue goes from full to empty and back a total of 9
times. As explained in the previous section, the full
MySQL queue causes Tomcat to queue requests due to
push-back. The Tomcat queue growth is omitted here
since it is similar to Figure 5(c). As a result of push-back
from MySQL, the Tomcat CPU utilization decreases to
less than full utilization, when MySQL is the bottleneck.
This rapid alternation now causes Tomcat utilization to
oscillate between full and 60% (Figure 7(c)). This oscil-
lation in CPU utilization is sufficient to cause the DVFS
control to switch the CPU states between P0, P4, and
P8. More seriously, the oscillations cause the DVFS
control to prefer low clock rate (P8), as shown in Fig-
ure 7(d). The low clock rate causes a transient saturation
in Tomcat (Figure 7(a)), which slows down the sending
of requests to MySQL, making MySQL less than fully
utilized. These alternating bottlenecks (between Tom-
cat and MySQL) happen at a frequency of more than
once a second, which coincides with both the RUBBoS
workload generation cycle and DVFS adjustment period,
making the problem persistent and often amplified.



We emphasize that the coincidence of workload gen-
eration cycle and DVFS adjustment period is not an ar-
tifact of any intentional tweaking of experimental con-
figuration settings. We used the default RUBBoS work-
load generator settings, which were chosen more than
a decade ago by application designers to model rep-
resentative n-tier applications. Similarly, we used the
Dell-provided BIOS setting of DVFS adjustment policy,
which was carefully chosen by hardware designers for
different reasons. Nevertheless, the coincidence led us to
the following question: Can we find an upper bound for
DVFS impact on n-tier application performance? This
is an important question since DVFS control (as most of
the hardware) is usually considered a transparent layer,
not to be taken into consideration when measuring ap-
plication level performance. Determining the amplitude
of DVFS impact can improve significantly our under-
standing of the uncertainties in application benchmark
performance measurements.

4 Study on An Upper Bound of
DVFS Control Impact

Before we start the study of upper bound, we should
observe that the lower bound of DVFS control im-
pact is zero, when DVFS is turned off (the FullSpeed
case). This does not mean that interesting phenomena
(e.g., push-back and multi-bottlenecks) will disappear
entirely. Our study shows that interesting phenomena
arise because of DVFS control, but are not caused solely
by DVFS. Further study of those phenomena is beyond
the scope of this paper.

4.1 Algorithmic Calculation of DVFS Ad-
justment Errors

The study of upper bound is based on a DVFS control
model using the detailed simulator (Appendix B). We
use a terminology loosely based on control systems to
refer to the components of DVFS control. For example,
we use the term “error” to denote the difference between
the predicted workload/utilization and the actual work
done by the DVFS-controlled CPU. For each control pe-
riod (also called a time window):

1. Error = |Work done−Required CPU |
2. Work done = util * clock rate * time window
3. Required CPU = ready queue length *

task requirement
4. ready queue length = remaining ready req +

incoming req

The above definitions contain approximations due to
the non-zero time window. For example, we need to
take into account the arriving requests when calculat-
ing the ready queue length. Still, if the DVFS con-
trol had perfect knowledge of the workload, it would
be able to reduce the Error to zero by providing suf-
ficient Required CPU to satisfy Work done for each
time window. In practice, DVFS can approach this ideal
situation under two assumptions: (1) Required CPU
varies very little (steady workload), so the past is a good
estimate of present and future; (2) Required CPU is
low (low workload) and the Error remains low, too.

In our study, web-facing applications violate assump-
tion (1), and data centers with high utilization require-
ments are incompatible with assumption (2). The objec-
tive of this section is to find an upper bound for Error
when running bursty workloads at high utilization lev-
els. Intuitively, Error is minimized if the CPU clock
rate matches workload: both should be high (or low) si-
multaneously. Specifically, if a high workload encoun-
ters low clock rate, Work done would be too low and
Error grows. In the simulator, we calculate Error in
each time window by the following steps:

• Measure the CPU required for each kind of
task. For each task being launched, add the
task requirement to Total CPU required
• For every task completed, add task requirement

to Work done.
• For every time window, subtract the Work done

from Total CPU required
• Total CPU required is the Required CPU

for the near future (including the current
time window).

