
Noname manuscript No.
(will be inserted by the editor)

Learning Sparse Feature Representations using
Probabilistic Quadtrees and Deep Belief Nets?

Saikat Basu · Manohar Karki · Sangram
Ganguly · Robert DiBiano · Supratik
Mukhopadhyay · Shreekant Gayaka ·
Rajgopal Kannan · Ramakrishna Nemani

Received: date / Accepted: date

Abstract Learning sparse feature representations is a useful instrument for
solving an unsupervised learning problem. In this paper, we present three la-
beled handwritten digit datasets, collectively called n-MNIST by adding noise
to the MNIST dataset, and three labeled datasets formed by adding noise to
the offline Bangla numeral database. Then we propose a novel framework for
the classification of handwritten digits that learns sparse representations using
probabilistic quadtrees and Deep Belief Nets. On the MNIST, n-MNIST and
noisy Bangla datasets, our framework shows promising results and outperforms
traditional Deep Belief Networks.

? This is an extended version of the paper published in ESANN 2015.[1]

Saikat Basu, Manohar Karki, Supratik Mukhopadhyay, Rajgopal Kannan
Louisiana State University - Department of Computer Science
Baton Rouge, Louisiana 70803 - USA
E-mail: sbasu8@lsu.edu, mkarki6@lsu.edu, supratik@csc.lsu.edu, rkannan@bit.csc.lsu.edu

Robert DiBiano
Autopredictive Coding LLC
E-mail: robertdibiano@gmail.com

Sangram Ganguly
Bay Area Environmental Research Institute (BAERI)
/NASA Ames Research Center, Moffett Field, California 94035 - USA
E-mail: sangram.ganguly@nasa.gov

Shreekant Gayaka
Applied Materials
E-mail: gshreekant@gmail.com

Ramakrishna Nemani
NASA Advanced Supercomputing Division,
NASA Ames Research Center, Moffett Field, California 94035 - USA
E-mail: rama.nemani@nasa.gov

2 Saikat Basu et al.

1 Introduction

Deep Learning has gained popularity over the last decade due to its ability to
learn data representations in an unsupervised manner and generalize to unseen
data samples using hierarchical representations. One of the popular unsupervised
Deep learning models is the Deep Belief Network [2]. In [3], Deep Belief Networks
have been used for modeling acoustic signals and have been shown to outperform
traditional approaches using Gaussian Mixture Models for Automatic Speech
Recognition (ASR). A greedy layerwise pre-training using Restricted Boltzmann
Machine (RBM) is used to train Deep Belief Network. A sparse feature learning
algorithm for Deep Belief Networks was proposed in [4]. However, their work was
focused on maximization of information content in the learned representations.
Restricted Boltzmann Machines, on the other hand, are trained by minimizing a
contrastive term in the loss function. Deep Belief Networks have also been used
for analyzing satellite imagery [5] as well as texture datasets [6].

The main contributions of our work are twofold – (1) We first present three
labeled handwritten digit datasets, collectively called n-MNIST, and three la-
beled Bangla numeral datasets, created by adding white gaussian noise, motion
blur and reduced contrast to the original MNIST dataset[7] and the offline hand-
written Bangla numeral dataset [8]. (2) Then, we present a framework for the
classification of handwritten digits that a) learns probabilistic quadtrees from
the dataset, b) performs a Depth First Search on the quadtrees to create sparse
representations in the form of linear vectors, and c) feeds the linear vectors into
a Deep Belief Network for classification. On the MNIST, n-MNIST and noisy
Bangla datasets, our framework shows promising results and outperforms tradi-
tional Deep Belief Networks.

