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Abstract— We present an agile framework for automated 

tracking of moving objects in full motion video (FMV). The 

framework is robust, being able to track multiple foreground 

objects of different types (e.g., person, vehicle) having disparate 

motion characteristics (like speed, uniformity) simultaneously 

in real time under changing lighting conditions, background, 

and disparate dynamics of the camera. It is able to start tracks 

automatically based on a confidence-based spatio-temporal 

filtering algorithm and is able to follow objects through 

occlusions. Unlike existing tracking algorithms, with high 

likelihood, it does not lose or switch tracks while following 

multiple similar closely-spaced objects.  The framework is based 

on an ensemble of tracking algorithms that are switched 

automatically for optimal performance based on a performance 

measure without losing state.  Only one of the algorithms, that 

has the best performance in a particular state is active at any 

time providing computational advantages over existing 

ensemble frameworks like boosting. A C++ implementation of 

the framework has outperformed existing visual tracking 

algorithms on most videos in the Video Image Retrieval and 

Analysis Tool (VIRAT: www.viratdata.org) and the Tracking-

Learning-Detection data-sets. 

Full Motion Video; object tracking; Confidence-based spatio-

temporal filtering; Agile tracking; Ensemble algorithm 

I.  INTRODUCTION 

Automated tracking of moving objects in a video in real 
time is important for different applications such as video 
surveillance, activity recognition, etc. Existing visual tracking 
algorithms [8,11,12,13] cannot automatically adapt to changes 
in lighting conditions, background, types of sensors (e.g., EO 
vs IR) and their dynamics (zooming, panning, etc.) easily.  
They cannot gracefully handle data that simultaneously 
contains different types of motions such as both slow and fast 
moving objects, motion behind an occlusion, etc. Many of the 
existing tracking algorithms [8,11,12,13] cannot start the 
tracking process automatically; they require a user to draw a 
box on an object that needs to be tracked for the process to be 
initiated. 

 We present an agile framework for automated 
tracking of moving objects of full motion video (FMV). The 
framework is robust, being able to track multiple foreground 
objects of different types (e.g., person, vehicle) having 
disparate motion characteristics (like speed, uniformity) 
simultaneously in real time under changing lighting 
conditions, background, and disparate dynamics of the 
camera. It is able to start tracks automatically based on a 

spatio-temporal filtering algorithm and is able to gracefully 
handle objects in occluded surroundings. Unlike existing 
tracking algorithms [12], with high likelihood, it does not lose 
or switch tracks while following multiple similar closely-
spaced objects.  The framework is based on an ensemble of 
tracking algorithms that are switched automatically for 
optimal performance based on a performance measure without 
losing state.  Only one of the algorithms, that has the best 
performance in a particular state is active at any time 
providing computational advantages over existing ensemble 
frameworks like boosting. We prove theoretically (lemmas 1 
and 2) that the presented agile tracking framework is more 
accurate than existing individual/ensemble-based algorithms. 
A C++ implementation of the framework (for the purposes of 
this paper, we only consider two algorithms in our ensemble: 
Gaussian Mixture Background Subtraction (GM) and optical 
flow) has outperformed existing visual tracking algorithms on 
most videos in the Video Image Retrieval and Analysis Tool 
(VIRAT: www.viratdata.org) and the Tracking-Learning-
Detection [12] data-sets. 

II. RELATED WORK 

A spatio-temporal tracking algorithm was proposed in 
[11] that involved tracking articulated objects in image 
sequences through self-occlusions and changes in viewpoint. 
However, they did not provide capabilities of automatic track 
starting or tracking multiple objects. The work in [13] 
combines background subtraction, feature tracking, and 
grouping algorithms. However, their work didn’t have any 
suitable classification method based on the spatial features of 
the objects detected. A new particle filter, Kernel Particle 
Filter (KPF), was proposed in the [16] for visual tracking for 
multiple objects in image sequences. The idea proposed in 
[17] shows tracking using a single classification SVM. A 
boosting based approach was proposed in [20] that used a 
cascade of classifiers for object detection. However, it didn’t 
address the problem of tracking objects through consecutive 
frames of a video sequence.     