This algorithm reflects the observation that Error
is accumulated when workload/clock-rate mismatches
occur. The objective of our upper bound calculation
then becomes a problem of maximizing the mismatches,
which is the subject of Section 4.2. Conversely, the neg-
ative impact of DVFS can be decreased by reducing the
mismatches, which is the subject of Section 5.

4.2 Anti-Synchrony between Workload
and DVFS

Our study to find the maximum Error for a given DVFS
control escapes the classic assumptions of control sys-
tems. For example, instead of a fixed input workload
model for which a control system can be designed with
predictable maximum error, the workload can vary arbi-
trarily. Consequently, we use the detailed simulator to
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Figure 8: Simulation analysis of response time compar-
ison among different workload oscillation cycles.

find the largest Error, which happens when the work-
load burst cycle and DVFS adjustment period are anti-
synchronous (similar in length but out of phase).

The first step in our study is the implementation of an
extended RUBBoS workload generator with fine-grain
control over the period and intensity of bursty work-
loads [27]. The result is a bursty workload genera-
tor with two modes (high and low, e.g., 12,000 and
4,000 clients), plus controllable cycles between these
two modes to simulate different burstiness levels in n-
tier applications. A cycle consists of the generator run-
ning in one mode followed by a switch and running in
the other mode. The generator then switches back to the
original mode at the beginning of the next cycle. High
burstiness is implemented as a short cycle and a steady
workload can be implemented as an infinite cycle. In
our experiments, we maintain the same average work-
load intensity level, e.g., 8,000 clients obtained by di-
viding the cycle evenly into half high (12,000 clients)
and half low (4,000 clients). The cycle length is varied
to generate different burstiness levels while maintaining
the same workload intensity.

The high/low workload generator implementation en-
ables a sensitivity study of response time as a func-
tion of workload burstiness. Figure 8 shows the aver-
age response time with DVFS-On with the same aver-
age workload intensity (8,000 clients) and high/low of
12,000/4,000 clients, but different workload burstiness
cycles. The simulation data shows the system response
time degraded the most from cycle time of 0.5sec to
4sec. From the control point of view, it is straightfor-
ward to explain the good response time for long cy-
cles. The DVFS adjustments at 0.5sec intervals seem
to be sufficient in handling the workload bursts that are
longer than 4sec. Conversely, the very frequent cycles
are also best handled by relatively slow control adjust-
ments, since their behavior becomes increasingly similar
to the average behavior at very high frequencies.

These conceptual explanations are confirmed by sim-
ulation data. Figure 9(a) shows the workload with os-
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(b) Strong correlation between response time with control errors.
The adaptation delay of CPU P-state (see Figure 9(a)) causes large
control errors and also high peaks of the response time in the server.

Figure 9: DVFS works well when the workload oscil-
lation cycle is much longer than the DVFS adaptation
period. Figure 9(a) and 9(b) show that though the con-
trol error caused by each adaptation delay of CPU clock
rate is high, the frequency of adaptions is low.

cillation cycle 8sec and the CPU clock rate (in P-state).
When the workload intensity switches between high and
low, the server takes two adjustment periods (about 1sec)
to change between the lowest rate (P8) and the highest
rate (P0). The adaptation time is relatively short and the
system has a good match (high workload with high clock
rate, and low workload with low clock rate) most of the
time (7 out of 8sec). The small error due to adaptation
delay is shown in Figure 9(b). At the beginning of each
cycle (e.g., the origin of the graph on the left), workload
goes up to 12,000, causing a transient saturation of CPU
and increase in response time. The temporary Error
is shown in the graph and strongly correlated with the
server response time increase. The saturation pushes
DVFS to increase CPU clock rate, fixing the problem
for the remainder 7/8 of the cycle.