2 Datasets1

We evaluate our framework on the MNIST dataset[7] of handwritten digits as
well as three artificial datasets collectively called n-MNIST (noisy MNIST) cre-
ated by adding – (1) additive white gaussian noise, (2) motion blur and (3) a
combination of additive white gaussian noise and reduced contrast to the MNIST
dataset. A second set of experiments were performed on the offline Bangla nu-
meral database [8]. The additive white gaussian noise was created by adding a
noise with signal to noise ratio (SNR) of 9.5. It is a standard kind of noise. It is
similar to noise caused by electrical variations in camera, television static, etc.
This also emulates background clutter. The Motion Blur filter is a very common
type of noise in images and videos. It is made to emulate a linear motion of the
camera by τ pixels, with an angle of θ degrees. The filter becomes a vector for
horizontal and vertical motions. We use a value of 5 pixels for τ and a value of
15 degrees in the counterclockwise direction for θ. For the noisy dataset with
reduced contrast and AWGN, the contrast range was scaled down to half and

1 The datasets are available at the web link [9] and [10] along with a detailed description of
the methods and parameters used to create them

Title Suppressed Due to Excessive Length 3

was applied with an Additive White Gaussian Noise with signal-to-noise ratio of
12. This emulates background clutter along with significant change in lighting
conditions. Some of the images from the noisy MNIST datasets are shown in
Figure 1 and those from the noisy Bangla dataset are shown in Figure 2.

(a) MNIST with Additive
White Gaussian Noise

(b) MNIST with Motion
Blur

(c) MNIST with AWGN and
reduced contrast

Fig. 1: Example images from the n-MNIST dataset created as part of the exper-
iments

2.1 Pre-processing for the Bangla Dataset

The numerals in the Bangla dataset are first thresholded using a local adaptive
mean filter. The thresholded images are then complemented and we extract the
largest connected component. Then we find the center of mass of the largest
connected component and the corresponding bounding box of the numeral and
then use this information to center the image. The centered image is then padded
with 10 pixels on all sides. Finally, the images are resized to 28×28 pixels.

2.1.1 Data Augmentation

Following the procedure defined in [8], we create a synthetic dataset by using
rotation and blurring on the original Bangla dataset. For the rotation trans-
formation, each sample is randomly rotated by an angle which lies between 5◦

and 10◦ and another between -10◦ and -5◦. All the original and rotated train-
ing samples generated above are blurred by applying a Gaussian blurring kernel
with mean, µ = 0.75 and standard deviation σ = 0.33. So, the original images
along with the rotated and blurred images form the final training dataset. These
images are in turn corrupted with noise and form our noisy Bangla dataset.

4 Saikat Basu et al.

(a) Bangla with Additive
White Gaussian Noise

(b) Bangla with Motion
Blur

(c) Bangla with AWGN and
reduced contrast

Fig. 2: Example images from the noisy Bangla dataset created as part of the
experiments

3 Probabilistic Quadtrees for Learning Sparse Representations

A quadtree takes the form of a tree in which all the internal nodes have four
child nodes. Quadtrees were first proposed in [11] as a technique for storing key-
value pairs indexed with composite keys. We propose a novel technique based
on probabilistic quadtrees that can reduce the dimensionality of a dataset in
a probabilistically sound way. We learn the structure of the quadtree from the
samples of a dataset. A quadtree splits each image into four equal sized windows,
and then performs a test of homogeneity on each image window. If a block
satisfies the homogeneity criterion, it is not split any further into sub-windows.
If otherwise, it does not satisfy the criterion, it is subdivided into four sub-
windows, and the test condition is in turn tested on those smaller windows. This
process is continued on all the sub-windows until each satisfies the homogeneity
criterion. The resulting data structure can have windows of several different
sizes. The homogeneity criterion can be defined as follows - Split a block if the
difference beween the greatest and least values of the elements in a block exceeds
a threshold τ . Threshold τ is set as a value between 0 and 1 (chosen here as 0.27
by experiments). Denoting the homogeneity criterion for sample d as Hd, this
can be formally presented as follows:

Hd =

true, if max
i∈d

(i)−min
i∈d

(i) ≤ τ | τ ∈ [0, 1]

false, if max
i∈d

(i)−min
i∈d

(i) > τ | τ ∈ [0, 1]
(1)

Alternatively, the homogeneity criterion can be considered proportionate to
standard deviation of the probability distribution of the dataset. So, higher the
standard deviation, higher the average texture of a block and higher is the prob-
ability of the block being divided into sub-blocks.

In the learned quadtree structure for a given dataset, a node is divided into
smaller windows if the homogeneity criterion is not met for any sample in the

Title Suppressed Due to Excessive Length 5

dataset. The node is not divided into smaller windows only if the homogeneity
criterion is met by all samples in the dataset.

