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Abstract—The prevalence of multi-core processors has raised
the question of whether applications can use the increasing
number of cores efficiently in order to provide predictable
quality of service (QoS). In this paper, we study the horizontal
scalability of n-tier application performance within a multi-
core processor (MCP). Through extensive measurements of
the RUBBoS benchmark, we found one major source of
performance variations within MCP: the mapping of cores to
virtual CPUs can significantly lower on-chip cache hit ratio,
causing performance drops of up to 22% without obvious
changes in resource utilization. After we eliminated these
variations by fixing the MCP core mapping, we measured the
impact of three mainstream hypervisors (the dominant Com-
mercial Hypervisor, Xen, and KVM) on intra-MCP horizontal
scalability. On a quad-core dual-processor (total 8 cores), we
found some interesting similarities and dissimilarities among
the hypervisors. An example of similarities is a non-monotonic
scalability trend (throughput increasing up to 4 cores and then
decreasing for more than 4 cores) when running a browse-
only CPU-intensive workload. This problem can be traced to
the management of last level cache of CPU packages. An ex-
ample of dissimilarities among hypervisors is their handling of
write operations in mixed read/write, I/O-intensive workloads.
Specifically, the Commercial Hypervisor is able to provide
more than twice the throughput compared to KVM. Our
measurements show that both MCP cache architecture and the
choice of hypervisors indeed have an impact on the efficiency
and horizontal scalability achievable by applications. However,
despite their differences, all three mainstream hypervisors have
difficulties with the intra-MCP horizontal scalability beyond 4
cores for n-tier applications.
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I. INTRODUCTION

Providing predictable quality of service (QoS) is an im-

four cores. One of the most important challenges in clouds
and data centers is the intra-MCP horizontal scalability of
system software. This is often attempted through virtual-
ization, where a hypervisor maps virtual CPUs (vCPU)
of a virtual machine (VM) into physical cores. The intra-
MCP horizontal scalability is a particular problem for n-
tier applications and systems due to the several layers and
various system component choices. In this paper, we run
extensive experiments to measure and compare the intra-
MCP horizontal scalability of n-tier server components.

The first contribution of the paper is the identification of
an important source of measurement variance: mapping of
vCPUs to physical cores. For a dual-CPU MCP, mapping
4 vCPUs to a single CPU (with 4 cores on the same
memory bank and cache) produced significant performance
gains compared to mapping 4 vCPUs to two CPUs that
do not share cache. The performance gains of up to 22%
are achieved without any obvious sign of resource under-
utilization, since cores remain "busy” when cache misses
and they have to await the memory access. By pinning
vCPUs to appropriate physical cores we were able to elim-
inate this source of variance and accurately compare the
performance differences due to 3 mainstream hypervisors
(Section III).

The second and main contribution of the paper is an
experimental comparative study of 3 major hypervisors with
regard to their support of n-tier applications running on
MCP. Concretely, we ran an n-tier application benchmark
(RUBBoS [1]) on 3 major hypervisors (i.e., the dominant
Commercial Hypervisor, XEN, and KVM) to compare their
support of intra-MCP horizontal performance scalability.

portant goal for web-facing applications in cloud environ- Our data shows that the hypervisors showed both similarities
ments. The prevalence of multi-core processors (MCPs) imnd dissimilarities.

computing clouds and data centers today has raised the ques-+or similarities, we observed a non-monotonic scalability

tion of whether applications can use the increasing numbetrend to multi-cores across all three hypervisors when run-
of cores efficiently in order to provide predictable QoS. On aning a browse-only CPU-intensive workload. For instance,

physical chip, an MCP often has a hierarchical organizatiorwe found that the system was only able to scale linearly up

with multiple CPUs each having multiple cores. A dual-

to four cores and five cores onward the throughput starts

CPU quad-core processor would have 2 CPUs, each witto deteriorate while all cores were still fully utilized. This