On the other end of the spectrum, when the workload
oscillation cycle is much smaller, the simulation con-
firms that the DVFS control period of 0.5sec works quite
well, too. Figure 11(a) shows workload cycles and re-
sponse time when the workload oscillates at 200ms cy-
cles. The very fast workload oscillations actually reduce
the Error since the workload cycles back to a “correct”
rate before the CPU reacts. Each DVFS adjustment (e.g.,
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(a) Workload with oscillation cycle 2s and server CPU P-state. The
adaptation delay of P-state covers the entire high workload period.
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(b) Frequent high peaks of control errors and server response time
due to the adaptation delay of CPU P-state (see Figure 9(b))

Figure 10: DVFS causes the largest errors when the
workload oscillation cycle is close to the DVFS adap-
tation period. Figure 10(a) shows that the server CPU
always stays in the “wrong” P-state when the workload
is high, thus the overall control errors reach the maxi-
mum as shown in Figure 9(b).

high clock rate) can match several periods of high work-
load rate before it switches to a lower clock rate. This is
reflected in the error graph (Figure 11(b)).

For control system experts, it is perhaps unsurprising
that the largest Errors appear when the workload oscil-
lation cycles have lengths similar to the DVFS control
cycle. This happens in the middle of spectrum. Fig-
ure 10(b) shows the response time and Error calcula-
tions for workload cycles at 2sec (the highest impact in
Figure 8). The mismatch between workload burst cycles
and DVFS adjustment periods is called anti-synchrony
in analogy to anti-synchronous oscillatory systems. A
concrete example shown in Figure 10(a) is at timeline
31 (and 33) when the workload cycle goes high just as
the CPU clock rate has been slowed down.

We observe that by upper bound we do not mean
the design of an adversarial workload that would
achieve the theoretical maximum Error (i.e., exact anti-
synchronous cycles against the DVFS adjustment peri-
ods). In this study, we aim to find the upper bound for
bursty workloads that are reasonably regular and likely
to happen in real world applications. We believe that al-
ternative bursty workload models would yield substan-
tially similar experimental results due to the necessary
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(a) Workload with oscillation cycle 200ms and server CPU P-state.
The adaptation of CPU P-state is less sensitive to the rapid workload
oscillation.
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(b) No high peaks of control errors compared to Figure 9(b)
and 10(b), which leads to more stable response time.

Figure 11: DVFS works well when the workload oscil-
lation cycle is much shorter than the DVFS adaptation
period. Figure 11(a) shows that the DVFS controller is
more robust to the rapidly changing workload, causing
small errors and response time as shown in Figure 11(b).

matching with the same DVFS adjustment periods.
We validated our simulation results using the real ex-

periments in our testbed. We used the same bursty work-
load generator as we used in simulation to generate the
high/low bursty workload with different oscillation cy-
cles and kept the system configuration the same as be-
fore (see Figure 19(c)). Figure 12 shows the experimen-
tal results of the system response time under different
workload oscillation cycles while maintaining the same
average workload intensity (8,000 clients). This figure
shows that the system response time reaches the high-
est when the workload oscillation cycle is 2sec and de-
creases with either shorter or longer oscillation cycles.
Such observations match well with our simulations re-
sults above (see Figure 8).

5 Study of Two Solutions to Dis-
rupt Anti-Synchrony

5.1 Solution 1: Increasing DVFS Adjust-
ment Frequency

Since the performance problem caused by DVFS is due
to anti-synchrony between workload burst cycles and
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Figure 12: Experimental validation of the simulation
analysis on workload oscillation cycles
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Figure 13: Adjustment period vs. system throughput

DVFS adjustment period, an obvious solution is to in-
crease the frequency of DVFS adjustments to disrupt the
anti-synchrony. Figure 13 shows the maximum through-
put the system can achieve for several DVFS adjustment
periods. We start from the 500ms Dell BIOS default pe-
riod as the baseline. The simulation results show that
the system throughput improves significantly when ad-
justment period is reduced from 500ms to 125ms (four
times more frequently). The explanation is a reduction
of rapidly alternating bottlenecks since the servers are
getting more CPU more quickly when they need it. At
125ms DVFS adjustment period the Tomcat gets suffi-
cient CPU to avoid rapidly alternating bottlenecks al-
together and reaching the maximum throughput, unaf-
fected by more frequent adjustments of CPU clock rate.