We can consider each node of the quadtree as a binary random variable X,
which can take one of two values 1 or 0 based on whether it is divided into
smaller windows or not. So, for a total of N samples in dataset D, the random
variable X may assume one of N+1 split state values - one value for each sample
not meeting the homogeneity criterion, and one value indicating that all samples
meet the homogeneity criterion. This can be formally presented as follows:

X =

{
1, if ∃d ∈ D | D = {d0, d1, d2, ..., dN} ∩ {Hd = false}
0, if ∀d ∈ D | D = {d0, d1, d2, ..., dN} ∩ {Hd = true}

(2)

Once learned, the probabilistic quadtree helps in reduction of the data di-
mensionality, which captures the statistics of the training samples in the dataset.
A depth first search on the learned tree yields a linear vector that is then fed into
an unsupervised learning framework. Some sample images from the MNIST and
n-MNIST databases along with the images learnt by the probabilistic quadtrees
are shown in Figure 3. A quadtree seems to be a natural choice for denoising im-
age datasets like handwritten digits or letters which are inherrently sparse. The
probabilistic quadtree creates a lower dimensional representation where uniform
patches from the input image are eliminated while feeding it into the neural
network thereby creating a sparse representation.

4 Deep Belief Network for Feature Learning

Deep Belief Network (DBN) consists of multiple layers of stochastic, latent vari-
ables trained using an unsupervised learning algorithm followed by a supervised
learning phase using Feedforward Backpropagation Neural Networks. In the un-
supervised pre-training stage, each layer is trained using a Restricted Boltzmann
Machine (RBM). Once trained, the weights and biases of the Deep Belief Net
are used to initialize the corresponding weights and biases of a Neural Network
[12]. A Neural Network which has been initialized in this manner converges
much faster to the optimal solution as compared to an uninitialized one. A DBN
is a graphical model [13] where neurons of the hidden layer are conditionally
independent of each other given a particular configuration of the visible layer
and vice versa. A DBN can be trained layer-wise by iteratively maximizing the
conditional probability of the input vectors or visible vectors given the hidden
vectors and a particular set of layer weights. As shown in [2], this layer-wise
training can help in improving the variational lower bound on the probability
of the input training data, which in turn leads to an improvement of the over-
all generative model. We first provide a formal introduction to the Restricted
Boltzmann Machine. The RBM can be denoted by the energy function:

E(u, v) = −
∑
i

aiui −
∑
j

bjvj −
∑
i

∑
j

vjwi,jui (3)

6 Saikat Basu et al.

(a) Images from MNIST

(b) MNIST with Additive White Gaussian Noise

(c) MNIST with Motion Blur

(d) MNIST with AWGN and reduced contrast

Fig. 3: Example images from the MNIST and n-MNIST dataset and the repre-
sentations learnt using the probabilistic quadtrees. The images in the top rows
show the original images from the corresponding datasets and the bottom row
shows representations learnt using the probabilistic quadtrees.

where, the RBM consists of a matrix of layer weights W = (wi,j) between the
hidden units vj and the visible units ui. The ai and bj are the bias weights for
the visible units and the hidden units respectively. The RBM takes the structure
of a bipartite graph and hence it only has inter-layer connections between the
hidden or visible layer neurons but no intra-layer connections within the hidden
or visible layers. So, the visible unit activations are mutually independent given
a particular set of hidden unit activations and vice versa [14]. Hence, by setting
either v or u constant, we can compute the conditional distribution of the other
as follows:

Title Suppressed Due to Excessive Length 7

P (vj = 1|u) = σ(

p∑
i=1

wi,jui + bj) (4)

P (ui = 1|v) = σ(

q∑
j=1

wi,jvj + ai) (5)

where, σ denotes the log sigmoid function:

f(x) =
1

1 + e−x
(6)

The training algorithm maximizes the expected log probability assigned to
the training dataset D. So if the training dataset D consists of the visible vectors
u, then the objective function is as follows:

argmax
W

E
[∑
u∈U

logP (u)
]

(7)

