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Abstract

We investigate the use of Deep Neural Networks for the classifica-
tion of image datasets where texture features are important for gen-
erating class-conditional discriminative representations. To this end,
we first derive the size of the feature space for some standard textu-
ral features extracted from the input dataset and then use the theory
of Vapnik-Chervonenkis dimension to show that hand-crafted feature
extraction creates low-dimensional representations which help in re-
ducing the overall excess error rate. As a corollary to this analysis, we
derive for the first time upper bounds on the VC dimension of Convo-
lutional Neural Network as well as Dropout and Dropconnect networks
and the relation between excess error rate of Dropout and Dropcon-
nect networks. The concept of intrinsic dimension is used to validate
the intuition that texture-based datasets are inherently higher dimen-
sional as compared to handwritten digits or other object recognition
datasets and hence more difficult to be shattered by neural networks.
We then derive the mean distance from the centroid to the nearest and
farthest sampling points in an n-dimensional manifold and show that
the Relative Contrast of the sample data vanishes as dimensionality of
the underlying vector space tends to infinity.



1 INTRODUCTION

Texture is a key recipe for various object recognition tasks which involve
texture-based imagery data like Brodatz [25], VisTex [26], Drexel [18],
KTH [27], UIUCTex [14] as well as forest species datasets [19]. Texture char-
acterization has also been shown to be useful in addressing other object cat-
egorization problems like the Brazilian Forensic Letter Database (BFL) [5]
which was later converted into a textural representation in [8]. In [6], a sim-
ilar approach was used to find a textural representation of the Latin Music
Dataset [21].

Over the last decade, Deep Neural Networks have gained popularity due
to their ability to learn data representations in both supervised and unsu-
pervised settings and generalize to unseen data samples using hierarchical
representations. A notable contribution in Deep Learning is a Deep Belief
Network(DBN) formed by stacking Restricted Boltzmann Machines [11].
Another closely related approach, which has gained much traction over the
last decade, is the Convolutional Neural Network (CNN) [15]. CNN’s have
been shown to outperform DBN in classical object recognition tasks like
MNIST [24] and CIFAR [13]. Despite these advances in the field of Deep
Learning, there has been limited success in learning textural features using
Deep Neural Networks. Does this mean that there is some inherent limita-
tion in existing Neural Network architectures and learning algorithms?

In this paper, we try to answer this question by investigating the use
of Deep Neural Networks for the classification of texture datasets. First,
we derive the size of the feature space for some standard textural fea-
tures extracted from the input dataset. We then use the theory of Vapnik-
Chervonenkis (VC) dimension to show that hand-crafted feature extraction
creates low-dimensional representations, which help in reducing the overall
excess error rate. As a corollary to this analysis we derive for the first time
upper bounds on the VC dimension of Convolutional Neural Network as well
as Dropout and Dropconnect networks and the relation between excess error
rate of Dropout and Dropconnect networks. The concept of intrinsic dimen-
sion is used to validate the intuition that texture-based datasets lie on an
inherently higher dimensional manifold as compared to handwritten digits
or other object recognition datasets and hence more difficult to be classi-
fied /shattered by neural networks. To highlight issues associated with the
Curse of Dimensionality of texture datasets, we provide theoretical results
on the mean distance from the centroid to the nearest and farthest sampling
points in n-dimensional manifolds and show that the Relative Contrast of
the sample data vanishes as dimensionality of the underlying vector space
tends to infinity. Our theoretical results and empirical analysis show that
in order to classify texture datasets using Deep Neural Networks, we need
to either integrate them with handcrafted features or devise novel neural
architectures that can learn features from the input dataset that resemble



these handcrafted texture features.

2 VC DIMENSION OF DEEP NEURAL NET-
WORKS AND CLASSIFICATION ACCURACY

VC dimension was first proposed in [23] and was later applied to Neural
Networks in [2]. It was noted in [4] that the VC dimension proposed for
Neural Networks is also applicable to Deep Neural Networks. It was shown in
[2] that for neural nets with sigmoidal activation function, the VC-dimension
is loosely upper-bounded by O(w?) where w is the number of free parameters
in the network. Given a classification model M, the VC-dimension of M is
the maximum number of samples that can be shattered by M.

