
An Agile Framework for Real-Time Motion Tracking

Saikat Basu, Robert DiBiano, Manohar Karki,

Malcolm Stagg, Jerry Weltman and Supratik

Mukhopadhyay

School of Electrical Engineering and Computer Science

Baton Rouge, LA, USA

e-mail: sbasu8@lsu.edu

Sangram Ganguly

Bay Area Environmental Research Institute/NASA

Ames Research Center

Moffett Field, CA, USA

Abstract— We present an agile framework for automated

tracking of moving objects in full motion video (FMV). The

framework is robust, being able to track multiple foreground

objects of different types (e.g., person, vehicle) having disparate

motion characteristics (like speed, uniformity) simultaneously

in real time under changing lighting conditions, background,

and disparate dynamics of the camera. It is able to start tracks

automatically based on a confidence-based spatio-temporal

filtering algorithm and is able to follow objects through

occlusions. Unlike existing tracking algorithms, with high

likelihood, it does not lose or switch tracks while following

multiple similar closely-spaced objects. The framework is based

on an ensemble of tracking algorithms that are switched

automatically for optimal performance based on a performance

measure without losing state. Only one of the algorithms, that

has the best performance in a particular state is active at any

time providing computational advantages over existing

ensemble frameworks like boosting. A C++ implementation of

the framework has outperformed existing visual tracking

algorithms on most videos in the Video Image Retrieval and

Analysis Tool (VIRAT: www.viratdata.org) and the Tracking-

Learning-Detection data-sets.

Full Motion Video; object tracking; Confidence-based spatio-

temporal filtering; Agile tracking; Ensemble algorithm

I. INTRODUCTION

Automated tracking of moving objects in a video in real
time is important for different applications such as video
surveillance, activity recognition, etc. Existing visual tracking
algorithms [8,11,12,13] cannot automatically adapt to changes
in lighting conditions, background, types of sensors (e.g., EO
vs IR) and their dynamics (zooming, panning, etc.) easily.
They cannot gracefully handle data that simultaneously
contains different types of motions such as both slow and fast
moving objects, motion behind an occlusion, etc. Many of the
existing tracking algorithms [8,11,12,13] cannot start the
tracking process automatically; they require a user to draw a
box on an object that needs to be tracked for the process to be
initiated.

 We present an agile framework for automated
tracking of moving objects of full motion video (FMV). The
framework is robust, being able to track multiple foreground
objects of different types (e.g., person, vehicle) having
disparate motion characteristics (like speed, uniformity)
simultaneously in real time under changing lighting
conditions, background, and disparate dynamics of the
camera. It is able to start tracks automatically based on a

spatio-temporal filtering algorithm and is able to gracefully
handle objects in occluded surroundings. Unlike existing
tracking algorithms [12], with high likelihood, it does not lose
or switch tracks while following multiple similar closely-
spaced objects. The framework is based on an ensemble of
tracking algorithms that are switched automatically for
optimal performance based on a performance measure without
losing state. Only one of the algorithms, that has the best
performance in a particular state is active at any time
providing computational advantages over existing ensemble
frameworks like boosting. We prove theoretically (lemmas 1
and 2) that the presented agile tracking framework is more
accurate than existing individual/ensemble-based algorithms.
A C++ implementation of the framework (for the purposes of
this paper, we only consider two algorithms in our ensemble:
Gaussian Mixture Background Subtraction (GM) and optical
flow) has outperformed existing visual tracking algorithms on
most videos in the Video Image Retrieval and Analysis Tool
(VIRAT: www.viratdata.org) and the Tracking-Learning-
Detection [12] data-sets.

II. RELATED WORK

A spatio-temporal tracking algorithm was proposed in
[11] that involved tracking articulated objects in image
sequences through self-occlusions and changes in viewpoint.
However, they did not provide capabilities of automatic track
starting or tracking multiple objects. The work in [13]
combines background subtraction, feature tracking, and
grouping algorithms. However, their work didn’t have any
suitable classification method based on the spatial features of
the objects detected. A new particle filter, Kernel Particle
Filter (KPF), was proposed in the [16] for visual tracking for
multiple objects in image sequences. The idea proposed in
[17] shows tracking using a single classification SVM. A
boosting based approach was proposed in [20] that used a
cascade of classifiers for object detection. However, it didn’t
address the problem of tracking objects through consecutive
frames of a video sequence.