Increasing the DVFS adjustment frequency is an obvi-
ous solution that also has some obvious problems. First,
DVFS adjustments have significant costs in terms of en-
ergy consumption and instruction execution delay [37].
This is one of the reasons the DVFS adjustments have
been set to a relatively long period (500ms) in the first
place. The increasing CPU clock adjustment overhead
is illustrated in Figure 14 for adjustment periods from
500ms to 8ms.

The second problem is that increasing DVFS adjust-
ment frequency only disrupts the anti-synchrony associ-
ated with the workload of similar burst cycle length. As
workload burst cycle length decreases (a likely scenario
for faster CPUs and more clients), anti-synchrony can
happen to shorter DVFS adjustment periods. This is il-
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Figure 14: Small adjustment periods lead to increased
P-state swithes.
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Figure 15: A rapidly alternating bottleneck occurs even
when the adjustment period is as small as 50ms.

lustrated by Figure 15, which shows CPU utilization of
Tomcat and MySQL when the workload burst cycle is
50ms. The simulation data shows that for cycles as short
as 50ms, anti-synchrony can still happen due to rapidly
alternating bottlenecks. This observation led to the de-
sign of Solution 2 described below.

5.2 Solution 2: Workload-Sensitive Adap-
tive Control

Since workload burst cycles may vary, any fixed-length
DVFS adjustment period will remain vulnerable to anti-
synchrony. Consequently, a workload-sensitive adjust-
ment method seems a better solution. Direct observa-
tions of workload intensity is challenging in n-tier sys-
tems, since there are significant and mutually-dependent
variations at each tier. Instead, we choose to add a sec-
ond level adaptive control on the DVFS itself.

Our design considers a classic (fixed-period) DVFS as
the system to be controlled. The main observable of in-
terest is the CPU P-state switch. We consider the change
from P8 (slowest clock rate) to P0 (fastest clock rate) as
an indication of confirmed workload burst. More gen-
erally, the interval between consecutive such switches
can be considered a reasonable estimate of the workload
burst cycle. For example, Figure 9(a) and Figure 10(a)
shows that the CPU switches from P8 to P0 (P4 in be-
tween) frequently and the period of workload burst is
every 8 seconds and 2 seconds, respectively. The sec-
ond level controller uses the observed workload burst
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(a) Server response time and control errors of the original controller
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(b) Server response time and control errors of the adaptive controller

Figure 17: Comparison between the adaptive DVFS controller and the original DVFS controller. Figure 17(b) shows
that the latter case is more effective to reduce the control errors and stablize the server response time.
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Figure 16: Adjustment period variation in the adaptive
controller when server is at workload 11,000.

cycle to predict the onset of next workload burst. Al-
though burst cycles may change over time, we assume
that burst cycles can be estimated by a linear function
in the neighborhood of an operating point. We adopt a
simple moving-average (MA) model [38] to predict the
workload burst cycle as shown in the Equestion 1:

Bi+1 =
1

k

∑i
j=i−k+1 Bj (1)

The MA model assumes the short-term dependen-
cies between successive burst cycles. Bi+1 denotes the
length of the next workload burst cycle. k refers to the
previous k burst cycles remembered: the larger the k,
the more past P-state switches will be taken into account.
We estimated the model offline using least-squares based
on methods in the Matlab System ID Toolbox to fit the
input-output data collected from simulation. The model
is evaluated using the r2 metrics defined in Matlab as a
goodness-of-fit measure. In general, the r2 value indi-
cates the percentage of variation in the output captured
by the model. In our case, the r2 is 0.912, which indi-
cates a good fit of the model.