We estimate the size of the sample space composed of the various fea-
tures extracted from the textural Co-occurrence Matrices (Haralick features)
following those proposed in [9]. We then use the theory of VC dimension to
show that texture feature extraction creates low dimensional representations
which help in reducing the overall excess error rate.

2.1 Sample complexity of Haralick features and the
fat-shattering dimension!

For the sake of simplicity, we consider intensity image with a single channel
and Gray-Level Co-occurrence Matrix (GLCM) which can be easily extended
to multi-channel images and Color Co-occurrence Matrices (CCM) without
loss of generality. For nxn images with x color levels, the following results
can be derived?.

Proposition 2.1. Ifx1,z9,...x,2 be the values of the kxx GLCM matrices,
n2+n2—1) 0

then the number of distinct matrices is given by ( w21

Proposition 2.2. The number of distinct values for GLCM angular 2™
2 2
moment is n* — (LZ—ZJ X (/12 — 1) + <n2 — (H2 — 1) LZ—;D + 1) O
Proposition 2.3. The number of distinct values of GLCM correlation is
2
n?k? —n? -5 4+ 5+1. O

Proposition 2.4. The number of distinct values of GLCM sum average is
2n2k — 2n? + 1. O

Proposition 2.5. The number of distinct values of GLCM contrast is n?k?+
n? —2n%k + 1. ]

'For a detailed description of the various GLCM metrics defined in this section and
the notations used, we refer the reader to [9]
2A proof of these results follows from simple counting arguments.



From proposition 2.2 through 2.5, it can be seen that in the general
case, number of distinct Haralick features is given by O(n?k? + n?). For
deep neural networks, the VC dimension is upper bounded by O(w*) ac-
cording to [2]. Now, we can pick the number of adjustable parameters w to
be such that n<k<w or k<n<w. In both cases, we have O(n%k?)<O(w?)
and O(n*)<O(w?) which gives O(n%x? 4+ n*)<O(w*). Hence, the number of
possible distinct values for the GLCM based feature vectors is much lower
than the VC dimension of such a network. So, we can effectively argue that
the VC-dimension of a Deep Neural Network with w adjustable parame-
ters is such that it can shatter the metrics formed using GLCM - the only
prerequisite being that we select a network with the number of adjustable
parameters as an upper bound for the input data dimensionality and the
number of distinct gray levels in the color channel. On the other hand, in
order to shatter the raw image vectors, the effective VC dimension of the
network should be at least of the order of O(n*"/ 4). So, for the GLCM based
features, we need Neural Networks with smaller VC dimension as compared
to raw vectors. Also, in the next section, we show that with increase in VC
dimension of the network, the excess error rate increases. So, the composite
learning model formed by the integration of GLCM based features and Deep
Neural Networks have lower excess error rate as compared to Deep Neural
Networks combined with raw image pixels.

3 INPUT DATA DIMENSIONALITY AND
BOUNDS ON THE TEST ERROR

In this section, we derive the relation between input data dimensionality
and upper bound I' on the excess error rate of the Deep Neural Network.
This validates the fact that the lower dimensional representations of the
Haralick feature space help in minimizing the test error rate. As a corollary
to this analysis we derive for the first time upper bounds on the VC dimen-
sion of Convolutional Neural Network as well as Dropout and Dropconnect
networks and show that the upper bound I' on the excess error rate of the
Dropout networks is lower than that of DropConnect.

Lemma 3.1. With increase in the dimensionality of the input data, the
dimensionality of the optimal model increases.

Proof(Sketch). As shown in [17], for input data dimensionality d and model
dimensionality p, the number of cells formed by p planes in d space is given
by

min(p,d)

Cod)= 3 <f>_ i(p)_,p>d. W

1=0



Now, the number of cells per dimension gives the number of divisions of the
model space along each dimension and can be approximated as C(p, d)l/ d,
This in turn is equal to the number of class labels c. Therefore, for a given
classification problem with ¢ class labels, we have, C(p, d)l/ 4= ¢and hence,
we have

2/ p<d
— 1/d _
=0

From equation 2, it follows that with increase in data dimensionality d, the
model dimensionality p should increase, given a fixed classification problem
with c¢ class labels. O

Lemma 3.2. With increase in the dimensionality of the model, its VC di-
MENSION INCTeases.