Among the existing tracking frameworks the one most
relevant to our work is the TLD algorithm proposed in [12].
But, the main problem inherent in this algorithm is its inability
to start tracks automatically as well as lacking a multi-object
tracking feature. Also, TLD is based on template matching
and hence fails for videos with multiple numbers of similar
looking objects.

mailto:sbasu8@lsu.edu

III. THE PROPOSED APPROACH

Figure 1 shows the schematic of our approach. First, a
moving object must be automatically identified as part of the
foreground. This involves starting tracks at particular pixels
on the subsequent frames that have a higher probability of
being part of the moving foreground object. This is achieved
by 1) stabilizing the image and 2) feeding the stabilized image
to the spatial and temporal filtering algorithms described
below. Once the track starter algorithm has precisely marked
the object coordinates, the objects must be tracked if any
motion is to be identified. Issues such as camera instability
(shaking, panning, rotating) come into play and require image
stabilization for the tracking to be successful.

Figure 1. Schematic representation of our approach

A. Image Stabilization

An incoming video is first stabilized using an iterative
algorithm:

 1. Apply Shi and Tomasi's edge-finding algorithm to

the first frame to identify significant feature points in the
image.

 2. For each subsequent frame, apply Lucas-Kanade
optical flow to track the motion of the features identified by
Shi and Tomasi's algorithm, refreshing the feature points
when necessary.

 3. With increasing precision for each iteration:
 (a) For each angle of rotation in a certain range,

determine the translation of each point.
 (b) Find the most common (mode)

translation/rotation pair (Ө, x) and (Ө, y) of all the features.
 4. Warp the image to adjust for the total mode of the

motion.
At present, our method stabilizes the image for small

amounts of translational and rotational camera movement.
Thus, for wide camera sweeps or changes in perspective or
scale, our stabilization method is not, at present, appropriate.

B. Track Starting

The automated track starting algorithm based on a
confidence-based spatio-temporal filtering algorithm first
detects blobs using the GM Background Subtraction method
[9]. This yields difference images, which are fed into the
spatial filtering module below.

1) Opening or Closing images of Images via Image

Morphing

The image obtained through the background subtraction
algorithm is initially opened by a structuring element with
diameter 3 pixels to filter out unnecessary noise. By opening,
we mean the dilation of the erosion of a set A by a structuring

element B. Then it is closed with k-means clustering [2]. This
helps in detecting blobs over subsequent frames.

2) Spatial Filtering

Once blobs are detected in the difference images, they are
filtered according to their spatial features. The pseudo code
for the spatial filtering algorithm is provided below. Scale
information available from the metadata accompanying the
videos is used to filter blobs specifically based on their area
and orientation. The filtered blobs are then passed as input to
the temporal filtering algorithm below.

3) Temporal Filtering

To filter blobs in the temporal domain we use a confidence
measure. Each blob has a confidence measure δ associated
with it.

Initially the confidence value for each blob is zero.
Confidence value for a blob increases as it is detected across
successive frames In case a blob appears in consecutive
frames, the confidence value increases according to a prior
confidence measure. The confidence update equation is as
follows:

Equation for confidence gain,

 (1)
And, equation for confidence loss,

 (2)
 Where, n is the frame number.
The composite confidence update equation is as follows:
 δ = (0.5-n) V (-0.5-n) (3)
So, the confidence update equation takes the form

portrayed in Fig 2.

Figure 2. Confidence value update for the frames (for increasing

confidence).