Among the existing tracking frameworks the one most 
relevant to our work is the TLD algorithm proposed in [12]. 
But, the main problem inherent in this algorithm is its inability 
to start tracks automatically as well as lacking a multi-object 
tracking feature. Also, TLD is based on template matching 
and hence fails for videos with multiple numbers of similar 
looking objects. 
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III. THE PROPOSED APPROACH 

Figure 1 shows the schematic of our approach.  First, a 
moving object must be automatically identified as part of the 
foreground. This involves starting tracks at particular pixels 
on the subsequent frames that have a higher probability of 
being part of the moving foreground object. This is achieved 
by 1) stabilizing the image and 2) feeding the stabilized image 
to the spatial and temporal filtering algorithms described 
below. Once the track starter algorithm has precisely marked 
the object coordinates, the objects must be tracked if any 
motion is to be identified. Issues such as camera instability 
(shaking, panning, rotating) come into play and require image 
stabilization for the tracking to be successful. 

 

Figure 1.  Schematic representation of our approach 

A. Image Stabilization 

An incoming video is first stabilized using an iterative 
algorithm: 

    
    1.  Apply Shi and Tomasi's edge-finding algorithm to 

the first frame to identify significant feature points in the 
image.  

    2.  For each subsequent frame, apply Lucas-Kanade 
optical flow to track the motion of the features identified by 
Shi and Tomasi's algorithm, refreshing the feature points 
when necessary.  

    3.  With increasing precision for each iteration:   
        (a) For each angle of rotation in a certain range, 

determine the translation of each point.  
        (b) Find the most common (mode) 

translation/rotation pair (Ө, x) and (Ө, y) of all the features.  
     4.  Warp the image to adjust for the total mode of the 

motion.  
At present, our method stabilizes the image for small 

amounts of translational and rotational camera movement. 
Thus, for wide camera sweeps or changes in perspective or 
scale, our stabilization method is not, at present, appropriate. 

B. Track Starting 

The automated track starting algorithm based on a 
confidence-based spatio-temporal filtering algorithm first 
detects blobs using the GM Background Subtraction method 
[9]. This yields difference images, which are fed into the 
spatial filtering module below. 

1)  Opening or Closing images of Images via Image 

Morphing  

The image obtained through the background subtraction 
algorithm is initially opened by a structuring element with 
diameter 3 pixels to filter out unnecessary noise. By opening, 
we mean the dilation of the erosion of a set A by a structuring 

element B. Then it is closed with k-means clustering [2]. This 
helps in detecting blobs over subsequent frames. 

2) Spatial Filtering  

Once blobs are detected in the difference images, they are 
filtered according to their spatial features. The pseudo code 
for the spatial filtering algorithm is provided below. Scale 
information available from the metadata accompanying the 
videos is used to filter blobs specifically based on their area 
and orientation. The filtered blobs are then passed as input to 
the temporal filtering algorithm below. 

3) Temporal Filtering  

To filter blobs in the temporal domain we use a confidence 
measure.  Each blob has a confidence measure δ associated 
with it.  

Initially the confidence value for each blob is zero. 
Confidence value for a blob increases as it is detected across 
successive frames In case a blob appears in consecutive 
frames, the confidence value increases according to a prior 
confidence measure. The confidence update equation is as 
follows: 

Equation for confidence gain,  

                           (1) 
And, equation for confidence loss,  

                           (2) 
 Where, n is the frame number. 
The composite confidence update equation is as follows: 
          δ = (0.5-n) V (-0.5-n)                         (3) 
So, the confidence update equation takes the form 

portrayed in Fig 2.  

 
   

Figure 2.  Confidence value update for the frames (for increasing 

confidence). 

4)  Adaptive Thresholding  

If the confidence value for a blob exceeds a specified 
upper threshold σ, a track is started on it. . The moment the 
confidence value for a blob falls beneath a lower threshold τ, 
the corresponding object is discarded. If the confidence value 
is between σ and τ, the corresponding blob is maintained in 
the list of prospective tracks. If the confidence measure 
increases to a value higher than the upper threshold σ, then a 
track is started at the pixel representing the object coordinates. 
For videos that have higher noise, clutter and random changes 
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in lighting conditions, as is often the case for outdoor videos 
taken from moving cameras, the upper threshold value σ is set 
higher. On the other hand, for videos with more stable 
conditions σ is set lower because of the lesser probability of 
encountering random classification noise. 
The track-starting algorithm: 
--------------------------------------------------------------------------
begin: 
img  getFrame(video); 
img  STABILIZE_IMAGE(img); 
bw_imgGM_BACKGROUND_SUBTRACTION(img); 
sl  create_structuring_element(3);  