Proof(Sketch). This statement follows from the VC dimension bounds of
both a Deep Neural Network and a Deep Convolutional Neural Network
(CNN). The VC dimension of a Deep Neural Network is upper bounded by
O(w*) and the VC dimension of a Convolutional Neural Network is upper
bounded by O(M). The result for the Deep Neural Network follows
from [2], where it is noted that the VC dimension of Deep Neural Networks
with sigmoidal activation functions is given by O(t?d?) which reduces to
O(w*). The result of the VC bound for the CNN along with the proof is

detailed in Theorem 3.3 below. OJ

Theorem 3.3. The VC dimension of a Convolutional Neural Network is
upper bounded by O(W) where m s the total number of maps, k is

the kernel size, s is the subsampling factor and l is the number of layers.

Proof(Sketch). From Theorem 5 and Theorem 8 in [2], it can be seen that
for the parameterized class F = {x — f(6,z) : § € R%} with the arith-
metic operations +, —, X,/ and the exponential operation a — €%, jumps
based on >, >, <, <, = and # evaluations on real numbers and output 0/1,
VCDim(F) = O(t?d?). Here, t is the number of operations and d is the
dimensionality of the adjustable parameter space. Now, for the CNN, input

size is n, kernel size is k, sampling factor is s and we assume convolution
n—k
—k
S

kernel step size as 1 for simplicity. So, we have % ... upto [ layers
which in turn is equal to 1 for a binary classification problem®. Now, in the
simplest case, we have a CNN with one convolutional layer followed by one

3Note that for simplifying the algebra, we consider only the convolutional and subsam-
pling layers of a CNN. This analysis can be extended to hybrid architectures with other
types of layers (e.g., fully connected) by adjusting ¢ and d.



subsampling layer (c-s). Hence,"T_k =1 = n=s+ k. For a CNN with
the configuration (c-s-c-s), we have,

n—k _
S =1 = n=k+s(s+tk)=s+ks+k (3)
s
Continuing this pattern, we have in the general case,

n—=k
nek_g
S

1 =1
. upto [ layers (4)

— n=s+ks T+ ks 2+ . +hks+Ek

Now, let m1, mo, ... m; be the number of maps in the various layers of a CNN

and t =t; +to + ...+ t; be the total number of operations. Now, for layer

1, number of operations t; = mi(n — k), for layer 2, number of operations

to = mQ("T_k — k), and so on. Therefore, Total number of operations
n—k__k

t=mi(n—k) +...+ml(ST...to [ layers)

=my(ks+ ks> + ...+ ks + s +mo(ks + ks> + ...
+hs"2 4T s (5)

Also, dimensionality of parameter space is given by d = mik +mok + ... +
myk. Now, for simplifying, if we assume that the number of maps in the
layers my = mg = ... = m; = 77, then, we have

n—k
m.n—k m,—= —k
1 s

( —k)+...+—( 58

mks?(s71 —1)  ms(st — 1)
s—12 Is—1)
mks!=1
— o™y ()
Also, d = O(mk) (7)

From equation 6 and equation 7, we have VCdimgnyy = O(%)

t:%(n—k)—l-

S

...upto [ layers) =

O]

Theorem 3.4. Upper bound on excess error rate £ increases with increase
in VC dimension given fized number of training samples N.

Proof(Sketch). According to the theory of VC dimension [22], we have Ex-
cess error rate

h(log(2N/h) +1) —1 4
5§\/(Og( /);rv) og(n/4) (8)
where, h is the VC dimension of the model, NV is the number of training
samples and 0 < 7 < 1. From equation 8, the result follows. O



Theorem 3.5. For a given Dropout network with probability of dropout
p and number of adjustable paramaters in the network being w, the VC

dimension of the network is upper bounded by O((l — p)8w4).

