

 CSC 3501 Computer Organization and Design

 Homework # 8 & 9 Solutions

--

(2) a. 232/25 = 227

 b. 32 bit addresses with 17 bits in the tag field, 10 in the block field, and 5 in the word

 field

 c. 000063FA = 00000000000000000 1100011111 11010, which implies Block 799

(4) a. 224/26 = 218

 b. 24 bit addresses with 18 bits in the tag field and 6 in the word field

 c. Since it's associative cache, it can map anywhere

(7) a. A total of 216 words of main memory implies we have 16 bits in an address. Cache

contains 25 blocks, but each set must have 2 blocks, so we have 25/2=24 sets.

Therefore our 16-bit address is divided into 9 bits for the tag field, 4 bits for the set

field, and 3 bits for the word field.

 b. The 32 blocks in cache must now be divided into sets with 4 blocks each, implying we

 have only 8 sets. The tag field would now have 10 bits, the set field 3 bits, and the word

 field 3 bits.

(11) a. 64K = 26210 = 216; 216/25 = 211 blocks in cache, so 11 bits are needed for the block field.

 5 bits are needed for the word field, leaving 8 for the tag.

 b. Again, 5 bits are needed for the word field, leaving 19 for the tag.

 c. There are 211/22 = 29 sets in cache, so 9 bits are needed for the set field. We still need 5

 bits for the word field, leaving 10 for the tag field.

(12)

(14) a. 23*24 = 27, so there are 7 bits in a virtual address

 b. 22*24 = 26, so there are 6 bits in a physical address

 c. 18 = 001 0010 (where 001 is the page field and 0010 is the offset). Using the page

table, and going to entry 1, we see that page 1 maps to frame 0, so the actual physical

address would be 00 0010, or 2.

 d. 54 = 11 0 110, where 11 is the tag, 0 is the set, and 110 is the offset. Therefore, this

would map to Set 0 in cache. Once there, if the tag is found, the block is in cache. If

not, it is a miss.

 e. 25 = 001 1001, where 001 is the virtual page, and 1001 is the offset. (This maps to

physical page 00 with offset 1001.) The TLB would first be checked to see if the pair

(1,0) was present (virtual page 1, physical frame 0). If so, 00 can be substituted for

001, giving the actual physical address 00 1001. If the entry is not found in the TLB,

the page table must be accessed, at which time the physical address 00 1001 is

determined. At this point (regardless of whether we found the physical address using

the TLB or the page table), the cache is checked to see if the block containing this

physical address is currently cached. The memory address 001001 is divided up into

00 1 001, where 00 is the tag, 1 is the set, and 001 is the offset. Set 1 in cache is then

checked for the tag 00 (it would be found as address 25 is in block D). The value in

cache is used. (If it had not been found in cache, main memory would be accessed.

(15) a. Possible, 5ns (TLB access) + 12ns (cache access)

 b. Possible, 5ns (TLB access) + 25ns (page table reference) + 12ns (cache access)

 c. Possible, 5ns (TLB access) + 25ns (page table reference) + 12ns (cache access) + 25ns

 (main memory reference)

 d. Not possible (the cache value would be stale if the page no longer resides in page table)

 e. Possible, 5ns (TLB access) + 25ns (page table reference) + 200ms (disk reference) + 5nx

 (TLB, since access is restarted) + 12ns (cache hit)