4) Adaptive Thresholding

If the confidence value for a blob exceeds a specified
upper threshold σ, a track is started on it. . The moment the
confidence value for a blob falls beneath a lower threshold τ,
the corresponding object is discarded. If the confidence value
is between σ and τ, the corresponding blob is maintained in
the list of prospective tracks. If the confidence measure
increases to a value higher than the upper threshold σ, then a
track is started at the pixel representing the object coordinates.
For videos that have higher noise, clutter and random changes

n0.5=

n0.5=

in lighting conditions, as is often the case for outdoor videos
taken from moving cameras, the upper threshold value σ is set
higher. On the other hand, for videos with more stable
conditions σ is set lower because of the lesser probability of
encountering random classification noise.
The track-starting algorithm:
--
begin:
img  getFrame(video);
img  STABILIZE_IMAGE(img);
bw_imgGM_BACKGROUND_SUBTRACTION(img);
sl  create_structuring_element(3);

// here 3 is the diameter of the structuring element
img  PERFORM_OPEN_ON_IMAGE(bw_img,sl);
 // performs morphological opening on the image
sl  create_structuring_element(n);

// n is chosen adaptively acc. to the image
img  PERFORM_CLOSE_ON_IMAGE(img,sl);

 //performs morphological closing on the image
contour_img  FIND_CONTOUR(img);

// finds the boundaries on the image
count = 0;
while(contour != NULL)
prob_objGET_OBJ_FROM_CONTOUR(contour_img);

/* prob_obj contains probable object*/
 count  count + 1;
end while
for i  0 to count

 temp  SPATIAL_FILTERING(prob_obj);
end for
while temp != NULL

obj  TEMPORAL_FILTERING(temp);
end while
end

SPATIAL_FILTERING(prob_obj)
begin:

if (prob_obj.size < τ1 AND prob_obj.size > τ2 AND
prob_obj.height/prob_obj.width < τ3 AND
prob_obj.height/prob_obj.width > τ4)
 //Here τ1 ,τ2 ,τ3 and τ4 indicate the respective thresholds
 return prob_obj;
else

return NULL;
endif

end

TEMPORAL_FILTERING(temp)
begin:

for each prob_obj
 δprob_obj  0; //init. weight of each object detected as 0.
end for
if for video.nextframe obj_detected = prob_obj
 δprob_obj  δprob_obj + (0.5)-n;
else // confidence update equationss
 δprob_obj  δprob_obj - (0.5)-n;
end if
if δprob_obj ≤ τ
 remove prob_obj from list of objects;
else

obj  obj Φ prob_obj; /* append prob_obj to the list of objects
detected. Φ represents the append operator */

end if
for each obj, if δprob_obj ≥ σ
 start tracks on obj(x,y); // start tracks on object centroids (x,y)
end for

return obj;
end
--

C. The Agile Tracking Framework

Object tracking is a matter of determining the apparent
motion of the target object, keeping track of its pixel
coordinates. Many object tracking methods are based on
optical flow. The fundamental assumption of any method used
to compute optical flow is that the intensity of the target object
moves with constant velocity across frames. Existing methods
like Kalman Filter[8], based on a Bayesian model and
TLD[11] based on Template Matching primarily use a single
learner to perform the underlying computations. In the field of
machine learning, ensemble methods consist of a collection of
models that can be used to improve the classification accuracy
as compared to any of the individual models [3,7,10]. It can
be shown through the following lemma that an ensemble
learner performs better than any of the constituent learners.
--

Lemma 1. Even a strong learner cannot endure situational
variances, i.e., it cannot perform well at all situations.

Proof. The Boosting algorithm described by Schapire and
subsequently proposed implementations like Adaboost use
Convex Potantial Boosters. As shown in [19], for a wide range
of convex potential functions, any boosting algorithm is
bound to encounter random classification noise. They show
that any such boosting algorithm is able to classify examples
correctly in absence of noise but in the presence of noise the
learner cannot learn to an accuracy better than 1/2. This holds
even if the boosting algorithm stops early or the voting
weights are bounded.