Proof(Sketch). For a neural network with number of neurons n = nj +na +
ns + ...+ ng, the number of adjustable paramaters w is given by

W= Mning + Nong +n3ng + ... +n_1ny (9)

For a given dropout fraction p, each neuron in the network can be dropped
by a probability of p. So the effective number of neurons in the Dropout
network

n=(1-p)(ni+ne+...+ny) (10)
Now, we can split the effective number of neurons in each layer as n; =
(I—=pny, ...,y =1—p)ny.
Therefore, W = ning + nong + ... + ny_17y

= (1 =p)*(mnz + ...+ mamg) = (1= p)*w (11)

Now, given that VCDimp,opout = O(@4) we have, w* = ((1 — p)?)*w? =
O<(1 - p)8w4). So,
VCDIm propout = o<(1 - p)8w4) (12)

O]

Theorem 3.6. For a given Dropconnect network with probability of drop
p and number of adjustable paramaters in the network being w, the VC

dimension of the network is upper bounded by O((l - p)4w4).

Proof(Sketch). Since in a Dropconnect network, each weight can be dropped
by a probability of p, so, effective number of adjustable parameters in the
Dropconnect network is given by @ = (1 — p)w. Now, given that, w* =

(1—p)twt = O((l - p)4w4>, we have,
VCDimDropconnect = O((l — p)4w4) (13)

O]

Theorem 3.7. For a given drop probability p, the number of adjustable
paramaters in the network being w, the excess error rate being £ and the
upper bounds on the error rates of the Dropout and Dropconnect networks
being FDropout and I‘D'ropconneci& respectively, we have FDTopout < FDTopconnect-



Proof(Sketch). From Equation 8 and 12, we have

h(log(2N/h) + 1) —log(n/4)
N

Excess error rate, £ < \/ (14)

Therefore, upper bound on the error rate I' propout

_ \/]17(1 — p)Buwt [log ((1_2]])\)[8104 + 1)} — log(n/4) (15)

Similarly, from Equation 8 and 13, we have for the Dropconnect network,

11Dropconnect

_ \/jlva — p)huw [mg ((1_2;\;4% + 1)} ~log(1/4) (16)

For a given w, N and probability of drop p with 0 < p < 1, it can be easily
shown that the upper bounds on the excess error rates of the Dropout and
Dropconnect networks are related as

FDropout < FDTopconnect (17)
0

This is substantiated by the experimental results in Section 6.

4 WHAT IS THE DIFFERENCE BETWEEN OB-
JECT RECOGNITION DATASETS AND
TEXTURE-BASED DATASETS IN TERMS OF
DIMENSIONALITY?

We argue that object recognition datasets lie on a much lower dimensional
manifold than texture datasets. Hence, even if Deep Neural Networks can ef-
fectively shatter the raw feature space of object recognition datasets, the di-
mensionality of texture datasets is such that without explicit texture-feature
extraction, these networks cannot shatter them. In order to estimate the
dimensionality of the datasets, we use the concept of intrinsic dimension[16].

4.1 Intrinsic Dimension Estimation using the Maximum Like-
lihood algorithm

The intrinsic dimension of a dataset represents the minimum number of
variables that are required to represent the data. We use the Maximum
Likelihood algorithm proposed in [16] to estimate the Intrinsic dimension



Dataset MNIST | CIFAR10 | DET
Intrinsic Dim. 9.96 15.9 17.01

Table 1: Intrinsic Dimension estimation using MLE on the MNIST, CIFAR-
10 and DET datasets

Dataset Brodatz | VisTex KTH

Intrinsic Dimension (Raw Vect.) 34.87 44.81 43.69

Intrinsic Dimension (Texture) 4.03 3.84 3.73
Dataset KTH2 | Drexel | UIUCTex

Intrinsic Dimension (Raw Vect.) 54.19 30.26 33.64

Intrinsic Dimension (Texture) 3.93 4.24 4.57

Table 2: Intrinsic Dimension estimation using MLE on the 6 texture datasets

of various datasets. The results for the various datasets and the Haralick
features extracted are listed in Table 1 and 2. The DET dataset [20] is a
subset of the Imagenet dataset.

