
1

Computer Architecture
(CSC-3501)
Lecture 16

1

Lecture 16
(25 Mar 2008)

Seung-Jong Park (Jay)
http://www.csc.lsu.edu/~sjpark

CSC3501 - S.J. Park

Announcement

2

CSC3501 - S.J. Park

Chapter 5 Objectives

Understand the factors involved in instruction s
et architecture design.

Gain familiarity with memory addressing mode
s

3

s.

Understand the concepts of instruction-level pi
pelining and its affect upon execution performa
nce.

CSC3501 - S.J. Park

5.1 Introduction

This chapter builds upon the ideas in Chapter 4.

We present a detailed look at different instructio
n formats, operand types, and memory access
methods.

4

We will see the interrelation between machine o
rganization and instruction formats.

This leads to a deeper understanding of comput
er architecture in general.

CSC3501 - S.J. Park

5.2 Instruction Formats

Instruction sets are differentiated by the following:
• Number of bits per instruction.
• Stack-based or register-based.
• Number of explicit operands per instruction.

5

p p p
• Operand location.
• Types of operations.
• Type and size of operands.

CSC3501 - S.J. Park

5.2 Instruction Formats

Instruction set architectures are measured acc
ording to:

• Main memory space occupied by a program.

• Instruction complexity.

6

p y

• Instruction length (in bits).

• Total number of instructions in the instruction
set.

2

CSC3501 - S.J. Park

5.2 Instruction Formats

In designing an instruction set, consideration is
given to:

• Instruction length.
– Whether short, long, or variable.

• Number of operands.

7

p
• Number of addressable registers.
• Memory organization.

– Whether byte- or word addressable.

• Addressing modes.
– Choose any or all: direct, indirect or indexed.

CSC3501 - S.J. Park

Byte ordering, or endianness, is another major arc
hitectural consideration.

If we have a two-byte integer, the integer may be
stored so that the least significant byte is followed
b th t i ifi t b t i

5.2 Instruction Formats

8

by the most significant byte or vice versa.
In little endian machines, the least significant byte i
s followed by the most significant byte.

Big endian machines store the most significant byte
first (at the lower address).

CSC3501 - S.J. Park

As an example, suppose we have the hexadecima
l number 12345678.

The big endian and small endian arrangements of
the bytes are shown below.

5.2 Instruction Formats

9

CSC3501 - S.J. Park

5.2 Instruction Formats

Big endian:
Is more natural.
The sign of the number can be determined by lookin
g at the byte at address offset 0.
Strings and integers are stored in the same order.

10

Little endian:
Makes it easier to place values on non-word bounda
ries.
Conversion from a 16-bit integer address to a 32-bit
integer address does not require any arithmetic.

CSC3501 - S.J. Park

Standard…What Standard?
Pentium (80x86), VAX are little-endian
IBM 370, Moterola 680x0 (Mac), and most RISC are big-endi
an
Internet is big-endian

Makes writing Internet programs on PC more awkward!
WinSock provides htoi and itoh (Host to Internet & Internet to Host) funcp ()
tions to convert

CSC3501 - S.J. Park

5.2 Instruction Formats

The next consideration for architecture design con
cerns how the CPU will store data.
We have three choices:
1. A stack architecture
2 An accumulator architecture

12

2. An accumulator architecture
3. A general purpose register architecture.

In choosing one over the other, the tradeoffs are si
mplicity (and cost) of hardware design with executi
on speed and ease of use.

3

CSC3501 - S.J. Park

5.2 Instruction Formats

In a stack architecture, instructions and operands are
implicitly taken from the stack.

A stack cannot be accessed randomly.
In an accumulator architecture, one operand of a bin
ary operation is implicitly in the accumulator.

13

y p p y
One operand is in memory, creating lots of bus traffic.

In a general purpose register (GPR) architecture, reg
isters can be used instead of memory.