Once we obtain the predicted workload burst cycle,
we adjust the length of adjustment period accordingly to
reduce the DVFS negative impact. For example, we can
set the length of adjustment period to be proportionally
smaller than the workload burst cycle as shown in the
following equation:

Ti =

 Tlb if (Bi/n) < Tlb

Tub if (Bi/n) > Tub

Bi/n otherwise
(2)

Both Tlb and Tub are thresholds that prevent the new
adjustment period to be either too small (significant P-
state switching overhead) or too large (significant per-
formance degradation caused by prediction error). n sets
the distance between the workload burst cycle and the
new adaptation period (which is 2 adjustment periods in
our case). As shown in Figure 8, the larger distance is
set between these two metrics, the better performance of
the system. A setting of 4-8 times larger would typically
leads to fairly good results. In our evaluation, we set Tlb,
Tub, and n to be 50ms, 500ms, and 10. Thus, the burst
cycle is always 5 times larger than the adaptation period
in our adaptive controller.

Figure 17 shows the effectiveness of the adaptive
DVFS controller compared to the original controller
with fixed adjustment periods on a server at workload
11,000. Figure 16 shows that the length of the adapta-
tion period varies over time due to the changes of the
workload bursty cycle in the adaptive controller case.
Figure 17(b) shows the Error caused by anti-synchrony
between DVFS adjustment period and workload burst
cycle. The server response time (and Error) become
smaller and more stable over time due to the workload-
sensitive adaptive changes of the DVFS adjustment pe-
riod. Figure 17(a) shows high Error and response time
of the original DVFS controller compared to our two-
level adaptive DVFS controller.

Figure 18 further shows the effectiveness of the adap-
tive DVFS controller in n-tier applications. We apply
the adaptive DVFS controller to the 4-tier system as
shown in our motivation case (see Section 2) in simu-
lation. Figure 18(a) and 18(b) show that the adaptive
DVFS controller achieves the similar response time and
throughput to the FullSpeed case on the entire workload
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(b) System throughput comparison
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Figure 18: Comparison among three different DVFS policies in the context of n-tier applications. The adaptive DVFS
controller achieves better balance between performance and power usage than the other two.

range, which suggests that the adaptive DVFS controller
doesn’t cause significant performance loss. Since in sim-
ulation we are unable to directly measure the power con-
sumption of each server, we adopt a simple model [16]
to estimate the CPU power consumption as a function of
CPU P-state distribution and CPU utilization:

P = C ∗Ractive ∗ V 2 ∗ f + Pstatic (3)

Here, C is a constant related to the capacitance of
transistor gates, Ractive is the CPU utilization, V is the
operating voltage, and f is the CPU frequency. From
the specification of the Xeon CPU model in our experi-
ments we know the CPU frequency and voltage at each
P-state 2. To simplify the analysis, we denote C to be
1 and Pstatic to be 0 since we only consider the CPU
dynamic power consumption. Thus given the measured
CPU utilization and P-state of each server in simulation,
we are able to estimate the power consumption of each
server at each workload.

Figure 18(c) shows the adaptive DVFS controller is
able to save the similar amount of power as the origi-
nal DVFS controller does before workload 8,000 while
it gradually merges to the FullSpeed case as workload
continue to increase. The width of each of the three lines
is proportional to the average CPU clock rate. Over-
all Figure 18 shows that the adaptive DVFS controller
achieves better balance between performance and power
consumption than the other two policies. Evaluating our
solution in real implementation would naturally be the
future work of this paper.

6 Related Work
Reducing power consumption has become a major re-
search topic due to the increasing cost of power con-
sumption in current data centers [4, 9, 19, 29].

2E.g., 1.197 GHz/0.750V at P8-state, 2.26GHz/1.350V at P0-state

Balancing power/performance using DVFS has been
studied extensively at the microarchitectural level [6, 12,
21, 24] ever since Weiser et al.[35] proposed the idea of
modulating the CPU clock rate based on CPU load. For
example, Brooks et al.[6] proposed mechanisms to en-
force thermal thresholds on processors while meet per-
formance requirements. Power budgeting of SMP sys-
tems to minimize performance loss has also been im-
plemented via DVFS [21, 24]. These previous works
achieve good balance between power and performance
in their specific domain, but not n-tier systems.