Consider two sets of disjoint concept classes C1 and C2
such that C1 Λ C2 = Φ. Now, if we consider an instance space
X containing elements from C1, then any 𝑐 ∈ C2 can be
classified as random noise in X. So, effectively at least two
different learners L1 and L2 are needed for classifying the
instances in X according to C1 and C2.
--

In the light of this pre-defined notion, we present a new
agile learning based tracker, that uses a combination of two
methods for computing optical flow: Gaussian Mixture (GM)
background subtraction [9] for quick-moving and the Lucas-
Kanade method for slow-moving [1] objects in order to
account both for fast and slow velocities. By the agile learning
based tracker, we imply that our tracker can adaptively switch
between the constituent learners at runtime based on the object
velocities.

We present a new agile tracking framework that uses an
ensemble of k individual trackers. The framework allows
adaptive switching between the constituent trackers
dynamically based on a performance measure. The algorithm
for adaptive switching is described below.

The switching algorithm:
SWITCH():
j  1;
active_tracker  Tj
// Tj is the jth tracker compute the performance measure λ

if λ ≥ threshold Φ
CHECKPOINT_CURRENT_STATE();
//saves the current state
active_tracker  CALL_TRACKER_SELECTOR();

 //calls a new tracker

state  GET_CHECKPOINTED_STATE();
//returns the currently checkpointed state

 state  active_tracker(state);
else
 continue;
endif
if performance measure λ is minimized
 i  i+1
endif

The switching module is called by the agile tracking
algorithm.

The tracking algorithm:
AGILE_TRACKER(freq):
for each frame i,
 if frame_number % freq = 0
 call SWITCH();
 endif
endfor

In the above algorithm, state refers to the set of tuples
(x,y,n,I), where x and y are the pixel coordinates, n is the
frame number and I is the intensity. The agile tracker calls the
switching algorithm at a user specified frequency. The
switching algorithm computes the performance measure at the
current state. If it exceeds a threshold the current tracker is
substituted with a new one obtained from an ensemble through
a pre-defined policy in such a way that the application of the
new tracker to the current state results in one whose
performance measure value is below the threshold. While
switching, the current state is checkpointed so that it can be
accessed by the new tracker. We use the linear function given
below as the performance measure
P = k1* stabilization_error + k2* track_overlap_amount + k3*
probability_jump_detected + k4* probability_drift_detected
+ k5* track_speed

where k1,k2, … ,k5 are constants whose sum is 1 and whose
values depend on the constituent trackers in the ensemble.
The individual components of the equation are discussed
further in the extended version of the paper. The performance
measure quantifies the tracking error at the current state.

The next lemma shows that dynamic switching between
individual trackers yields more accurate results.
--

Lemma 2. Switching between individual trackers
dynamically can decrease the upper bound for error up to a
certain pre-defined value.
Proof. Suppose c(v) is the correct classification for v and

h1(v), h2(v) etc. are the classifications produced by the

trackers T1, T2, etc respectively. h(v) is the estimate produced

by the effective composite tracker T.

Here, T = T1 ∆ T2 ∆ … ∆ Tn, where, T1, T2, etc indicates

the trackers and ∆ indicates the switch operator on the

trackers.

Also, let a1, a2, etc be the respective probabilities of error or

misclassifications. Also, for switching between trackers

dynamically at runtime we incorporate the idea of defining

adaptive thresholds τ1, τ2 etc. So, we define the set τ = {τ1, τ2,

τ3, τ4, τ5,…, τn } as the threshold for the number of

misclassifications. If the number of misclassifications for a

particular tracker Ti exceeds the corresponding threshold τi

we switch the learner.

Suppose for the ith tracker, the no. of misclassifications
become (τi+1) at the (ni+1)th instance. So, upto the ni

th
instance, probability of error or misclassification.