// here 3 is the diameter of the structuring element 
img  PERFORM_OPEN_ON_IMAGE(bw_img,sl);          
  // performs morphological opening on the image  
sl  create_structuring_element(n);  

// n is chosen adaptively acc. to the image  
img  PERFORM_CLOSE_ON_IMAGE(img,sl);   

 //performs morphological closing on the image  
contour_img  FIND_CONTOUR(img);   

// finds the boundaries on the image  
count = 0; 
while(contour != NULL)           
prob_objGET_OBJ_FROM_CONTOUR(contour_img);   

/* prob_obj contains probable object*/ 
      count  count + 1; 
end while 
for i  0 to count  

 temp  SPATIAL_FILTERING(prob_obj); 
end for 
while temp != NULL 

obj  TEMPORAL_FILTERING(temp); 
end while 
end 
 
SPATIAL_FILTERING(prob_obj) 
begin: 

if (prob_obj.size < τ1 AND prob_obj.size > τ2 AND 
prob_obj.height/prob_obj.width < τ3 AND  
prob_obj.height/prob_obj.width > τ4)            
 //Here τ1 ,τ2 ,τ3 and τ4 indicate the respective thresholds 
 return prob_obj; 
else  

return NULL; 
endif 

end 
 

TEMPORAL_FILTERING(temp) 
begin: 

for each prob_obj 
                 δprob_obj  0;  //init. weight of each object detected as 0.  
end for 
if for video.nextframe obj_detected = prob_obj 
 δprob_obj  δprob_obj + (0.5)-n; 
else                                                       // confidence update equationss 
 δprob_obj  δprob_obj - (0.5)-n; 
end if 
if δprob_obj ≤ τ 
 remove prob_obj from list of objects; 
else  

obj  obj Φ prob_obj;  /* append prob_obj to the list of objects 
detected. Φ represents the append operator */ 

end if 
for each obj, if δprob_obj ≥ σ 
 start tracks on obj(x,y);   // start tracks on object centroids (x,y)   
end for 

return obj; 
end 
-------------------------------------------------------------------------- 

C. The Agile Tracking Framework 

Object tracking is a matter of determining the apparent 
motion of the target object, keeping track of its pixel 
coordinates. Many object tracking methods are based on 
optical flow. The fundamental assumption of any method used 
to compute optical flow is that the intensity of the target object 
moves with constant velocity across frames. Existing methods 
like Kalman Filter[8], based on a Bayesian model and 
TLD[11] based on Template Matching primarily use a single 
learner to perform the underlying computations. In the field of 
machine learning, ensemble methods consist of a collection of 
models that can be used to improve the classification accuracy 
as compared to any of the individual models [3,7,10]. It can 
be shown through the following lemma that an ensemble 
learner performs better than any of the constituent learners.  
-------------------------------------------------------------------------- 

Lemma 1. Even a strong learner cannot endure situational 
variances, i.e., it cannot perform well at all situations.   

Proof.  The Boosting algorithm described by Schapire and 
subsequently proposed implementations like Adaboost use 
Convex Potantial Boosters. As shown in [19], for a wide range 
of convex potential functions, any boosting algorithm is 
bound to encounter random classification noise. They show 
that any such boosting algorithm is able to classify examples 
correctly in absence of noise but in the presence of noise the 
learner cannot learn to an accuracy better than 1/2. This holds 
even if the boosting algorithm stops early or the voting 
weights are bounded. 

Consider two sets of disjoint concept classes C1 and C2 
such that C1 Λ C2 = Φ. Now, if we consider an instance space 
X containing elements from C1, then any 𝑐 ∈ C2 can be 
classified as random noise in X. So, effectively at least two 
different learners L1 and L2 are needed for classifying the 
instances in X according to C1 and C2. 
-------------------------------------------------------------------------- 

In the light of this pre-defined notion, we present a new 
agile learning based tracker, that uses a combination of two 
methods for computing optical flow: Gaussian Mixture (GM) 
background subtraction [9] for quick-moving and the Lucas-
Kanade method for slow-moving [1] objects in order to 
account both for fast and slow velocities. By the agile learning 
based tracker, we imply that our tracker can adaptively switch 
between the constituent learners at runtime based on the object 
velocities.  

We present a new agile tracking framework that uses an 
ensemble of k individual trackers. The framework allows 
adaptive switching between the constituent trackers 
dynamically based on a performance measure. The algorithm 
for adaptive switching is described below.  