Workload characteristics have been considered as im-
portant contributors to the effectiveness of DVFS. Freeh
et al. [14] and Choi et al. [10] have investigated how
to efficiently choose a proper CPU mode based on the
workload characteristics to minimize both the energy us-
age and performance loss. This premise further leads to
hardware-based techniques [23, 28] and OS-level solu-
tions [18, 30, 26] that set processor modes based on pre-
dicted workload characteristics. Some previous research
on the effectiveness of DVFS uses micro-benchmark
workloads [30, 36], especially the SPEC CPU bench-
marks, which are not an accurate representative of real-
world use. Consequently, the findings from those micro-
benchmarks must be interpreted with caution [22].

Analytical models to estimate the impact of DVFS
on system performance have been formulated in previ-
ous research. Curtis-Maury et al. [11] present an online
performance model aiming for the integration of DVFS
and dynamic concurrency throttling in performance-
constrained systems. Weissel et al [36] and Miftakhut-
dinov et al. [28] use hardware performance counters to
parameterize models on which to aid power manage-
ment decisions and DVFS performance prediction. Sev-
eral other papers consider the end-to-end performance
impact when performing DVFS for multi-tier applica-
tions [8, 17]. Though these models can get good pre-
diction accuracy when the system is lightly loaded, their
accuracy is unclear for the system in high utilization.
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Figure 19: Details of the experimental setup.

7 Conclusions

DVFS is a widely deployed power-saving technology
that works well for stable workloads and/or systems with
low utilization levels. However, web-facing applications
running in data centers have bursty workloads and high
utilization levels. Through measurements of n-tier ap-
plication benchmark (RUBBoS) and a simulation study,
we quantified the impact of DVFS on n-tier application
performance. Experimental and simulation results show
that significant degradations happen on response time
and throughput because of two problems: (1) large re-
sponse time fluctuations due to push-back wave queuing
in n-tier systems, and (2) throughput loss due to rapidly
alternating bottlenecks between the database and appli-
cation servers.

Through a simulation study, we determined an upper
bound of DVFS impact for representative bursty work-
loads by studying the anti-synchrony between workload
burst cycles and DVFS adjustment periods. Using the
detailed simulator, we also studied two OS-level so-
lutions to reduce the DVFS impact by disrupting the
anti-synchrony: (1) frequent DVFS adjustments, and (2)
workload-sensitive adaptive control of DVFS. These so-
lutions may have significant practical impact on the de-
ployment of web-facing applications in data centers by
preserving DVFS power savings, reducing application
performance unpredictability, and increasing server uti-
lization levels.
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A Experimental Environment

We adopt the RUBBoS standard n-tier benchmark, based
on bulletin board applications such as Slashdot [1].
RUBBoS can be configured as a three-tier (web server,
application server, and database server) or four-tier (ad-
dition of clustering middleware such as C-JDBC [7])
system. The workload consists of 24 different inter-
actions. The benchmark includes two kinds of work-
load modes: browse-only and read/write mixes. We use
browse-only CPU intensive workload in this paper. The
closed-loop workload generator of this benchmark gen-
erates a request rate that follows a Poisson distribution
parameterized by a number of emulated clients and a
fixed user thinking time. Such workload generator has a
similar design as other standard n-tier benchmarks such
as RUBiS, TPC-W, Cloudstone etc. Since the request
rate follows a Poisson distribution, it naturally fluctuates
when observed at fine-granularity. In reality, the actual
workloads for n-tier web-facing systems present more
fluctuations and are more unpredictable [15, 27].

We run the RUBBoS benchmark on our virtualized
testbed. Figure 19 outlines the software components,
ESXi host and virtual machine (VM) configuration, and
a sample topology used in the experiments. We use
a four-digit notation #W/#A/#C/#D to denote the
number of web servers (Apache), application servers,
clustering middleware servers (C-JDBC), and database
servers. Figure 19(c) shows a sample 1/2/1/2 topol-



Table 1: Notations for modeling.