Also, let ᾀ be the upper bound of error on any of the
individual trackers. Hence, for the total tracking process, the
composite probability of misclassification is given by
Pr(h(v) ≠ c(v)) = Pr((h1(v) ≠ c(v)) Λ (h2(v) ≠ c(v)) Λ … Λ
(hn(v) ≠ c(v)))

= (
(𝑛1

τ1)

n1!
)Χ a1

τ1 × (
(𝑛2

τ2)

n2!
) × a2

τ2 × (
(𝑛3

τ3)

n3!
) × a3

τ3 × … × (
(𝑛𝑁

τN)

nN!
) × aN

τN

≤ (
(𝑛1

τ1)

n1!
) × ᾀτ1 × (

(𝑛2
τ2)

n2!
) × ᾀτ2 × (

(𝑛3
τ3)

n3!
) × ᾀτ3 × … × (

(𝑛𝑁
τN)

nN!
) × ᾀτN

[Since, for all i, ai ≤ ᾀ]

= (
(𝑛1

τ1
)

n1!
) (

(𝑛2
τ2

)

n2!
) (

(𝑛3
τ3

)

n3!
) … (

(𝑛𝑁
τN

)

nN!
) ᾀ (τ1+τ2+τ3+…+τN) ≤ ᾀ (5)

Here, N is the number of switches performed at runtime.

Observations:

1) Inequation (5) holds because each of the terms (
(𝑛𝑖

τi
)

ni!
) ≤ 1

as well as ᾀ (τ1+τ2+τ3+…+τN) ≤ ᾀ, since, ᾀ ≤ 1.
2) So, the overall upper bound for the error of the composite

tracker is reduced owing to switching at runtime.
3) Inequation (5) proves that the effective composite error

bound of the agile tracker T is less than any of the
individual trackers Ti.

1, 2 and 3 justify our argument that using switching
reduces the overall error bound.

Threshold value selection is a very important criterion in
optimizing the agile tracker. In order to evaluate the threshold
selection criteria, let us concentrate on the simplified version
of the equation presented in (5).

So, we have, Classification error

Pr(h(v) ≠ c(v)) ≤ ∏ (
(𝑛𝑖

τi)

ni!
) ᾀτi𝑁

𝑖=1 = ∏ (
1

τi!(ni−τi)!
) ᾀτi𝑁

𝑖=1 (6)

The error bound can be minimized by increasing τi until τi =
┌ni/2┐.
--

In a typical video scenario, most features are stationary
from frame to frame with only a few objects moving. The
stationary features are considered to be in the background, and
the moving objects are foreground. The GM background
subtraction method described in [9] efficiently segments
foreground and background objects in real time, allowing for
effective object tracking. However, as is typical of
background segmentation methods, it becomes less effective
when there is camera instability. Even with a stable camera,
this method tends to lose foreground objects if there is
relatively small movement in the foreground. To compensate
for these deficiencies, we also use a more traditional and
robust optical flow method for object tracking.

The Lucas-Kanade method, like many algorithms used to
compute optical flow, imposes a constraint on the optical flow
problem: the displacement (δx, δy) of the image intensity from
a pixel (x,y) to a pixel (x+δx,y+δy) in the subsequent frame is
small and constant over time. That is, it must satisfy for all
pixels p the equation:

 
),(=)()(pIVpIVpI txyxx 

where Ix, Iy and It are the partial derivatives of the image
intensity with respect to x, y and t, and Vx and Vy are the
velocity vectors. This usually results in an over-determined
system and uses least-squares to find a solution. Due to the
constraint imposed by the method, it is best suited for a object
moving slowly with constant velocity. We use pyramidal
Lucas-Kanade. That is, we compute Lucas-Kanade at the
lowest-resolution image I0; then, having obtained this lower-
resolution result, we compute Lucas-Kanade incrementally
for the next lowest resolution I1. Similarly, we obtain I2 from
I1, and so forth until reaching the full resolution.

Combined, the Lucas-Kanade method and GM
background tracking ensure motion-tracking performance
superior that of either method used alone.

When used on Unmanned Aerial Vehicle (UAV) videos,
object tracking presents an array of challenges. One is camera
instability; often, during recording, the camera shakes, pans,
or rotates, which causes background objects to appear to
move. A second is poor image quality due to low-definition
recording equipment or long distance; this obscures images
and interferes with the tracking process. A third is the need for
real-time tracking, which requires simple, efficient methods to
keep up with the pace of real-time input.

