
1

Computer Architecture
(CSC-3501)
Lecture 18

1

Lecture 18
(01 April 2008)

Seung-Jong Park (Jay)
http://www.csc.lsu.edu/~sjpark

CSC3501 - S.J. Park

Announcement

2

CSC3501 - S.J. Park

5.5 Instruction-Level Pipelining

Some CPUs divide the fetch-decode-execute cycle into
smaller steps.

These smaller steps can often be executed in parallel to
increase throughput.

Such parallel execution is called instruction level

3

Such parallel execution is called instruction-level
pipelining.

This term is sometimes abbreviated ILP in the literature.

The next slide shows an example of instruction-level
pipelining.

CSC3501 - S.J. Park

Pipelining: Its Natural!

Laundry Example
Ann, Brian, Cathy, Dave
each have one load of clothes

A B C D
each have one load of clothes
to wash, dry, and fold
Washer takes 30 minutes

Dryer takes 40 minutes

“Folder” takes 20 minutes

CSC3501 - S.J. Park

Sequential Laundry

A

30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11 Midnight

T
a
s
k

Time

Sequential laundry takes 6 hours for 4 loads
If they learned pipelining, how long would laundry take?

B

C

D

k

O
r
d
e
r

CSC3501 - S.J. Park

Pipelined Laundry Start work ASAP

A

6 PM 7 8 9 10 11 Midnight

T
a

Time

30 40 40 40 40 20

Pipelined laundry takes 3.5 hours for 4 loads

A

B

C

D

s
k

O
r
d
e
r

2

CSC3501 - S.J. Park

5.5 Instruction-Level Pipelining

Suppose a fetch-decode-execute cycle were broken
into the following smaller steps:

1. Fetch instruction. 4. Fetch operands.
2. Decode opcode. 5. Execute instructi
on.
3 Calculate effective 6 Store result

7

Suppose we have a six-stage pipeline. S1 fetches
the instruction, S2 decodes it, S3 determines the
address of the operands, S4 fetches them, S5
executes the instruction, and S6 stores the result.

3. Calculate effective 6. Store result.
address of operands.

CSC3501 - S.J. Park

5.5 Instruction-Level Pipelining

For every clock cycle, one small step is carried out,
and the stages are overlapped.

8

S1. Fetch instruction. S4. Fetch operands.
S2. Decode opcode. S5. Execute.
S3. Calculate effective S6. Store result.

address of operands.

CSC3501 - S.J. Park

Single cycle vs. Multiple cycle & Pipelining
Program
execution
order
(in instructions)

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

Time
200 400 600 800 1000 1200 1400 1600 1800

Instruction
fetch Reg ALU Data

access Reg

Instruction
fetch Reg ALU Data

access Reg

Instruction
fetch

800 ps

800 ps

9

800 ps

Program
execution
order
(in instructions)

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

Time
200 400 600 800 1000 1200 1400

Instruction
fetch Reg ALU Data

access Reg

Instruction
fetch

Instruction
fetch

Reg ALU Data
access Reg

Reg ALU Data
access Reg

200 ps

200 ps

200 ps 200 ps 200 ps 200 ps 200 ps

CSC3501 - S.J. Park

5.5 Instruction-Level Pipelining

The theoretical speedup offered by a pipeline can be
determined as follows:

Let tp be the time per stage. Each instruction
represents a task, T, in the pipeline.
The first task (instruction) requires k × tp time to

10

p
complete in a k-stage pipeline. The remaining (n - 1)
tasks emerge from the pipeline one per cycle. So the
total time to complete the remaining tasks is (n - 1)tp.
Thus, to complete n tasks using a k-stage pipeline
requires:

(k × tp) + (n - 1)tp = (k + n - 1)tp.

CSC3501 - S.J. Park

5.5 Instruction-Level Pipelining

If we take the time required to complete n tasks
without a pipeline and divide it by the time it takes to
complete n tasks using a pipeline, we find:

11

If we take the limit as n approaches infinity, (k + n - 1)
approaches n, which results in a theoretical speedup
of:

CSC3501 - S.J. Park

5.5 Instruction-Level Pipelining

Our neat equations take a number of things for
granted.

First, we have to assume that the architecture
supports fetching instructions and data in parallel.