From Table 1 and 2, we can see that the intrinsic dimensionality of the
texture datasets (Brodatz, VisTex, KTH, KTH2, Drexel and UIUCTex) is
much higher than that of object recognition datasets (MNIST, CIFAR-10
and DET). So, without explicit texture-feature extraction, a deep neural
network cannot shatter the texture datasets because of their intrinsically
high dimensionality. However, as seen in Table 2, the features extracted
from the texture datasets have a much lower intrinsic dimensionality and lie
on a much lower dimensional manifold than the raw vectors and hence can be
shattered/classified even by networks with relatively smaller architectures.
Once, we have validated the fact that texture-based datasets lie on a higher
dimensional manifold as compared to handwritten digit or object recogni-
tion datasets, we highlight issues associated with the high dimensionality of
texture datasets.

5 CURSE OF DIMENSIONALITY IN TEXTURE
DATASETS

Curse of Dimensionality refers to the phenomenon where classification power
of the model decreases with increase in dimensionality of the input feature
space. In the following sections, we derive some theoretical results on Curse
of Dimensionality for high-dimensional texture data.



5.1 Sampling data in Higher Dimensional Manifolds

The mean distance from the centroid to the nearest sampling point is a useful
metric for quantifying the hardness of classification [10]. To compute this
mean distance, we first state a result on computing the expected value of a
non-negative random variable and then use it to compute the mean distance
from the centroid to the nearest sample point. The median distance was
computed in [10]. However, to get a more accurate estimate of the distance
metrics, we compute the mean in this paper.

Lemma 5.1. If a random variable y can take on only non-negative values,
then the mean or expected value of y is given by fooo[l — F,(t)]dt.

Proof(Sketch). Since 1 — Fx(z) = P(X > z) = [° fx(t)dt, it follows
that [°(1 — Fx(z)dz) = [;° P(X > z)dx = fo f fx(t) dtdw Changing
the order of integration, we have fo (1 — Fx(x fo fo fx(t)dzdt =
I Jodt = [7°tfx(t)dt. Now, taking the substltutlon t = x and
dt = d:z: the expected value

B(X) = /O V(1 - Fr(a)da) = /0 Ty (18)
Il

Lemma 5.2. Consider n samples distributed uniformly in a p-dimensional
hypersphere of radius 1 and center at (0,0). If at the origin, we consider
a nearest neighbor estimate, then the mean distance from the origin to the
nearest sampling point is H?Zl(l + p%)_l.

Proof(Sketch). For a ball of radius r in RP the volume is given by w,r?, where

wp is denoted as 75w So, the probability of a point sampled uniformly from
the unit ball lying Wlthln a distance x of the origin is the ratio of the volume
of that ball to the volume of the unit ball. The common factors of w,, cancel,
so we get the Cumulative Distribution Function (CDF) and Probability
Density Function (PDF) as F(z) = zP,andf(z) = p2?~1,0 < < 1. From
[12], for n points with CDF F and PDF f, we have the following general
formula for the £ order statistic

n!
So, we have the minimum by setting £ =1 as
9(y) =n(1 = F(y) "V fy) = n(1 —y")" 'y (20)

This yields the CDF, G(y) = 1 — (1 — y?)". The random variable y can
take on only non-negative values. So, by Lemma 5.1 the mean or expected

[F(ye)]* 1 = F(ye)]™ ¢ £ (ye) (19)

10



value is E[X] = [°[1 — G,(t)]dt. Now, by substituting 2* by z, we have

EX) = % fol 2571(1 — 2)"dz. (Note the change of limits since z lies in [0,1]).
r(Hrn+1
This can be reduced using the Euler Gamma function as E(X) = %%
p
Now, by using the identity I'(z + 1) = 2I'(2) recursively, we get Mean Dis-
tance,
- 1
D(p,N)=EX)=[[0+-)" (21)
o Ps

O

Dataset | MINIST | CIFAR-10 | DET | Brodatz | VisTex

D(p,N) 0.32 0.49 0.54 0.74 0.79
Dataset | KTH | KTH2 | Drexel | UIUCTex
D(p,N) 0.78 0.79 0.63 0.69