 
The switching algorithm: 
SWITCH(): 
j  1; 
active_tracker  Tj   
// Tj is the jth tracker compute the performance measure λ  

if λ ≥ threshold Φ 
CHECKPOINT_CURRENT_STATE();  
//saves the current state                                                
active_tracker  CALL_TRACKER_SELECTOR(); 

          //calls a new tracker                            



state  GET_CHECKPOINTED_STATE();  
//returns the currently checkpointed state 

           state  active_tracker(state); 
else  
         continue; 
endif 
if performance measure λ is minimized 
         i  i+1 
endif 

The switching module is called by the agile tracking 
algorithm. 
 
The tracking algorithm: 
AGILE_TRACKER(freq): 
for each frame i, 
       if frame_number % freq = 0 
 call SWITCH(); 
       endif  
endfor 

In the above algorithm, state refers to the set of tuples 
(x,y,n,I), where x and y are the pixel coordinates, n is the 
frame number and I is the intensity. The agile tracker calls the 
switching algorithm at a user specified frequency. The 
switching algorithm computes the performance measure at the 
current state. If it exceeds a threshold the current tracker is 
substituted with a new one obtained from an ensemble through 
a pre-defined policy in such a way that the application of the 
new tracker to the current state results in one whose 
performance measure value is below the threshold. While 
switching, the current state is checkpointed so that it can be 
accessed by the new tracker. We use the linear function given 
below as the performance measure 
P = k1* stabilization_error + k2* track_overlap_amount + k3* 
probability_jump_detected + k4* probability_drift_detected 
+ k5* track_speed 

where k1,k2, … ,k5 are constants whose sum is 1 and whose 
values depend on the constituent trackers in the ensemble.  
The individual components of the equation are discussed 
further in the extended version of the paper. The performance 
measure quantifies the tracking error at the current state.  

The next lemma shows that dynamic switching between 
individual trackers yields more accurate results. 
-------------------------------------------------------------------------- 

Lemma 2. Switching between individual trackers 
dynamically can decrease the upper bound for error up to a 
certain pre-defined value.  
Proof. Suppose c(v) is the correct classification for v and 

h1(v), h2(v) etc. are the classifications produced by the 

trackers T1, T2, etc respectively. h(v) is the estimate produced 

by the effective composite tracker T.  

Here, T  =  T1 ∆ T2 ∆ … ∆ Tn,      where, T1, T2, etc indicates 

the trackers and ∆ indicates the switch operator on the 

trackers. 

Also, let a1, a2, etc be the respective probabilities of error or 

misclassifications. Also, for switching between trackers 

dynamically at runtime we incorporate the idea of defining 

adaptive thresholds τ1, τ2 etc. So, we define the set τ = {τ1, τ2, 

τ3, τ4, τ5,…, τn } as the threshold for the number of 

misclassifications. If the number of misclassifications for a 

particular tracker Ti exceeds the corresponding threshold τi 

we switch the learner. 

Suppose for the ith tracker, the no. of misclassifications 
become (τi+1) at the (ni+1)th instance. So, upto the ni

th 
instance, probability of error or misclassification. 

Also, let ᾀ be the upper bound of error on any of the 
individual trackers. Hence, for the total tracking process, the 
composite probability of misclassification is given by 
Pr(h(v) ≠ c(v)) = Pr((h1(v) ≠ c(v)) Λ (h2(v) ≠ c(v)) Λ … Λ 
(hn(v) ≠ c(v)))     

= (
(𝑛1

τ1)

n1!
)Χ a1

τ1 × (
(𝑛2

τ2)

n2!
) × a2

τ2 × (
(𝑛3

τ3)

n3!
) × a3

τ3 × … × (
(𝑛𝑁

τN)

nN!
) × aN

τN  

≤ (
(𝑛1

τ1)

n1!
) × ᾀτ1 × (

(𝑛2
τ2)

n2!
) × ᾀτ2 × (

(𝑛3
τ3)

n3!
) × ᾀτ3 × … × (

(𝑛𝑁
τN)

nN!
) × ᾀτN                           

[Since, for all i,  ai ≤ ᾀ] 

= (
(𝑛1

τ1
)

n1!
) (

(𝑛2
τ2

)

n2!
) (

(𝑛3
τ3

)

n3!
) … (

(𝑛𝑁
τN

)

nN!
) ᾀ (τ1+τ2+τ3+…+τN)   ≤  ᾀ               (5)                                                                      

  
Here, N is the number of switches performed at runtime.  

