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Chapter 5 Objectives

Understand the factors involved in instruction s
et architecture design.

Gain familiarity with memory addressing mode
s
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s.

Understand the concepts of instruction-level pi
pelining and its affect upon execution performa
nce.

CSC3501 - S.J. Park

5.1 Introduction

This chapter builds upon the ideas in Chapter 4.

We present a detailed look at different instructio
n formats, operand types, and memory access 
methods.
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We will see the interrelation between machine o
rganization and instruction formats.

This leads to a deeper understanding of comput
er architecture in general.
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5.2 Instruction Formats

Instruction sets are differentiated by the following:
• Number of bits per instruction.
• Stack-based or register-based.
• Number of explicit operands per instruction.
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• Operand location.
• Types of operations.
• Type and size of operands.
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5.2 Instruction Formats

Instruction set architectures are measured acc
ording to:

• Main memory space occupied by a program.

• Instruction complexity.
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• Instruction length (in bits).

• Total number of instructions in the instruction 
set.
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5.2 Instruction Formats

In designing an instruction set, consideration is 
given to:

• Instruction length.
– Whether short, long, or variable.

• Number of operands.
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• Number of addressable registers.
• Memory organization.

– Whether byte- or word addressable.

• Addressing modes.
– Choose any or all: direct, indirect or indexed.
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Byte ordering, or endianness, is another major arc
hitectural consideration.

If we have a two-byte integer, the integer may be 
stored so that the least significant byte is followed 
b th t i ifi t b t i

5.2 Instruction Formats
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by the most significant byte or vice versa.
In little endian machines, the least significant byte i
s followed by the most significant byte.

Big endian machines store the most significant byte 
first (at the lower address).
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As an example, suppose we have the hexadecima
l number 12345678.

The big endian and small endian arrangements of 
the bytes are shown below.

5.2 Instruction Formats
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5.2 Instruction Formats

Big endian:
Is more natural.
The sign of the number can be determined by lookin
g at the byte at address offset 0.
Strings and integers are stored in the same order.
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Little endian:
Makes it easier to place values on non-word bounda
ries.
Conversion from a 16-bit integer address to a 32-bit 
integer address does not require any arithmetic.
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Standard…What Standard?
Pentium (80x86), VAX are little-endian
IBM 370, Moterola 680x0 (Mac), and most RISC  are big-endi
an
Internet is big-endian

Makes writing Internet programs on PC more awkward!
WinSock provides htoi and itoh (Host to Internet & Internet to Host) funcp ( )
tions to convert
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5.2 Instruction Formats

The next consideration for architecture design con
cerns how the CPU will store data.
We have three choices:
1. A stack architecture
2 An accumulator architecture
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2. An accumulator architecture
3. A general purpose register architecture.

In choosing one over the other, the tradeoffs are si
mplicity (and cost) of hardware design with executi
on speed and ease of use.
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5.2 Instruction Formats

In a stack architecture, instructions and operands are 
implicitly taken from the stack.

A stack cannot be accessed randomly.
In an accumulator architecture, one operand of a bin
ary operation is implicitly in the accumulator.
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One operand is in memory, creating lots of bus traffic.

In a general purpose register (GPR) architecture, reg
isters can be used instead of memory.

Faster than accumulator architecture.
Efficient implementation for compilers.
Results in longer instructions.
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5.2 Instruction Formats

Most systems today are GPR systems.
There are three types:

Memory-memory where two or three operands may 
be in memory.
Register-memory where at least one operand must
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Register memory where at least one operand must 
be in a register.
Load-store where no operands may be in memory.

The number of operands and the number of availa
ble registers has a direct affect on instruction lengt
h.
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5.2 Instruction Formats

Stack machines use one- and zero-operand instru
ctions.
LOAD and STORE instructions require a single mem
ory address operand.
Other instructions use operands from the stack im
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Other instructions use operands from the stack im
plicitly.
PUSH and POP operations involve only the stack’s t
op element.
Binary instructions (e.g., ADD, MULT) use the top tw
o items on the stack.
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5.2 Instruction Formats

Stack architectures require us to think about arithm
etic expressions a little differently.

We are accustomed to writing expressions using in
fix notation, such as: Z = X + Y.
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Stack arithmetic requires that we use postfix notati
on: Z = XY+.

This is also called reverse Polish notation, (somewh
at) in honor of its Polish inventor, Jan Lukasiewicz (
1878 - 1956).
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5.2 Instruction Formats

The principal advantage of postfix notation is th
at parentheses are not used.

For example, the infix expression, 

Z = (X × Y) + (W × U),
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( ) ( ),

becomes: 

Z = X Y × W U × +

in postfix notation.
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5.2 Instruction Formats

In a stack ISA, the postfix expression, 
Z = X Y × W U × +

might look like this:
PUSH X
PUSH Y
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PUSH Y
MULT
PUSH W
PUSH U
MULT
ADD
PUSH Z

Note: The result 
of a binary opera
tion is implicitly s
tored on the top 
of the stack!
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5.2 Instruction Formats

In a one-address ISA, like MARIE, the infix expr
ession, 

Z = X × Y + W × U
looks like this:

LOAD X
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LOAD X
MULT Y
STORE TEMP
LOAD W
MULT U
ADD TEMP
STORE Z
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5.2 Instruction Formats

In a two-address ISA, (e.g.,Intel, Motorola), the i
nfix expression, 

Z = X × Y + W × U
might look like this:

LOAD R1 X
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LOAD R1,X
MULT R1,Y
LOAD R2,W
MULT R2,U
ADD  R1,R2
STORE Z,R1

Note: One-addre
ss ISAs usually r
equire one opera
nd to be a regist
er.
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5.2 Instruction Formats

With a three-address ISA, (e.g.,mainframes), th
e infix expression, 

Z = X × Y + W × U
might look like this:

MULT R1 X Y
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MULT R1,X,Y
MULT R2,W,U
ADD  Z,R1,R2

Would this program execute faster than the correspondi
ng (longer) program that we saw in the stack-based IS
A?
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5.2 Instruction Formats

We have seen how instruction length is affected b
y the number of operands supported by the ISA.
In any instruction set, not all instructions require t
he same number of operands.
O ti th t i d h
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Operations that require no operands, such as HAL
T, necessarily waste some space when fixed-leng
th instructions are used.
One way to recover some of this space is to use e
xpanding opcodes.
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5.2 Instruction Formats

A system has 16 registers and 4K of memory.
We need 4 bits to access one of the registers. We als
o need 12 bits for a memory address.
If the system is to have 16-bit instructions, we have t
wo choices for our instructions:
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wo choices for our instructions:
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5.2 Instruction Formats

If we allow the length of the opcode to vary, we could 
create a very rich instruction set:
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