12

Second, we assume that the pipeline can be kept
filled at all times. This is not always the case.
Pipeline hazards arise that cause pipeline conflicts
and stalls.

3

CSC3501 - S.J. Park

5.5 Instruction-Level Pipelining

An instruction pipeline may stall, or be flushed for
any of the following reasons:

Resource conflicts.

Data dependencies.

13

Conditional branching.

Measures can be taken at the software level as well
as at the hardware level to reduce the effects of
these hazards, but they cannot be totally eliminated.

CSC3501 - S.J. Park

5.6 Real-World Examples of ISAs

We return briefly to the Intel and MIPS architectures
from the last chapter, using some of the ideas
introduced in this chapter.
Intel introduced pipelining to their processor line with
its Pentium chip

14

its Pentium chip.
The first Pentium had two five-stage pipelines. Each
subsequent Pentium processor had a longer
pipeline than its predecessor with the Pentium IV
having a 24-stage pipeline.
The Itanium (IA-64) has only a 10-stage pipeline.

CSC3501 - S.J. Park

5.6 Real-World Examples of ISAs

Intel processors support a wide array of addressing
modes.
The original 8086 provided 17 ways to address
memory, most of them variants on the methods
presented in this chapter.

15

presented in this chapter.
Owing to their need for backward compatibility, the
Pentium chips also support these 17 addressing
modes.
The Itanium, having a RISC core, supports only
one: register indirect addressing with optional post
increment.

CSC3501 - S.J. Park

5.6 Real-World Examples of ISAs

MIPS was an acronym for Microprocessor Without
Interlocked Pipeline Stages.

The architecture is little endian and word-
addressable with three-address, fixed-length
instructions

16

instructions.

Like Intel, the pipeline size of the MIPS processors
has grown: The R2000 and R3000 have five-stage
pipelines.; the R4000 and R4400 have 8-stage
pipelines.

CSC3501 - S.J. Park

5.6 Real-World Examples of ISAs

The R10000 has three pipelines: A five-stage
pipeline for integer instructions, a seven-stage
pipeline for floating-point instructions, and a six-
state pipeline for LOAD/STORE instructions.
In all MIPS ISAs, only the LOAD and STORE

17

, y
instructions can access memory.
The ISA uses only base addressing mode.
The assembler accommodates programmers who
need to use immediate, register, direct, indirect
register, base, or indexed addressing modes.

CSC3501 - S.J. Park

5.6 Real-World Examples of ISAs

The Java programming language is an interpreted
language that runs in a software machine called the
Java Virtual Machine (JVM).
A JVM is written in a native language for a wide
array of processors, including MIPS and Intel.

18

array of processors, including MIPS and Intel.
Like a real machine, the JVM has an ISA all of its
own, called bytecode. This ISA was designed to be
compatible with the architecture of any machine on
which the JVM is running.

The next slide shows how the pieces fit toge
ther.

4

CSC3501 - S.J. Park

5.6 Real-World Examples of ISAs

19

CSC3501 - S.J. Park

5.6 Real-World Examples of ISAs

Java bytecode is a stack-based language.
Most instructions are zero address instructions.
The JVM has four registers that provide access to
five regions of main memory.

20

All references to memory are offsets from these
registers. Java uses no pointers or absolute
memory references.
Java was designed for platform interoperability, not
performance!

CSC3501 - S.J. Park

ISAs are distinguished according to their bits
per instruction, number of operands per
instruction, operand location and types and
sizes of operands.

Chapter 5 Conclusion

21

Endianness as another major architectural
consideration.
CPU can store store data based on
1. A stack architecture
2. An accumulator architecture
3. A general purpose register architecture.

CSC3501 - S.J. Park

Instructions can be fixed length or variable
length.
To enrich the instruction set for a fixed length
instruction set, expanding opcodes can be used.

Chapter 5 Conclusion

22

The addressing mode of an ISA is also another
important factor. We looked at:

Immediate – Direct
Register – Register Indirect
Indirect – Indexed
Based – Stack

CSC3501 - S.J. Park

A k-stage pipeline can theoretically produce
execution speedup of k as compared to a non-
pipelined machine.
Pipeline hazards such as resource conflicts and

Chapter 5 Conclusion

23

conditional branching prevents this speedup
from being achieved in practice.
The Intel, MIPS, and JVM architectures provide
good examples of the concepts presented in
this chapter.