1) Agile Tracking vs. Other Ensemble Based Trackers
A tracker based on an ensemble machine learning

technique like boosting will create, based on training data an
optimal tracker of the form:

T = ∑ αptp

𝑃

𝑝=1


where P is the number of rounds, tp is a tracker in the

ensemble, and αp are weights such that ∑ αp = 1
𝑃

𝑝=1

While running on actual data T will need to run all the P
trackers on each datapoint (i.e., frame) and compute a
weighted sum of the outputs. In our case only one tracker is
active at any particular time, i.e., only one tracker is run on
each datapoint. This is crucial for real time performance.

Moreover, in boosting, the weights αp are fixed once the

training is over. This can create problems if the character of
the data changes drastically from the examples on which the
training is performed due to changes in background, lighting
conditions, etc. This can be avoided in the agile framework by
having multiple boosted trackers in the ensemble and
switching them accordingly using the SWITCH() method (of
course increasing the computational cost) but definitely
yielding higher performance.

2) Image Quality and Real-time Tracking
How do we accommodate both poor image quality and the

need for real-time tracking? The combination of GM
background subtraction and the Lucas-Kanade method
ensures a better result than either one alone; Lucas-Kanade
tends to succeed where GM background subtraction fails, and
vice versa. For a blurry, low-quality, quickly-moving object,
GM background subtraction works well as long as the image

is stable so that background and foreground objects can be
distinguished. If a failure, defined as a large jump or the object
is not moving quickly enough to show up in the GM
background image, is detected, we track the object's
movement according to the output of the Lucas-Kanade flow
field.

Fortunately for the sake of efficiency, the incremental cost
to stabilize the image is small, since Shi and Tomasi's
algorithm need only run once and the Lucas-Kanade flow field
is already being computed to track foreground objects.

3) Object Passing
One problem with GM background subtraction is when

two moving objects are nearby or occluded, it becomes
difficult to separate them. Likewise, with Lucas-Kanade, the
boundaries of the tracked objects must be approximately
known. To account for this, we create a probability image
when two objects are nearby, consisting of a two Gaussians.
The first object cannot move to where the probability is 0 (e.g.
at the center of the second object), and likewise for the second
object. This, along with preventing large jumps, usually solves
the problem with two objects passing each other in the near
vicinity.

IV. IMPLEMENTATION OF OUR APPROACH

 We implemented tracking in C++ using the OpenCV
library for real-time computer vision. The ensemble in our
case consisted of two individual algorithms: Gaussian Mixture
Background Subtraction and Lucas-Kanade optical flow
(LK). The GM algorithm works well at high speeds while the
LK performs well at lower speeds. The parameters k1, k2, k3,
and k4 are currently equally weighted, with the exception of
k5 which has been determined by the ability of LK to obtain
certain track speeds. Also the switching algorithm was called
by the agile tracker every frame.

TABLE I. COMPARISON OF THE VARIOUS TRACKERS

 Tot.
no. of

frames

BeyondS
emi-

Boost

coGD CVPR MIL

Jumping 313 14 1 96 313

Car 945 28 34 29 220

Motocross 2665 6 1 59 63

Car chase 9928 66 1 334 321

Panda 3000 130 1 358 992

V. RESULTS AND COMPARITIVE STUDIES

We compare the results from our tracker against seven
existing trackers whose outputs are available at the publicly
available TLD dataset [12]. Table 1 and Table 2 show the
number of frames after which the trackers lost track for the
first time. The measure proves to be effective in the absence
of a track merging algorithm. The agile tracker performs
significantly well in most of the cases. Fig. 3 shows the
outputs of the agile tracker on the TLD dataset. Also TLD is
based on template matching and hence fails for videos with
multiple numbers of similar looking objects. This is illustrated
in Fig. 4 where TLD switches tracks arbitrarily between

similar looking foreground objects whereas the agile tracker
keeps tracking a particular object for the entire time frame of
its visibility. The full length tracked videos along with further
results on VIRAT data are available at [15].

TABLE II. COMPARISON OF THE VARIOUS TRACKERS (CONTD.)