A Restricted Boltzmann Machine is trained using a Contrastive Divergence
algorithm [14]. Once trained the DBN is used to initialize the weights of a feed-
forward backpropagation neural network that is then used for classification. The
neural network gives an estimate of the posterior probabilities of the class labels,
given the input vectors. As illustrated in [15], the output of a neural network
trained by minimizing the sum of squares error function approximates the con-
ditional averages of the target data

yk(x) = 〈tk|x〉 =

∫
tkp(tk|x)dtk (8)

Here, tk are the set of target values that represent the class membership of
the input vector xk. For a binary classification problem, in order to map the
outputs of the neural network to the posterior probabilities of the labeling, we
use a single output y and a target coding that sets tn = 1 if xn is from class C1

and tn = 0 if xn is from class C2. The target distribution would then take the
form

p(tk|x) = δ(t− 1)P (C1|x) + δ(t)P (C2|x) (9)

Here, δ represents the Dirac delta function that satisfies the following condi-
tions [16] δ(x) = 0 if x 6= 0 and ∫ ∞

−∞
δ(x) dx = 1 (10)

From 8 and 9, we get

y(x) = P (C1|x) (11)

8 Saikat Basu et al.

So, the network output y(x) represents the posterior probability of the input
vector x having the class membership C1 and the probability of the class mem-
bership C2 is given by P (C2|x) = 1−y(x). This argument can easily be extended
to multiple class labels for a generalized multi-class classification problem like
MNIST.

The dimensionality reduction using probabilistic quadtrees helps improve the
discriminative power of the DBN based classifier significantly.

4.0.2 Gibbs’ Sampling in RBM

Gibbs’ Sampling is a Markov Chain Monte Carlo method that is used to sample
from a distribution when it is difficult to do direct sampling. Once sampled,
these observations can be used to estimate the joint probability distribution or
the marginal probability of a variable. In the context of an RBM, Gibbs’ sampling
is useful to estimate the log-likelihood gradient of the data. Generating samples
from the model is equivalent to sampling from the DBN since the DBN is formed
by stacking multiple layers of RBMs.

Gibbs’ sampling in unrestricted Boltzmann Machines are computationally
intensive because we need to perform sampling both for the input neurons and
the joint distributions of the input and hidden neurons. Also for unrestricted
Boltzmann machines, the number of Gibbs’ sampler steps is equal to the number
of units in the neural network. On the other hand, in an RBM, the hidden layer
units are conditionally independent for a given configuration of the visible layer
units and vice versa. So, the neurons can be updated in parallel and hence a
Gibbs sampling in an RBM consists of only two sub-steps - 1) Sample hidden
vectors given the visible vectors. Also, in RBM, the free energy state of the input
neurons doesn’t need to be sampled but can be directly calculated analytically.

4.0.3 Contrastive Divergence

The contrstive divergence algorithm approximates the the log-likelihood gradient
of the data. This has been shown to be very useful for the training of Restricted
Boltzmann machines. To obtain this approximation, the average over all possible
samples is replaced with a single sample. With frequent updates in parameter
values (after seeing one or a few training samples), there is automatic averaging
going on which and this partially nullifies the effect of the increased variance
introduced into the model due to the use of one or a few MCMC samples instead
of using all the samples from the chain. However, this cancellation is only partial
and hence there is still some extra variance introduced during the approximation.
Running the full MCMC chain is computationally infeasible and hence we resort
to k-step Contastive Divergence (CD-k). The CD-k algorithm performs another
approximation. It runs the MCMC chain for only k steps. This reduces the
computational cost greatly however leads to a higher bias in the model. The
CD-k update rule can be noted as follows:

4θ =
∂E(v)

δθ
+
∂E(ṽ)

δθ
(12)

Title Suppressed Due to Excessive Length 9

where, E is the free energy and v is the observed sample and ṽ is the sample
obtained after k-steps of MCMC. The bias tends to 0 as k →∞, since at k =∞
the model distribution converges to the equilibrium distribution.

Another interesting observation about the CD-k algorithm is that when the
distribution of the model approaches the equilibrium distribution, i.e., when
P ≈ P̃ , then when we start the MCMC chain from a sample x, belonging to
P̃ then the model is already good at approximating the underlying distribution
and we need only one step to generate a sample of the unbiased estimator with
underlying distribution P.