Parameter Explanation Value
TW sampling time window 50ms
ui current CPU util in ith window

uref reference CPU util 80%
TPup scale-up threshold (> uref ) 0

TPdown scale-down threshold (< uref ) 15%
Tu consecutive times needed to trigger the

scale-up action
10

Td consecutive times needed to trigger the
scale-down action

1

ogy. Each server runs on top of one VM. Each ESXi
host runs the VMs from the same tier of the applica-
tion. The VMs from the same tier are pinned to separate
CPU cores to reduce the interference among VMs. We
use two power management policies supported by Dell
BIOS settings: Dell Active Power Controller and Max-
imum Performance as DVFS-On and FullSpeed. Note
we always deploy Apache and C-JDBC in type “L” VMs
and let them run at FullSpeed mode since we want to
avoid bottlenecks in load-balance tiers. Thus only the
application server tier and the database server tier run
at the DVFS-On mode in the DVFS-On case. We use a
WattsUp [2] power meter to log power draw each second
for each ESXi host.

B Simulation Setup
We use simulation to reveal the mechanism of how
DVFS degrades n-tier system performance due to the
rich information we can get during the runtime simu-
lation. Our simulation environment has two parts. The
first part is a queueing network which simulates an n-
tier system with arbitrary configurations. For this pur-
pose we use an open source queueing network simulator
JMT [5] which simulates our real experimental configu-
rations. The second part is a service rate controller for
each node of the queueing network. A service rate con-
troller simulates a DVFS controller of a real server in
our experiments and it changes the service rate of the
controlled node based on the real-time workload.

Figure 2 shows our DVFS CPU clock rate control in-
frastructure in our simulation. The central part is the
DVFS controller, which takes the measured CPU utiliza-
tion of a server and the target reference CPU utilization
as input signals; once input signals meet certain thresh-
old, the Actuator specifies a new CPU clock rate for the
controlled CPU.

The DVFS controller is essentially a discrete device

Table 2: Simulator validation through real experiments.

WL
Simulation TP Experimental TP

FullSpeed DVFS-On FullSpeed DVFS-On
(req/s) (req/s) (req/s) (req/s)

1K 143 142 144 143
4K 565 564 585 582
8K 1120 1116 1167 1130
1K 1684 1524 1704 1462
14K 1865 1517 1883 1518
16K 1886 1530 1907 1503

Table 3: Maximum achievable throughput comparison
in different configurations through simulation.

Config. FullSpeed DVFS-On TP Loss Percent
(req/s) (req/s) (req/s) (%)

1/1/1 790 642 148 18.7
1/2/1/2 1886 1530 356 18.9
1/4/1/4 3753 3030 723 19.3
2/8/2/8 7613 5843 1769 23.2

4/16/4/16 14780 9916 4864 32.9
8/32/8/32 29370 20940 8430 28.7

with some adjustable time delays to respond to the in-
coming signals. Equation 4 shows a model to capture
the aggregate effect of its adaptive operations.

fi+1 = fi + Step× I(ui − uref ) (4)

Where

I(ui−uref ) =

 1 if (ui − uref ) > THup for Tu

−1 if (ui − uref ) < -THdown for Td

0 otherwise
(5)

Intuitively, the above equation means a CPU clock
rate increment will occur if the signal is larger than
the scale-up threshold for a consecutive Tu times (in
sampling time windows), or decrement if the signal is
smaller than the scaling-down threshold for a consec-
utive Td times. Otherwise, the frequency stays un-
changed. In this design, the discrete step was chosen to
be relatively large to simplify the analysis, for instance,
we only use P8 (slowest), P4-, and P0-state (fastest) of
CPU in our simulation. The parameters of our model is
in Table 1, which are derived from the real experimental
obervations. We validate our model through real expeir-
mental results as shown in Table 2.

Table 3 shows the simulation results of system config-
urations ranging from 3 to 80 servers. This table shows
that the maximum achievable throughput loss ranges
from 18% to 32.9% under different confgiurations.
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