Table 3: Mean distance from origin to nearest sampling point for various
object recognition and texture datasets

Table 3 shows the mean distance from the origin to the nearest sampling
point for various datasets. From the table and according to [10], most data
points for the texture datasets are nearer to the feature space boundary than
to any other data point. This makes prediction particularly difficult for these
datasets because we cannot interpolate between data points and we need to
extrapolate. Next, we propose a result on the expected distance from the
origin to the farthest data point and then use it to derive the relation of the
Relative Contrast of the data points to the underlying dimensionality of the
vector space as highlighted in Section 5.2.

Lemma 5.3. Consider n samples distributed uniformly in a p-dimensional
hypersphere of radius 1 and center at (0,0). If at the origin, we consider
a nearest neighbor estimate, then mean distance from origin to the farthest

1 ; [ [
data point is 1 eSS Tk

Proof(Sketch). Using equation 19, and setting £ = n for the maxima, we
have,

9(y) = n[F@)]" " fy) = ny™ " lpy? ™ = npyP P (22)
Therefore, the corresponding CDF is given by G(y) = np%. By Lemma
n+p—1
5.1, the mean or expected value is E[X] = [(*[1 — np%i_;:_l |dy
np
=1- 23
(w2~ D 1 1) >
O

11



Texture Datasets | Brodatz Drexel KTH
CNN Test Error (%) 28.96 35.27 34.93
Texture Datasets KTH2 | UIUCTex | VisTex
CNN Test Error (%) 40.29 49.75 26.68

Table 4: Test Error of a Convolutional Neural Network trained using super-
vised backpropagation on the various texture datasets.

5.2 Relative Contrast in High Dimensions

In [3], it was shown that as dimensionality increases, the distance to the
nearest neighbor approaches that of the farthest neighbor, i.e., contrast be-
tween points vanishes, while, in [1] it was shown that Relative Contrast
varies as ,/p for n = 2 sample points with dimensionality p. In this paper,
we generalize this to the case of n data points and also provide an exact es-
timate of the Relative Contrast instead of providing approximation bounds
as [1]. We then show that as dimensionality p — oo, it yields the same result
as [3] and [1]. Also, we eliminate the arbitrary constant C' used in [1] which
can vary significantly with change in parameters resulting in a fluctuating
bound. It should be noted that we assume the Lo norm distance metric and
the Euclidean space for deriving our algebra.

Theorem 5.4. If RC,,;, be the Relative Contrast of n uniformly distributed
sample points with p being the dimensionality of the underlying vector space,

L~ = bt 1 le=1 (U pe) ™!
then, RC,,, = PP _LAPIR o~ P and RC,,, approaches 0 as p
[Te=i (+5¢)

approaches oo.

Proof(Sketch). From Lemma 5.2, we can see that the mean distance from
the origin to the nearest sampling point is given by the expression ngl (1+
é)*l. And from Lemma 5.3, the mean distance from the origin to the

. . . . o np
farthest data point is given by the expression 1 =) ) Therefore,
E[Dmaz—Dmin]

E[Dmin]
np n 1y—1
= L~ oo wmprp — Ue=1(1+ 3¢) (24)
[l (1+ é)_l
Now, it can be easily shown that
np n 1y-1
S 7 7 (7 o M A L (25)
poroo AN
Therefore, it follows that, W — 0 as p — oo0. Therefore,

RC,, — 0 as p — oo. From equation 24, it can be concluded that for
the general case of n sample points with a dimensionality of p, the expected
value of the relative contrast for the sample points varies as p~ (1), ]

12



Theorem 5.5. For n = 2 the general result proposed in Theorem 5.4 ap-

proaches the bound of % proposed in [1] as the dimensionality p of

2§+1
the underlying sample space approaches oo.