It has been shown that in the CD-k algorithm even k = 1 leads to good
results. This has been shown both theoretically and empirically. The theoretical
results are supported by the argument that the contrastive divergence algorithm
approximates the first k terms of a series which provides an approximation of
the log-likelihood gradient of the data. The contrastive divergence algorithm can
be seen as approximating the gradient of the log-likelihood of the data centered
around the training sample x1. As we increase k, the underlying distribution
of the reconstructed sample xk+1 moves further from X and closer towards the
model distribution.

MNIST n-MNIST with AWGN
Architecture Error Error Error Error
(Neurons) DBN(%) Ours(%) DBN(%) Ours(%)

50-50 4.55 3.78 36.19 20.15
100-100 3.06 2.85 38.82 15.53
150-150 2.85 2.19 35.36 14.73
200-200 2.24 2.06 31.83 24.97
250-250 2.27 1.79 30.59 12.77
300-300 1.9 1.78 27.42 26.33
350-350 1.89 1.7 31.13 22.48
400-400 1.79 1.63 37.38 32.84
450-450 1.85 1.43 35.18 30.6
500-500 1.78 1.61 32.49 22.12

Table 1: Validation Error of a traditional DBN and our framework with various
architectures on MNIST and n-MNIST with AWGN on a validation set sampled
from the training set of MNIST

5 Results and Comparative Studies

Our quadtree based DBN framework was trained using various network archi-
tectures. The training details are listed in the following section.

10 Saikat Basu et al.

n-MNIST with n-MNIST with AWGN
Motion Blur and Reduced Contrast

Architecture Error Error Error Error
(Neurons) DBN(%) Ours(%) DBN(%) Ours(%)

50-50 14.55 8.39 30.78 15.57
100-100 12.72 6.66 26.1 12.29
150-150 10.32 5.86 26.4 11.52
200-200 11.13 5.21 25.23 11.39
250-250 9.49 5.03 25.16 11.08
300-300 11.47 4.56 24.83 10.72
350-350 12.82 4.69 25.42 10.73
400-400 12.74 4.35 23.77 10.5
450-450 12.28 4.61 24.28 10.98
500-500 13.57 4.29 20.03 10.71

Table 2: Validation Error of a traditional DBN and our framework with various
architectures on n-MNIST with Motion Blur; and with AWGN and Reduced
Contrast on a validation set sampled from the training set of MNIST

MNIST n-MNIST with AWGN
Error Error Error Error

DBN(%) Ours(%) DBN(%) Ours(%)
1.86 1.38 12.79 9.93

Table 3: Test Error of a traditional DBN and our framework with various archi-
tectures on MNIST and n-MNIST with AWGN

n-MNIST with n-MNIST with AWGN
Motion Blur and Reduced Contrast

Error Error Error Error
DBN(%) Ours(%) DBN(%) Ours(%)

3.50 2.60 9.43 7.84

Table 4: Test Error of a traditional DBN and our framework with various archi-
tectures on n-MNIST with Motion Blur; and with AWGN and Reduced Contrast

5.1 Training Details

While training the DBN models, the learning rate was set as 0.1 while the mini
batch size was set as 100. The momentum was set as 0. The learning rate was
updated according to an inverse function with gamma parameter set as 0.998. We
also used a Dropout fraction of 0.2 for regularization of the networks. Dropout
is a useful technique proposed in [17], [18] for the regularization of Deep Neural
Networks. Once trained, the DBN weights are used to initialize the weights of
the Neural Network. For the supervised neural network training, we again use
an initial learning rate of 0.1 and an inverse learning rate update policy with
gamma value as 0.998 with the update applied in each iteration. The mini batch
size is again chosen as 100.