problem can be traced to the CPU overhead induced by o
inefficient management of the last level cache (LLC) in 7 server — | orr |- N
CPU packages (Section IV). For dissimilarities, we found web | server
. . . . ) app
that each hypervisor has its own strategy of handling write SENET > | server | <
hypervisor B hypervisor

operations (i.e., 1/0). Due to this difference, we observed ypervisor

significant performance differences among hypervisors when
running a mixed read/write I/O-intens:ive Worquad. Specifi- (a) 3-tier application system with seven servers (i.e., web,
cally, XEN outperforms the Commercial Hypervisor by 22% application, and database) and four physical hardware nodes
and the Commercial Hypervisor is able to provide more thanin total. Two dedicated web/app server VMs are co-located on
twice the throughput compared to KVM (Section V). a single physical hardware node.

Our empirical analysis suggests that in order for enterprise = hypervisor
n-tier applications to better scale in multi-core virtualization web/app server web/app server
environments, both MCP cache architecture and the choice
of hypervisors should be considered integral components.
However despite their differences, performance scalability p— =3
of n-tier applications beyond four cores remains a challenge
for all three mainstream virtualization technologies.

The remainder of this paper is organized as%ollows. The
next section presents the description of our experimental R « >(KSEUN SRS
setup including the profiling environments, tools and bench-
mark. Subsequently, Section Il introduces the performance

variation induced by core mapping. Section IV describes (b) Details of resource mapping between web/app server VMs
- - . and a shared physical hardware node. The VMs' virtual CPUs
a non-monotonic scalability trend to multi-core processors. anq memory are explicitly mapped to separate physical CPU

Section V illustrates performance difference among hyper- packages and memory banks to mitigate interference.
visors. Finally, we present the related work in Section VI
and conclude our work in Section V.

vcpu vcpu vepu vcpu

cpu | cpu cpu || cpu

physical node

Figure 1. Example of a 3-tier application system deploy-
ment, presented as mappings of virtual machines to physical
Il. EXPERIMENTAL SETUP hardware nodes.

While the intra-MCP horizontal scalability may be eval-
uated using any type of application, the focus of this paper .

is n-tier applications with LAMP (Linux, Apache, MySQL. eight cores u_nder four different environments. We exploit
. . . . T~ < hardware-assisted VM (HVM) and performance measure-
and PHP) implementations. Typically, n-tier applications

. o . ments (e.g., CPU utilization) are taken during the runtime
are organized as a pipeline of serverstarting from web . .
o period using Sysstat and Collectl at one and 0.1 second
servers (e.g., Apache), through application servers (e.g

Tomcat), and ending in database servers (e.g., MySQL). Thi ranulgr|ty respectively. We L_Jt|I|ze OProfile and Xenoprof
0 X . 0 monitor last level cache misses from host
organization, commonly referred to as n-tier architecture

(e.g., 3-tier in Figure 1(a)), serves many important web-[ CPU Quad Xeon 2.27GHz * 2 CPU (8M L3 Casgh
facing applications such as e-commerce, customer relatior-Memay 16GB (8GB per Memory Bank
: . HDD SATA, 7200RPM, 5008
ship management, and logistics. Network I/E 1Gbys
In our experiments, we adopt the RUBB0S n-tier bench-—yzp serer HTTPD2 2 22
mark, based on bulletin board applications such as Slash-App Serer Apache Tomcat-5.5.17
dot [1]. RUBBOS has been widely used in numerous research onnecto Tomcat Connectors-1.2.32esr
. . . DB Sener Mysql-5.5.28-linux2.6-x8 64
efforts due to its real production system significance. The jza JDKA1.6 23
workload includes 24 different interactions such as registef Monitoring Tools | Sysstat, OProfile(Xenoprof), Collectl
user or view story. The benchmark includes two kinds of| Hypervisor Commercial Hypervisor (CH), KVMXEN
. _ ; ; ; Virtualization Type | Full virtualization (HVM
wc_)rkload modes: browse_only aqd read/\_/vrlte interaction Guestos RHEL Server 6.3 B4ib
mixes. Our default experiment trial consists of a three-| guest 0S Kere | 2.6.32-279.19.1.¢1886 64

minute ramp-up, a three-minute runtime, and a 30-second
ramp-down. We run the RUBB0S benchmark in a 3-tierTable I: Summary of experimental setup (i.e., hardware, op-
system (Figure 1(a)) with workload raging from 1000 up erating system, software, and virtualization environments).
to 35000 users while scaling the system from one up to