Faster than accumulator architecture.
Efficient implementation for compilers.
Results in longer instructions.

CSC3501 - S.J. Park

5.2 Instruction Formats

Most systems today are GPR systems.
There are three types:

Memory-memory where two or three operands may
be in memory.
Register-memory where at least one operand must

14

Register memory where at least one operand must
be in a register.
Load-store where no operands may be in memory.

The number of operands and the number of availa
ble registers has a direct affect on instruction lengt
h.

CSC3501 - S.J. Park

5.2 Instruction Formats

Stack machines use one- and zero-operand instru
ctions.
LOAD and STORE instructions require a single mem
ory address operand.
Other instructions use operands from the stack im

15

Other instructions use operands from the stack im
plicitly.
PUSH and POP operations involve only the stack’s t
op element.
Binary instructions (e.g., ADD, MULT) use the top tw
o items on the stack.

CSC3501 - S.J. Park

5.2 Instruction Formats

Stack architectures require us to think about arithm
etic expressions a little differently.

We are accustomed to writing expressions using in
fix notation, such as: Z = X + Y.

16

Stack arithmetic requires that we use postfix notati
on: Z = XY+.

This is also called reverse Polish notation, (somewh
at) in honor of its Polish inventor, Jan Lukasiewicz (
1878 - 1956).

CSC3501 - S.J. Park

5.2 Instruction Formats

The principal advantage of postfix notation is th
at parentheses are not used.

For example, the infix expression,

Z = (X × Y) + (W × U),

17

() (),

becomes:

Z = X Y × W U × +

in postfix notation.

CSC3501 - S.J. Park

5.2 Instruction Formats

In a stack ISA, the postfix expression,
Z = X Y × W U × +

might look like this:
PUSH X
PUSH Y

18

PUSH Y
MULT
PUSH W
PUSH U
MULT
ADD
PUSH Z

Note: The result
of a binary opera
tion is implicitly s
tored on the top
of the stack!

4

CSC3501 - S.J. Park

5.2 Instruction Formats

In a one-address ISA, like MARIE, the infix expr
ession,

Z = X × Y + W × U
looks like this:

LOAD X

19

LOAD X
MULT Y
STORE TEMP
LOAD W
MULT U
ADD TEMP
STORE Z

CSC3501 - S.J. Park

5.2 Instruction Formats

In a two-address ISA, (e.g.,Intel, Motorola), the i
nfix expression,

Z = X × Y + W × U
might look like this:

LOAD R1 X

20

LOAD R1,X
MULT R1,Y
LOAD R2,W
MULT R2,U
ADD R1,R2
STORE Z,R1

Note: One-addre
ss ISAs usually r
equire one opera
nd to be a regist
er.

CSC3501 - S.J. Park

5.2 Instruction Formats

With a three-address ISA, (e.g.,mainframes), th
e infix expression,

Z = X × Y + W × U
might look like this:

MULT R1 X Y

21

MULT R1,X,Y
MULT R2,W,U
ADD Z,R1,R2

Would this program execute faster than the correspondi
ng (longer) program that we saw in the stack-based IS
A?

CSC3501 - S.J. Park

5.2 Instruction Formats

We have seen how instruction length is affected b
y the number of operands supported by the ISA.
In any instruction set, not all instructions require t
he same number of operands.
O ti th t i d h

22

Operations that require no operands, such as HAL
T, necessarily waste some space when fixed-leng
th instructions are used.
One way to recover some of this space is to use e
xpanding opcodes.

CSC3501 - S.J. Park

5.2 Instruction Formats

A system has 16 registers and 4K of memory.
We need 4 bits to access one of the registers. We als
o need 12 bits for a memory address.
If the system is to have 16-bit instructions, we have t
wo choices for our instructions:

23

wo choices for our instructions:

CSC3501 - S.J. Park

5.2 Instruction Formats

If we allow the length of the opcode to vary, we could
create a very rich instruction set:

24