Title Suppressed Due to Excessive Length 11

Noisy Bangla with AWGN
Architecture Error Error
(Neurons) DBN(%) Ours(%)

50-50 12.03 11.89
100-100 8.43 8.17
150-150 7.24 7.08
200-200 7.67 7.29
250-250 7.21 7.19
300-300 7.41 7.18
350-350 7.57 7.31
400-400 7.11 7.02
450-450 7.71 7.32
500-500 7.5 7.46

Table 5: Validation Error of a traditional DBN and our framework with vari-
ous architectures on the noisy Bangla dataset with AWGN on a validation set
sampled from the training set of the Bangla numeral dataset

Noisy Bangla with Noisy Bangla with AWGN
Motion Blur and Reduced Contrast

Architecture Error Error Error Error
(Neurons) DBN(%) Ours(%) DBN(%) Ours(%)

50-50 7.2 7.03 25.24 16.17
100-100 3.78 3.37 21.71 13.48
150-150 2.91 2.53 19.99 12.6
200-200 2.77 2.6 19.53 12.97
250-250 2.6 2.15 19.12 12.82
300-300 2.53 2.39 19.65 12.78
350-350 2.24 2.22 18.85 12.91
400-400 2.2 2.13 19.8 13.34
450-450 2.14 2.1 19.18 13.29
500-500 2.35 1.97 19.21 13.17

Table 6: Validation Error of a traditional DBN and our framework with various
architectures on noisy Bangla dataset with Motion Blur; and with AWGN and
Reduced Contrast on a validation set sampled from the training set of the Bangla
numeral dataset

Noisy Bangla with AWGN
Error DBN(%) Error Ours(%)

8.91 8.66

Table 7: Test Error of a traditional DBN and our framework with various archi-
tectures on the noisy Bangla dataset with AWGN

5.2 Experimental Results

Various network architectures along with the validation set error for the tradi-
tional DBN framework and the probabilistic quadtree based framework on the
MNIST and the three n-MNIST datasets are listed in Tables 1 and 2. The vali-
dation set was sampled from the training set by randomly shuffling the samples

12 Saikat Basu et al.

Noisy Bangla with Noisy Bangla with AWGN
Motion Blur and Reduced Contrast

Error Error Error Error
DBN(%) Ours(%) DBN(%) Ours(%)

7.91 7.34 16.92 12.69

Table 8: Test Error of a traditional DBN and our framework with various ar-
chitectures on noisy Bangla dataset with Motion Blur; and with AWGN and
Reduced Contrast

Dataset Mean Normalized Contrast
MNIST 1.0

Offline Bangla 0.87

Table 9: Mean contrast of the MNIST and Bangla numeral datasets.

MNIST n-MNIST with AWGN
Test Error Test Error Test Error Test Error

Raw pixels(%) Ours(%) Raw pixels(%) Ours(%)
11.03 8.21 44.71 34.97

Table 10: Test Error of a Neural Network with raw pixels and our probabilistic
quadtree based framework with various architectures on MNIST and n-MNIST
with AWGN

n-MNIST with n-MNIST with AWGN
Motion Blur and Reduced Contrast

Test Error Test Error Test Error Test Error
Raw pixels(%) Ours(%) Raw pixels(%) Ours(%)

89.72 11.82 61.03 18.66

Table 11: Test Error of a Neural Network with raw pixels and our probabilistic
quadtree based framework with various architectures on n-MNIST with Motion
Blur; and with AWGN and Reduced Contrast

Noisy Bangla with AWGN
Test Error Test Error

Raw pixels(%) Ours(%)
38.26 23.43

Table 12: Test Error of a Neural Network with raw pixels and our probabilistic
quadtree based framework with various architectures on the noisy Bangla dataset
with AWGN

and from the original set of 60,000 training samples, 50,000 samples were chosen
as the training set and 10,000 were chosen as the validation set. Using the results
from these validation sets, we obtained the final test error on the original test

Title Suppressed Due to Excessive Length 13

Noisy Bangla with Noisy Bangla with AWGN
Motion Blur and Reduced Contrast

Test Error Test Error Test Error Test Error
Raw pixels(%) Ours(%) Raw pixels(%) Ours(%)

60.99 23.54 57.04 48.43

Table 13: Test Error of a Neural Network with raw pixels and our probabilistic
quadtree based framework with various architectures on noisy Bangla dataset
with Motion Blur; and with AWGN and Reduced Contrast

MNIST MNIST with MNIST with MNIST with
AWGN Motion Blur AWGN and Reduced Contrast