P . . At an abstract level, the deployment of n-tier applications
In this paper, server is used in the sense of computer programs servi

n . .
client requests. Hardware is referred to as a physical computing node d?] a (?IOUd computing infrastructure can be mo'deled as a
node for short. mapping between component servers and physical comput-
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22% more performance than VMs with coregilization, cores mapped to different CPih both mappings get less efficient due to
mapped to different CPU packages. packages saturate earlier. significant increase in LLC misses.

Figure 2: Analysis of performance variation induced by core mapping.

ing nodes. Figure 1(a) exemplifies our n-tier application Through the data collection from a large number of
deployment with two web server virtual machines (VM), experiments and careful analysis, we found that the cache
four application server virtual machines, and one dedicatetiit ratio that influences overall application performance
database server virtual machine. Other than the databagéescribed in Section IV) also seem to be connected to the
server VM, each server VM has two virtual cores (virtual variances in the repeated measurements. Since the repeated
CPUs), 2GB of memory, and 20GB HDD and we co-experiments run on exactly the same hardware and software
located two server VMs on a single physical node using theonfigurations, we concluded that the "hidden variable” must
dominant Commercial Hypervisb(CH) as illustrated in the reside at a level below the typical hardware configuration
Figure 1. In order to mitigate interference between the twosettings. A careful study of the CPU cache architecture
co-located VMs, each VM's virtual resources are explicitly (outlined schematically in Figures 1(b) and 3) showed that
mapped (i.e., pin) to separate physical CPU packages artie mapping of virtual CPUs (vCPU) in VMs to physical
memory banks as shown in Figure 1(b). Through extensiveores is not necessarily static for every hypervisor, unless
experiments we confirmed that this topology does not introthey are explicitly "pinned”. By comparing the measured
duce any artificial bottlenecks induced by VM co-location in performance of experiments with different mappings of
web-tier and application-tier; however these empirical results¢ CPUs to physical cores, we were able to find the main
are omitted here due to space constraints. Other importasburce of the variances observed: the cache hit ratio.
characteristics of our experimental testbed are summarized

in Table 1.
0 1 2 3 4 5 6 7
Ill. PERFORMANCEVARIATIONS L1 L1 L1 L1 L1 L1 L1 L1
INDUCED BY CORE MAPPING L2 || L2 || L2 || L2 L2 || L2 |[ L2 ]| L2

When we started running the experiments outlined in L3 L3
Sections Il and IV, we encountered significant variance 12 iTt
in the measurement results as we repeated exactly the
same experiments (hardware and software). This variance MEM 0 MEM 1
(up to more than 20%) has been reported anecdotally in o ] .
various cloud environments for a variety of benchmarksi9ure 3: Schematic illustration of CPU and memory archi-
but to the best of our knowledge its sources have yet td€Cture in our experimental testbed.
be unambiguously identified. This variance is a significant

problem in the analysis of our experimental results, since The mapping/pinning of vCPUs to physical cores has

it is about the same order of magnitude as the measuregjgnificant influence on cache hit ratio because the 2 physical

differences among the hypervisors. CPUs have separate memory banks and caches. Therefore,
only if all vCPUs (up to 4) are mapped to the 4 cores of a

2Due to licensing an(_j copy rights issues which prevent publicat_ions_, °fsingle CPU will they share the same L3 cache (Figure 3).
performance or comparison data, we mask our choice of commercial virtu:

alization technology. We use commercial hypervisor or CH interchangeabl)psmg a_ concrete .scenarlo to !IIUStrate the problem, let
throughout the paper. us consider two different mapping strategies for 4 cores
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Figure 4: Observation of the non-monotonic scalability trend of the system.