 Tot. no.
of

frames

Online
Boost

Semi
Boost

TLD Agile
Tracker

Jumping 313 26 21 313 313

Car 945 545 652 802 581

Motocross 2665 15 59 173 110

Car chase 9928 316 190 244 402

Panda 3000 1004 83 277 2568

Figure 3. Results from the agile tracker

Figure 4. The left one represents the output from the agile tracker and the

right one represents that from TLD.

VI. CONCLUSIONS

Our novel approach to track starting using confidence

measure and adaptive thresholding not only performs in real time

but is also accurate. The agile tracking framework allows dynamic

switching within an ensemble of tracking algorithms based on a

performance measure while preserving state providing more

accuracy than any of the individual algorithms. We believe that the

presented framework provides the foundation for real time video

activity recognition.

REFERENCES

[1] B. D. Lucas and T. Kanade, “An Iterative Image Registration
Technique With An Application To Stereo Vision”, Proc. Seventh
International Joint Conference on Artificial Intelligence (IJCAI-81),
Vancouver. pages 674-679, 1981.

[2] Chris Ding and Xiaofeng He, "K-means Clustering via Principal
Component Analysis", Proc. of Int'l Conf. Machine Learning (ICML
2004), pp 225-232. July 2004.

[3] D. Opitz, R. Maclin, "Popular ensemble methods: An empirical study",
Journal of Artificial Intelligence Research, 11: 169–198, 1999.

[4] J. Shi and C. Tomasi, “Good Features To Track”, 9th IEEE Conference
on Computer Vision and Pattern Recognition, pages- 593-600, 1994.

[5] J.Y. Bouguet, “Pyramidal implementation of the lucas kanade feature
tracker : description of the algorithm,” OpenCV Document, Intel,
Microprocessor Research Labs, 2000.

[6] Kaiki Huang and Tieniu Tan, “Vs-star: A Visual Interpretation System
for Visual Surveillance”, Pattern Recognition Letters, 31(14):2265-
2285, 2010.

[7] L. Rokach, "Ensemble-based classifiers". Artificial Intelligence
Review 33 (1-2): 1–39, 2010.

[8] N. Funk, “A study of the Kalman filter applied to visual tracking.”
Technical report, University of Alberta, 2003.

[9] P. Kaewtrakulpong and R. Bowden, “An Improved Adaptive
Background Mixture Model For Real-Time Tracking With Shadow
Detection”, Proc. European Workshop Advanced Video Based
Surveillance Systems, 2001.

[10] R. Polikar, "Ensemble based systems in decision making". IEEE
Circuits and Systems Magazine 6 (3): 21–45, 2006.

[11] X. Lan and D. Huttenlocher. A unified spatio-temporal articulated
model for tracking.CVPR, vol. 1, pp. 722–729, 2004.

[12] Z. Kalal, J. Matas, and K. Mikolajczyk. P-N Learning: Bootstrapping
Binary Classifiers from Unlabeled Data by Structural Constraints. In
Conference on Computer Vision and Pattern Recognition, 2010.

[13] Z. Kim. Real time object tracking based on dynamic feature grouping
with background subtraction. In CVPR, 2008.

[14] VIRAT video dataset, web source: viratdata.org

[15] Website: https://xythos.lsu.edu/users/mstagg3/web/tracker/

[16] C. Chang, R. Ansari, and A. Khokhar, “Multiple object tracking with
kernel particle filter”, in Proc. CVPR, 2005, pp. 566-573.

[17] O. Williams, A. Blake, and R. Cipolla. A sparse probabilistic learning
algorithm for real-time tracking. In Proc. Int’l Conf. Computer Vision,
pages 353–360, Nice, France, 2003.

[18] R. Schapire. The boosting approach to machine learning: An overview.
In MSRI Workshop on Nonlinear Estimation and Classification, 2001.

[19] P. M. Long and R. A. Servedio, “Random classification noise defeats
all convex potential boosters”, In International Conference on Machine
Learning, pages 608–615, 2008.

[20] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features”, In Computer Vision and Pattern Recognition,
volume 1, pages 511-518, 2001.

https://xythos.lsu.edu/users/mstagg3/web/tracker/