212 244 211 244

Bangla Bangla with Bangla with Bangla with
AWGN Motion Blur AWGN and Reduced Contrast

203 244 202 244

Table 14: Size of the feature vectors learnt using the probabilitic quadtrees from
the various datasets on an image of size 28×28.

set of 10,000 samples. The results are presented in Table 32 and Table 4. From
the Tables, it is evident that our best performing network outperforms the best
traditional Deep Belief Network on both the MNIST and n-MNIST datasets.
On the MNIST dataset, our best network exhibits a relative improvement of
∼25% over the traditional DBN. For the n-MNIST dataset, it provides a rela-
tive improvement of ∼69% for Additive White Gaussian Noise (AWGN), ∼26%
for Motion Blur and ∼16% for AWGN and Reduced contrast. Similar to the
experiments on n-MNIST, the noisy Bangla dataset was divided into training
and validation sets. The errors on the validation set are reported in Table 5
and Table 6. Table 7 and Table 8 show the test error rates of the traditional
DBN based framework and the quadtree based DBN framework on the noisy
Bangla datasets. As seen in the tables, the best quadtree based DBN framework
provides a relative improvement of ∼3% over the best traditional DBN archi-
tecture for the noisy Bangla dataset with AWGN. For the motion blur dataset,
it produces a relative improvement of ∼8% while for the noisy Bangla dataset
with AWGN and reduced contrast, it produces a relative improvement of ∼33%.
It is interesting to observe that the relative improvement in performance using
the quadtree based framework is highest for n-MNIST with AWGN and lowest
for n-MNIST with AWGN and reduced contrast. On the contrary, for the noisy
Bangla dataset, the relative improvement is the highest for the dataset with
AWGN and reduced contrast and lowest for the AWGN dataset. This can be
attributed to the fact that the Bangla dataset generated by the pre-processing
and data augmentation stages has a lower contrast than the MNIST dataset
as seen in Table 9 and hence the application of reduced contrast on top of the
already low contrast dataset creates a noisy dataset which is much more dif-

2 Our test error on MNIST is different from that in [17] because the authors use a different
architecture. This is true both for their Neural Network and DBN architectures.

14 Saikat Basu et al.

ficult to be handled by the traditional DBN. Hence, the quadtree based DBN
produces significant improvement over the traditional DBN for the noisy Bangla
dataset with AWGN and reduced contrast. Due to this same reason, the mean
test error rates of the various architectures of both the traditional DBN and
the quadtree based DBN on the reduced contrast-AWGN dataset are higher
than the AWGN dataset and the motion blur dataset. Next, we show the neu-
ral network baselines for raw pixels and the features extracted by our quadtree
based framework on the various datasets. Table 10, 11, 12 and 13 show the error
rates of a neural network with a) raw pixels and b) features extracted from the
probabilistic quadtrees as input. From these tables we can see that the Neural
Network produces higher error rates for all the datasets. This highlights the need
for an unsupervised pretraining stage for reaching the global error basin.Table
14 shows the dimensionality of the feature vectors learnt using the probabilistic
quadtrees on 28×28 images from the various datasets. It can be seen that on an
average, the probabilistic quadtrees are able to reduce the dimensionality of the
input vectors to nearly one-third of their original size.

6 Discussion and Future Directions

Our learning framework based on probabilistic quadtrees outperforms traditional
Deep Belief Networks on MNIST, n-MNIST and the noisy Bangla datasets. Prob-
abilistic quadtrees help in generating sparse representations for the datasets and
improve the discriminative power of the framework.

We plan to investigate the use of various pooling techniques like SPM [19] as
well as certain sparse representations like sparse coding [20] to handle the noisy
datasets. Hierarchical representations like Convolutional DBN [21] are other use-
ful candidates for investigation. We believe that the noisy versions of MNIST
and Bangla datasets will help researchers better apply and extend the research
on understanding representations for noisy object recognition datasets.

Acknowledgment

The project is supported by Army Research Office (ARO) under Grant #W911-
NF1010495 and NASA Carbon Monitoring System through Grant #NNH14ZD-
A001NCMS. Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not necessarily reflect
the views of the ARO or the United States Government. We are thankful to
the Computer Vision and Pattern Recognition unit at Indian Statistical Insti-
tute, Kolkata, India for making the offline Bangla handwritten numeral dataset
available to us.