under the XEN environment. The first configuration mapsdeployment of RHEL6 and Debian assign core numbers
all 4 vCPUs into a single CPU package, which are core$,2,4,6 to CPUO and core numberg, 3,5,7 to CPUL.

numbered), 1, 2, 3 for Xen. The second configuration maps This lack of standard mapping/naming convention required
2 vCPUs into each one of the 2 CPU packages, e.g., coresareful mapping specifications at the physical core level to
0,1 in one CPU and core$, 5 in the other CPU. achieve the best cache hit ratios. For example, pinning 4

Figure 2(a) illustrates throughput comparison between thyCPUS to cores), 1,2, 3 is a single-CPU mapping for Xen,
two mapping cases when scaling from 1000 to 35000 user&ut @ two-CPU mapping for KVM. Conversely, pinning 4
We found that the single-CPU mapping outperforms the?CPUS to cores, 2, 4,6 is a single-CPU mapping for KVM,
two-CPU mapping by 22%. Interestingly, the performancePUt @ two-CPU mapping for Xen.
gap between the two configurations happened without any IV. NON-MONOTONIC SYSTEM SCALABILITY
obvious under-utilization of system resources that may have TO MULTI-CORE ENVIRONMENTS

contributed to this performance penalty. Figure 2(b) shows

the CPU utilization comparison between the two mappmq/cpuS to physical cores inside a single CPU package pro-

strategies. Both mappings show all cores being fully Utlllzed’duced significant performance gains due to an increase in on-

but cores in the two-CPU mapping saturate much earlle.E:hip cache hit ratio. In this section, we investigate intra-MCP

than those from the single-CPU mapping. Further analy5|% : o : . .

of measurement data revealed that the two-CPU mappin orizontal scalablhty_on fo_ur different environments using
: : ; browse-only CPU-intensive workload. Through extensive

cores have 128% higher LLC misses than the single-CP )

. . . . L measurements, we found that the system only scales linearly
mapping. By identifying the LLC misses of individual cores, up to four cores, and the performance starts to decrease
we also observed that cores that were used in both cases .. ' ; .

om five cores onward. We observed this non-monotonic
Scalability trend appeared on all environments. Section IV-A

such as Core0 and Corel show significant increase in LL
misses (i.e., 228%, 175% respectively) in the two-CPU : : : .

qescrlbes the experimental observation on non-monotonic
calability trend of the system under three mainstream

mapping (Figure 2(c)). These results suggest strongly tha?
the mapping of vCPUs to physical cores can have S'gn'flcar\nypervisors (i.e., Commercial Hypervisor, KVM, XEN) as
well as the native physical environment. Section IV-B illus-

impact on the n-tier application performance due to cache

management Issues. trates the impact of the CPU overhead caused by last level
From an operational point of view, the mapping throughcache misses on n-tier application performance and system

pinning of VCPUs to physical cores is a non-trivial task. scalability to multi-core.

First, the physical pinning facility may not be available ) o _ -

to a normal user of computing clouds. Often it requiresA- Non-monotonic trend in intra-MCP horizontal scalability

administrator privileges. Second, different hypervisors have One of the straightforward approaches of scaling an n-

different core number assignment strategies. Concretely, CHer application in modern cloud platforms is to scale up

and XEN assign core numbebs1, 2,3 to CPUO and core (e.g., adding more CPUs or memory). While the growth

numberst, 5, 6,7 to CPUL. In contrast, KVM and the native of virtualization technologies and multi-core processors has

In the previous section, we showed that the mapping of



400,000 - - 100,000 o 100,000

350,000 - — 90,000 |- 90,000 -

g g 80,000 g 80,000 (-
300,000 S g

< ) 70,000 - E ggores 5 70,000 |
X, L X re X,

250,000 60,000 - ores g 60,000 -

$200,000 - & 50,000 8 50,000 |-
E E

9 150,000 Q 40,000 - 9 40,000 [

= = 30,000 [~ = 30,000 -
100,000 3 5

- = 20,000 4 20,000 -

50,000 - H 10,000 10,000 -

oL m ° o ’
1c 2c 3c 4c 5¢c 6c 7c 8¢ Core0 Core1 Core2 Core3 Core4 Core5 Core6 Core7 Core0 Core1 Core2 Core3 Core4 Core5 Core6 Core7
# of Cores CPU Core CPU Core

