
1

Computer Architecture
(CSC-3501)
Lecture 13

1

Lecture 13
(28 Feb 2008)

Seung-Jong Park (Jay)
http://www.csc.lsu.edu/~sjpark

CSC3501 - S.J. Park

Announcement

2

CSC3501 - S.J. Park

Consider the simple MARIE program given below. W
e show a set of mnemonic instructions stored at addr
esses 100 - 106 (hex):

4.10 A Simple Program

3

CSC3501 - S.J. Park

Let’s look at what happens inside the computer when
our program runs.
This is the LOAD 104 instruction:

4.10 A Simple Program

4

CSC3501 - S.J. Park

Our second instruction is ADD 105:

4.10 A Simple Program

5

CSC3501 - S.J. Park

4.11 A Discussion on Assemblers

Mnemonic instructions, such as LOAD 104, are easy f
or humans to write and understand.
They are impossible for computers to understand.
Assemblers translate instructions that are comprehen
sible to humans into the machine language that is co

6

g g
mprehensible to computers

We note the distinction between an assembler and a co
mpiler: In assembly language, there is a one-to-one cor
respondence between a mnemonic instruction and its
machine code. With compilers, this is not usually the ca
se.

2

CSC3501 - S.J. Park

Assemblers create an object program file from mne
monic source code in two passes.

During the first pass, the assembler assembles as
much of the program is it can, while it builds a symb
ol table that contains memory references for all sym

4.11 A Discussion on Assemblers

7

ol table that contains memory references for all sym
bols in the program.

During the second pass, the instructions are comple
ted using the values from the symbol table.

CSC3501 - S.J. Park

Consider our example progr
am (top).

Note that we have included tw
o directives HEX and DEC that
specify the radix of the consta
nts.

4.11 A Discussion on Assemblers

8

During the first pass, we hav
e a symbol table and the par
tial instructions shown at the
bottom.

CSC3501 - S.J. Park

After the second pass, the
assembly is complete.

4.11 A Discussion on Assemblers

9

CSC3501 - S.J. Park

4.12 Extending Our Instruction Set

So far, all of the MARIE instructions that we have di
scussed use a direct addressing mode.

This means that the address of the operand is expli
citly stated in the instruction.

10

It is often useful to employ a indirect addressing, wh
ere the address of the address of the operand is giv
en in the instruction.

If you have ever used pointers in a program, you are
already familiar with indirect addressing.

CSC3501 - S.J. Park

To help you see what happens at the machine level
, we have included an indirect addressing mode inst
ruction to the MARIE instruction set.
The ADDI instruction specifies the address of the a
ddress of the operand The following RTL tells us w

4.12 Extending Our Instruction Set

11

ddress of the operand. The following RTL tells us w
hat is happening at the register level:

MAR ← X
MBR ← M[MAR]
MAR ← MBR
MBR ← M[MAR]
AC ← AC + MBR

CSC3501 - S.J. Park

Another helpful programming tool is the use of subr
outines.
The jump-and-store instruction, JNS, gives us limite
d subroutine functionality. The details of the JNS ins
truction are given by the following RTL:

4.12 Extending Our Instruction Set

12

truction are given by the following RTL:
MBR ← PC
MAR ← X
M[MAR] ← MBR
MBR ← X
AC ← 1
AC ← AC + MBR
AC ← PC

Does JNS permit

recursive calls?

3

CSC3501 - S.J. Park

Our last helpful instruction is the CLEAR instruction.

All it does is set the contents of the accumulator to a
ll zeroes.
This is the RTL for CLEAR:

4.12 Extending Our Instruction Set

13

We put our new instructions to work in the program
on the following slide.

AC ← 0

CSC3501 - S.J. Park

100 | LOAD Addr
101 | STORE Next
102 | LOAD Num
103 | SUBT One
104 | STORE Ctr
105 |Loop LOAD Sum

10E | SKIPCOND 000
10F | JUMP Loop
110 | HALT
111 |Addr HEX 118
112 |Next HEX 0
113 |Num DEC 5

4.12 Extending Our Instruction Set

14

105 |Loop LOAD Sum
106 | ADDI Next
107 | STORE Sum
108 | LOAD Next
109 | ADD One
10A | STORE Next
10B | LOAD Ctr
10C | SUBT One
10D | STORE Ctr

113 |Num DEC 5
114 |Sum DEC 0
115 |Ctr HEX 0
116 |One DEC 1
117 | DEC 10
118 | DEC 15
119 | DEC 2
11A | DEC 25
11B | DEC 30