Proof(Sketch). From [1], it can be seen that for dimensionality of p and Ly,

norm,
Dmax — Dmin 1

lim F . =C 26

pggo [ Dmin a V26 +1 (26)

Subtracting the rightmost term in Equation 24 from Equation 26, we have,
Rcdiff = RCAgg — RCours

- ST )
(np+p— 1 (np+p—1)(np+p) &= 1
- VEi M0+ 4 27

Therefore, for any arbitrary constant C and a given &,

lzmp_woRCdlff = plggo \/ﬁ 2§ 1

- — [T (U + )
(np+p—1)(np+p) 1 ) (np+p) £=1
H§=1(1+E) ) 28)

Therefore, by substituting n = 2 in Equation 28, it is easy to show that
limp oo RC g5 = 0. O

Theorem 5.4 validates the result in [3] and Theorem 5.5 shows that for
the special case n = 2, our result approaches the bound of [1] as dimension-
ality p approaches oco. So, from Section 4 and Theorem 5.4, we conclude
that texture datasets lie on an inherently higher dimensional manifold than
object recognition datasets, so their Relative Contrast is lower.

6 EXPERIMENTS

To validate our theory that error rate for networks with Haralick features is
lower than that of raw vectors, we performed experiments on 6 benchmark
texture classification datasets - Brodatz, VisTex, Drexel, KTH-TIPS, KTH-
TIPS2 and UIUCTex. We extracted 27 features based on the GLCM metrics
presented in Section 2. Without loss of generality, we select image size n*
to be 28 and number of color levels k as 256. Also, datasets with multiple
color channels are converted to grayscale. The Deep Neural Networks are
trained by stacking — 1) Restricted Boltzmann Machines (RBM) and 2) De-
noising Autoencoders (SDAE). Both the models are then discriminatively

4Note that we extract nxn sliding window blocks from the various texture datasets for
uniformity of analysis.

13



fine-tuned with supervised backpropagation. Figures 1 and 2 show the final
test error of the backpropagation algorithm on the labeled test data using
RBM and SDAE for unsupervised pre-training. Table 4 shows the final test
error on the various texture datasets using a CNN. Our CNN has 3 con-
volutional layers with 32, 32 and 64 feature maps with 5x5 kernels each
accompanied with max-pooling layers with 3x3 kernels. Each pooling layer
is followed by a layer with Rectified Linear units and a local response nor-
malization layer with a 3x3 locality. We use a softmax based loss function
and a learning rate which is initially set to 0.001 and then decreased as the
inverse power of a gamma parameter (0.0001). In [7], the authors proposed
a new CNN architecture for texture classification. However, in this paper,
we focus on the CNN architecture proposed in [15] to maintain uniformity
with our theoretical analysis. By comparing the results in Figure 1, 2 and
Table 4, we can see that for all texture datasets, Haralick feature based
networks outperform the networks based on raw pixels. So, the experiments
substantiate our theoretical claim that extraction of Haralick features cre-
ate low-dimensional representations that enable Deep Neural Networks to
achieve lower test error rate.
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Figure 1: Test Error on the 6 texture datasets with the Haralick features
and stacked Restricted Boltzmann Machines with Lo norm regularization,
Dropout and Dropconnect obtained by varying the number of adjustable
parameters.
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Figure 2: Test Error on the 6 texture datasets with the Haralick features
and Stacked Denoising Autoencoders with Ls norm regularization, Dropout
and Dropconnect obtained by varying the number of adjustable parameters.

7 CONCLUSION

The use of Deep Neural Networks for texture recognition has seen a signifi-
cant impediment due to a lack of thorough understanding of the limitations
of existing Neural architectures. In this paper, we provide theoretical bounds
on the use of Deep Neural Networks for texture classification. First, using
the theory of VC-dimension we establish the relevance of handcrafted fea-
ture extraction. As a corollary to this analysis, we derive for the first time
upper bounds on the VC dimension of CNN as well as Dropout and Drop-
connect networks and the relation between excess error rates. Then we use
the concept of Intrinsic Dimension to show that texture datasets have a
higher dimensionality than color/shape based data. Finally, we derive an
important result on Relative Contrast that generalizes the one proposed in
[1]. From the theoretical and empirical analysis, we conclude that for tex-
ture data, we need to redesign neural architectures and devise new learning
algorithms that can learn GLCM or Haralick-like features from input data.
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