(a) Total number of LLC miss when scalingb) Comparison of LLC misses per core bége) Comparison of LLC misses per core be-
from 1 core to 8 cores; Exponential increas@een 4-core case and 5-core case; Cotegen 5-core case and 8-core case; Total
(390%) is observable after 4 cores. used in both cases are less efficiently utilizesumber of LLC miss increases 86%.

Figure 5: Analysis of non-monotonic scalability trend of the system through LLC misses.

facilitated the scale up of existing systems, we found thatounte?. Figure 5(a) shows the total number of LLC misses
this approach does not always guarantee system scalabilitfi.e., L3 cache miss) under a given fixed allocation of cores.
Figure 4(a) illustrates the performance trend of the systenThe number of LLC misses increases linearly from one core
under CH, KVM, XEN, and physical environment. Each to four cores, but we observed a sudden dramatic increase
throughput value used in the figure represents the maximurafter four cores. For instance, from four cores to five cores
throughput that a system can achieve under a given fixethe total number of LLC misses increases 390%. Breaking
allocation of cores when we scale from 1000 users up talown the total number of LLC misses into individual cores
35000 users. This result shows that the system was able tevealed that on-chip cache miss ratio increased significantly
scale linearly up to four cores producing approximately 50%for the same cores that were used in the four core allocation
more throughput as the number of affiliated cores increasescenario as shown in Figure 5(b). For example, Core0 which
however, from five cores onwards, the system stops scalinggas used in both cases showed a 200% increase in LLC
further and the performance even starts to deteriorate. Wimisses when we scaled from four to five cores. We also
found out that this non-monotonic performance scalabilityobserved a notable number of LLC misses on Core4. This
trend exists on all three virtual environments. We confirmeds due to Core4 being located in a different CPU package. As
that this trend also exists on the physical environmengxplained in Section lll, since only Core4 uses separate L3
running RHEL6 on bare metal hardware. cache and memory bank, an increase in cache miss ratio is
We diagnose the cause of the performance degradatioimavoidable. As more cores from the second CPU package
by investigating the CPU utilization of the VM. Figure 4(b) gets allocated, we could observe a significant decrease in
depicts the average CPU utilization for each core assignmenf.C misses on Core4 as shown in Figure 5(c).
scenario. It shows that the CPU is fully saturated for all An experienced reader may immediately question the
cases when we scale from one core to eight cores. Basedisdom of LLC misses when scaling from seven to eight
on these results we found that the additional CPU powetores, which appears to be an insignificant increase (i.e., 8%)
allocated to the VM is being fully utilized, but the perfor- compared to the four to five cores (i.e., 390%). The focus
mance actually deteriorates. For example, under the eightf this section is to show that LLC misses have significant
core configuration, the average CPU utilization for all eightimpact on the performance of n-tier system and its scalability
physical cores measured at the host level of XEN, KVM,to multi-cores. There are many other factors limiting system
CH, and physical environment shows 95%, 95%, 94%, andcalability such as spin locks and implementation issues
98%, respectively but performance between the eight coreesiding in the application [4].
scenario and four core scenario actually decreases by 6%, Based on these results we realized that while additional
12%, 12%, and 15%. Upon further investigation, we foundCPU cores were allocated and fully utilized, the extra
that LLC misses introduce significant CPU overhead whichprocessing power was compensated due to the overhead
hampers all of the extra CPU power gained by allocatingintroduced by LLC misses. Considering the actual number
additional cores to the VM which we discuss in the nextof LLC misses (i.e., LLC miss value times 6000), the high
section. number of the LLC misses cause frequent CPU stalls which
wastes its CPU cycles on waiting for the cache line thus