Observations:  

1) Inequation (5) holds because each of the terms (
(𝑛𝑖

τi
)

ni!
) ≤ 1 

as well as ᾀ (τ1+τ2+τ3+…+τN) ≤ ᾀ, since, ᾀ ≤ 1. 
2) So, the overall upper bound for the error of the composite 

tracker is reduced owing to switching at runtime. 
3) Inequation (5) proves that the effective composite error 

bound of the agile tracker T is less than any of the 
individual trackers Ti.   

1, 2 and 3 justify our argument that using switching 
reduces the overall error bound.  

Threshold value selection is a very important criterion in 
optimizing the agile tracker. In order to evaluate the threshold 
selection criteria, let us concentrate on the simplified version 
of the equation presented in (5).  

So, we have, Classification error 

Pr(h(v) ≠ c(v)) ≤  ∏ (
(𝑛𝑖

τi)

ni!
) ᾀτi𝑁

𝑖=1   =  ∏ (
1

τi!(ni−τi)!
) ᾀτi𝑁

𝑖=1           (6)                                            

The error bound can be minimized by increasing τi until τi = 
┌ni/2┐. 
-------------------------------------------------------------------------- 

In a typical video scenario, most features are stationary 
from frame to frame with only a few objects moving. The 
stationary features are considered to be in the background, and 
the moving objects are foreground. The GM background 
subtraction method described in [9] efficiently segments 
foreground and background objects in real time, allowing for 
effective object tracking. However, as is typical of 
background segmentation methods, it becomes less effective 
when there is camera instability. Even with a stable camera, 
this method tends to lose foreground objects if there is 
relatively small movement in the foreground. To compensate 
for these deficiencies, we also use a more traditional and 
robust optical flow method for object tracking. 

The Lucas-Kanade method, like many algorithms used to 
compute optical flow, imposes a constraint on the optical flow 
problem: the displacement (δx, δy) of the image intensity from 
a pixel (x,y) to a pixel (x+δx,y+δy) in the subsequent frame is 
small and constant over time. That is, it must satisfy for all 
pixels p the equation: 

 
),(=)()( pIVpIVpI txyxx 



where Ix, Iy and It are the partial derivatives of the image 
intensity with respect to x, y and t, and Vx and Vy are the 
velocity vectors. This usually results in an over-determined 
system and uses least-squares to find a solution. Due to the 
constraint imposed by the method, it is best suited for a object 
moving slowly with constant velocity. We use pyramidal 
Lucas-Kanade. That is, we compute Lucas-Kanade at the 
lowest-resolution image I0; then, having obtained this lower-
resolution result, we compute Lucas-Kanade incrementally 
for the next lowest resolution I1. Similarly, we obtain I2 from 
I1, and so forth until reaching the full resolution. 

Combined, the Lucas-Kanade method and GM 
background tracking ensure motion-tracking performance 
superior that of either method used alone. 

When used on Unmanned Aerial Vehicle (UAV) videos, 
object tracking presents an array of challenges. One is camera 
instability; often, during recording, the camera shakes, pans, 
or rotates, which causes background objects to appear to 
move. A second is poor image quality due to low-definition 
recording equipment or long distance; this obscures images 
and interferes with the tracking process. A third is the need for 
real-time tracking, which requires simple, efficient methods to 
keep up with the pace of real-time input. 

 
1) Agile Tracking vs. Other Ensemble Based Trackers 
A tracker based on an ensemble machine learning 

technique like boosting will create, based on training data an 
optimal tracker of the form: 

T = ∑ αptp

𝑃

𝑝=1


where P is the number of rounds, tp is a tracker in the 

ensemble, and αp are weights such that ∑ αp = 1
𝑃

𝑝=1
 

While running on actual data T will need to run all the P 
trackers on each datapoint (i.e., frame) and compute a 
weighted sum of the outputs. In our case only one tracker is 
active at any particular time, i.e., only one tracker is run on 
each datapoint. This is crucial for real time performance.   

Moreover, in boosting, the weights αp are fixed once the 

training is over. This can create problems if the character of 
the data changes drastically from the examples on which the 
training is performed due to changes in background, lighting 
conditions, etc. This can be avoided in the agile framework by 
having multiple boosted trackers in the ensemble and 
switching them accordingly using the SWITCH() method (of 
course increasing the computational cost) but definitely 
yielding higher performance. 