Title Suppressed Due to Excessive Length 15

References

1. Saikat Basu, Manohar Karki, Sangram Ganguly, Robert DiBiano, Supratik
Mukhopadhyay, and Ramakrishna Nemani. Learning sparse feature repre-
sentations using probabilistic quadtrees and deep belief nets. In Proceedings
of the European Symposium on Artificial Neural Networks, ESANN, 2015.

2. Geoffrey E. Hinton and Simon Osindero. A fast learning algorithm for deep
belief nets. Neural Computation, 18:2006, 2006.

3. Abdel-rahman Mohamed, George E. Dahl, and Geoffrey E. Hinton. Acoustic
modeling using deep belief networks. IEEE Transactions on Audio, Speech
& Language Processing, 20(1):14–22, 2012.

4. Marc’Aurelio Ranzato, Y-lan Boureau, and Yann Lecun. Sparse Feature
Learning for Deep Belief Networks. In Advances in Neural Information
Processing Systems, 2008.

5. Saikat Basu, Sangram Ganguly, Supratik Mukhopadhyay, Robert DiBiano,
Manohar Karki, and Ramakrishna Nemani. Deepsat: A learning framework
for satellite imagery. In Proceedings of the 23rd SIGSPATIAL International
Conference on Advances in Geographic Information Systems, GIS ’15, pages
37:1–37:10, New York, NY, USA, 2015. ACM.

6. Saikat Basu, Manohar Karki, Robert DiBiano, Supratik Mukhopadhyay,
Sangram Ganguly, Ramakrishna Nemani, and Shreekant Gayaka. A the-
oretical analysis of deep neural networks for texture classification. arXiv
preprint arXiv:1605.02699, 2016.

7. WWW. Mnist. http://yann.lecun.com/exdb/mnist/.
8. Ujjwal Bhattacharya and Bidyut B Chaudhuri. Handwritten numeral

databases of indian scripts and multistage recognition of mixed numer-
als. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
31(3):444–457, 2009.

9. WWW. n-mnist. http://csc.lsu.edu/~saikat/n-mnist/.
10. WWW. Noisy bangla. http://csc.lsu.edu/~saikat/noisy-bangla/.
11. R. A. Finkel and J. L. Bentley. Quad trees a data structure for retrieval on

composite keys. Acta Informatica, 4(1):1–9, 1974.
12. Yoshua Bengio. Learning deep architectures for ai. Found. Trends Mach.

Learn., 2(1):1–127, January 2009.
13. Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles

and Techniques - Adaptive Computation and Machine Learning. The MIT
Press, 2009.

14. Miguel A. Carreira-Perpinan and Geoffrey E. Hinton. On contrastive diver-
gence learning. 2005.

15. Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford
University Press, Inc., 1995.

16. Sadri Hassani. Dirac delta function. In Mathematical Methods, pages 139–
170. Springer, 2009.

17. Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks

http://yann.lecun.com/exdb/mnist/
http://csc.lsu.edu/~saikat/n-mnist/
http://csc.lsu.edu/~saikat/noisy-bangla/

16 Saikat Basu et al.

from overfitting. Journal of Machine Learning Research, 15(1):1929–1958,
2014.

18. Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. Improving neural networks by preventing co-
adaptation of feature detectors. CoRR, abs/1207.0580, 2012.

19. Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. Beyond bags of fea-
tures: Spatial pyramid matching for recognizing natural scene categories.
CVPR ’06, pages 2169–2178, 2006.

20. Honglak Lee, Alexis Battle, Rajat Raina, and Andrew Y. Ng. Efficient sparse
coding algorithms. In NIPS, pages 801–808. NIPS, 2007.

21. Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y. Ng. Con-
volutional deep belief networks for scalable unsupervised learning of hierar-
chical representations. ICML ’09, pages 609–616, 2009.

	Introduction
	Datasets
	Probabilistic Quadtrees for Learning Sparse Representations
	Deep Belief Network for Feature Learning
	Results and Comparative Studies
	Discussion and Future Directions