B. CPU overhead induced by last level cache misses . :
canceling the extra CPU power and even degrading the
For modern computer architectures, caching effectivenesserformance.

is one of the key factors for system performance [6], [7],

[13]. I'n order to monitor the Ias't_level cache, we used 3The CPU performance counter increases by 1 for every 6000 L3 cache
OProfile and Xenoprof which utilize CPU performance misses in our environmental settings.
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Figure 6: Analysis of performance difference among 3 hypervisors and limited scalability to multi-core

V. PERFORMANCE IMPACT OF UNDERLYING formance differences among three hypervisors. For example,
VIRTUALIZATION TECHNOLOGIES XEN outperforms the Commercial Hypervisor by 22% and
So far we have discussed that core mapping can caudbe CH is able to provide more _than twice the thro_ughput
significant performance variations due to its influence orfompared to KVM. Lets look into each observation in
cache hit ratio and under browse-only CPU-intensive work-detail.
load, we observed a non-monotonic scalability trend on all The limited intra-MCP horizontal scalability problem can
three hypervisors induced by inefficient last level cachebe trace to the different bottlenecks among hypervisors. Un-
management. In this section, we focus on the empiricaﬂer KVM and CH environments, disk 1/0 was fully saturated
analysis of performance differences among three hyperviso@nd under XEN environment it was due to rapid oscillating
when running a mixed read/write I/O-intensive workload. bottleneck between CPU and disk 1/O. Figure 6(b) depicts
The results here are based on the same configuration #he timeline of disk I/O utilization under the 4-core case
shown in Section IV except the workload characteristics. measured using iostat at one second granularity. This figure
When we scale from one core up to eight cores usinghows that under CH and KVM environments, the system
I/0 intensive workload, we observed two interesting phe-/O is fully saturated. Therefore adding more cores had
nomena - limited intra-MCP horizontal scalability and sig- no effect on system throughput. In the case of XEN, we
nificant performance differences among three hypervisorszoom in to the highly aggregated average of the CPU and
Figure 6(a) depicts the maximum achievable throughput of/O utilization through fine-grained analysis. Figure 6(c)
the system under three different hypervisors (i.e., XEN, CHjllustrates timeline of CPU and I/O utilization under the 4-
KVM) when scaling from one core up to eight cores. Thiscore case. Both utilization data are measured using Collect|
figure clearly shows our two observations. Firstly, the systen@t 100ms granularity. In this figure we observed a negative
does not scale well to multiple cores. For instance, undegorrelation between CPU utilization and disk 1/O utilization
XEN and CH, the system was only able to scale up towhich suggests a rapidly oscillating bottleneck between the
three cores and two cores respectively. Moreover, the KVMwO resources limiting the system scalability to multi-core
system showed no throughput gains regardless of how marfgrocessors [2], [3].
cores were allocated to it. Secondly, there are significant per- Next we investigate the second observation - significant