 
2) Image Quality and Real-time Tracking 
How do we accommodate both poor image quality and the 

need for real-time tracking? The combination of GM 
background subtraction and the Lucas-Kanade method 
ensures a better result than either one alone; Lucas-Kanade 
tends to succeed where GM background subtraction fails, and 
vice versa. For a blurry, low-quality, quickly-moving object, 
GM background subtraction works well as long as the image 

is stable so that background and foreground objects can be 
distinguished. If a failure, defined as a large jump or the object 
is not moving quickly enough to show up in the GM 
background image, is detected, we track the object's 
movement according to the output of the Lucas-Kanade flow 
field. 

Fortunately for the sake of efficiency, the incremental cost 
to stabilize the image is small, since Shi and Tomasi's 
algorithm need only run once and the Lucas-Kanade flow field 
is already being computed to track foreground objects. 

 
3)  Object Passing  
One problem with GM background subtraction is when 

two moving objects are nearby or occluded, it becomes 
difficult to separate them. Likewise, with Lucas-Kanade, the 
boundaries of the tracked objects must be approximately 
known. To account for this, we create a probability image 
when two objects are nearby, consisting of a two Gaussians. 
The first object cannot move to where the probability is 0 (e.g. 
at the center of the second object), and likewise for the second 
object. This, along with preventing large jumps, usually solves 
the problem with two objects passing each other in the near 
vicinity.  

IV. IMPLEMENTATION OF OUR APPROACH 

 We implemented tracking in C++ using the OpenCV 
library for real-time computer vision. The ensemble in our 
case consisted of two individual algorithms: Gaussian Mixture 
Background Subtraction and Lucas-Kanade optical flow 
(LK). The GM algorithm works well at high speeds while the 
LK performs well at lower speeds. The parameters k1, k2, k3, 
and k4 are currently equally weighted, with the exception of 
k5 which has been determined by the ability of LK to obtain 
certain track speeds. Also the switching algorithm was called 
by the agile tracker every frame. 

TABLE I.  COMPARISON OF THE VARIOUS TRACKERS 

 Tot. 
no. of 

frames  

BeyondS
emi-

Boost 

coGD CVPR MIL 

Jumping 313 14 1 96 313 

Car 945 28 34 29 220 

Motocross 2665 6 1 59 63 

Car chase 9928 66 1 334 321 

Panda 3000 130 1 358 992 

 

V. RESULTS AND COMPARITIVE STUDIES 

We compare the results from our tracker against seven 
existing trackers whose outputs are available at the publicly 
available TLD dataset [12]. Table 1 and Table 2 show the 
number of frames after which the trackers lost track for the 
first time. The measure proves to be effective in the absence 
of a track merging algorithm. The agile tracker performs 
significantly well in most of the cases. Fig. 3 shows the 
outputs of the agile tracker on the TLD dataset. Also TLD is 
based on template matching and hence fails for videos with 
multiple numbers of similar looking objects. This is illustrated 
in Fig. 4 where TLD switches tracks arbitrarily between 



similar looking foreground objects whereas the agile tracker 
keeps tracking a particular object for the entire time frame of 
its visibility. The full length tracked videos along with further 
results on VIRAT data are available at [15].   

 

TABLE II.  COMPARISON OF THE VARIOUS TRACKERS (CONTD.) 

 Tot. no. 
of 

frames  

Online 
Boost 

Semi 
Boost 

TLD Agile 
Tracker 

Jumping 313 26 21 313 313 

Car 945 545 652 802 581 

Motocross 2665 15 59 173 110 

Car chase 9928 316 190 244 402 

Panda 3000 1004 83 277 2568 
 

 

 

 

 

Figure 3.  Results from the agile tracker 

 

 

Figure 4.   The left one represents the output from the agile tracker and the 

right one represents that from TLD. 

VI. CONCLUSIONS 

Our novel approach to track starting using confidence 

measure and adaptive thresholding not only performs in real time 

but is also accurate. The agile tracking framework allows dynamic 

switching within an ensemble of tracking algorithms based on a 

performance measure while preserving state providing more 

accuracy than any of the individual algorithms. We believe that the 

presented framework provides the foundation for real time video 

activity recognition. 
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