performance differences among hypervisors. In order tgerformance prediction methodologies [12], [14]. These
understand what has caused such performance differencemproaches are often constrained by their rigid assumptions
we first focus on KVM and CH where both cases showed I/Owhen handling n-tier systems due to the complex dependen-
saturation (see Figure 6(b)). Figure 6(d) and 6(e) illustratesies. As an illustration of significant characteristics that are
the histogram of CPU IOwait under CH and KVM environ- hard to capture with traditional analysis, consider the sig-
ments respectively. These CPU IOwait data are collected byificance of context switching towards system performance
sar every 1 second during a 180 second run-time. Figure 6(eyhen a large number of threads is involved [9].
shows that only one core (i.e., Corel) handles most of An increasing popularity of virtualization and cloud
the 1/O under the KVM environment while all other cores computing has spawned interesting research on private
showed less than 5% CPU IOwait. This trend was alsand public clouds. Barham et al. [16] benchmarked Xen
visible in CPU utilization. Only the core that has high IOwait against VMware Workstation and User-Mode Linux, and
shows near saturation while others show low utilization.they showed that Xen outperforms VMware on a range of
This low utilization in the other cores that are not handlingmicro benchmarks and system-wide tests. Clark et al. [17]
I/O is due to the characteristics of our storage engine (i.erepeated this performance analysis of Xen in [16] and
InnoDB). Since the InnoDB storage engine provides fullconfirmed the results presented in [16]. They also compared
transactional support, operations that induce I/O such aXen on x86 with IBM zServer and found that the former
updates and inserts trigger various locking mechanisms (e.ghad a better performance than the latter.
row-lock, table-lock, etc.) which prevent other threads to be Padala et al. [18] compared Xen and OpenVZ's perfor-
processed thus resulting in the low-utilization on other coresmance when used for consolidating multi-tiered applications.
Under CH environment, on the other hand, we observed thafheir experimental results showed that Xen incurs higher
I/O is distributed to all cores as depicted in Figure 6(d). Thisoverhead than OpenVZ and average response time can
distribution of I/O enables CH to better utilize the underlying increase by over 400% in Xen and only 100% in OpenVZ
multi-core architecture and is the key factor that explainsas the number of application instances grows from one
the higher throughput. By distributing 1/O to different cores, to four. This can be explained by looking at L2 cache
it allows multiple data manipulation operations that aremisses; Xen has higher L2 cache misses than OpenVZ.
independent of each other to be executed simultaneouslieanwhile, Adams et al. [19] compared software VMM
Consequently this contributes to reducing locking time hencgbinary translation) with hardware-assisted VMM. They
achieves higher utilization by processing more threads undeshowed that software and hardware VMMs both perform
the same amount of time. The average CPU utilizationwell on compute-intensive workloads. However, if work-
shown in Figure 6(f) indicates that CH achieves 1.9 timedoads include progressively more privileged operations such
higher utilization than KVM resulting in higher throughput. as context switches, memory mapping, I/O, interrupts and
Next let’'s look into XEN case. From the Figure 6(a) system calls, both VMMs suffer overheads while software
which shows the maximum achievable throughput of theoutperforms hardware.
system, we observed that XEN achieves highest throughput Deshane et al. [20] focused on three aspects of bench-
among 3 hypervisors. The reason can be traced to its I/@arking Xen and KVM: overall performance, performance
utilization pattern from Figure 6(c). This figure shows thatisolation, and scalability. They illustrated that Xen has
XEN batches 1/O tasks inside the memory and writes to theexcellent scalability while KVM has substantial problems
disk intermittently. While XEN is batching I/O requests from with guests crashing when a physical node hosts more than
the guest domain that is CPU intensive period, increasing théour virtual guests. KVM outperforms Xen in isolation. In
number of cores can relieve CPU bottleneck. As a resultpverall performance tests, Xen has a better performance than
XEN shows best intra-MCP horizontal scalability among 3KVM on a kernel compile test while KVM outperforms Xen
hypervisors and achieves 17% higher CPU utilization tharon I/O-intensive tests. Camargos et al. [21] analyzed the
CH (see Figure 6(f)) thereby providing better performance performance and scalability of six virtualization technologies
These results suggests that each hypervisor’'s strategy gRQEMU, KVM, Linux-VServer, OpenVZ, VirtualBox and
handling write operations in a mixed read/write I/O-intensiveXen) for Linux.
workload can have significant impact on n-tier applications There are multiple research studies on evaluating appli-
performance. cation performance on multi-core systems with and without
virtualization. For example, Xiang et al. [8] analyzed the
VI. RELATED WORK performance and scalability of para-virtualized VM and
Traditionally, performance analysis in IT systems buildshardware-assisted VM on Xen hypervisor (Xen 4.0.0) on a
models based on expert knowledge and uses a small sé8-cores shared memory machine using a set of application
of experimental data to parameterize them [10], [11], [15].benchmarks. Their results showed that the tested applications
The most popular representative of such models is queuindegrade in both performance and scalability on both para-
theory. Queuing networks have been widely applied in manyirtualized VM and HVM compared to that on native Linux
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