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5.5 Instruction-Level Pipelining

Some CPUs divide the fetch-decode-execute cycle into 
smaller steps.

These smaller steps can often be executed in parallel to 
increase throughput.

Such parallel execution is called instruction level
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Such parallel execution is called instruction-level 
pipelining.

This term is sometimes abbreviated ILP in the literature.

The next slide shows an example of instruction-level 
pipelining.
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Pipelining: Its Natural!

Laundry Example
Ann, Brian, Cathy, Dave 
each have one load of clothes

A B C D
each have one load of clothes 
to wash, dry, and fold
Washer takes 30 minutes

Dryer takes 40 minutes

“Folder” takes 20 minutes
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Sequential Laundry
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Sequential laundry takes 6 hours for 4 loads
If they learned pipelining, how long would laundry take?
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Pipelined Laundry Start work ASAP
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Pipelined laundry takes 3.5 hours for 4 loads
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5.5 Instruction-Level Pipelining

Suppose a fetch-decode-execute cycle were broken 
into the following smaller steps:

1. Fetch instruction. 4. Fetch operands.
2. Decode opcode. 5. Execute instructi
on.
3 Calculate effective 6 Store result
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Suppose we have a six-stage pipeline.  S1 fetches 
the instruction, S2 decodes it, S3 determines the 
address of the operands, S4 fetches them, S5 
executes the instruction, and S6 stores the result.

3. Calculate effective 6. Store result.
address of operands.
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5.5 Instruction-Level Pipelining

For every clock cycle, one small step is carried out, 
and the stages are overlapped.
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S1. Fetch instruction. S4. Fetch operands.
S2. Decode opcode. S5. Execute.
S3. Calculate effective S6. Store result.

address of operands.
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Single cycle vs. Multiple cycle & Pipelining
Program
execution
order
(in instructions)

lw  $1, 100($0)

lw  $2,  200($0)

lw  $3,  300($0)

Time
200 400 600 800 1000 1200 1400 1600 1800

Instruction
fetch Reg ALU Data

access Reg

Instruction
fetch Reg ALU Data

access Reg

Instruction
fetch

800 ps

800 ps
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800 ps

Program
execution
order
(in instructions)

lw  $1, 100($0)

lw  $2,  200($0)

lw  $3,  300($0)

Time
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Instruction
fetch Reg ALU Data

access Reg

Instruction
fetch

Instruction
fetch

Reg ALU Data
access Reg

Reg ALU Data
access Reg

200 ps

200 ps

200 ps 200 ps 200 ps 200 ps 200 ps
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5.5 Instruction-Level Pipelining

The theoretical speedup offered by a pipeline can be 
determined as follows:

Let tp be the time per stage.  Each instruction 
represents a task, T, in the pipeline.
The first task (instruction) requires k × tp time to 

10

p
complete in a k-stage pipeline.  The remaining (n - 1) 
tasks emerge from the pipeline one per cycle.  So the 
total time to complete the remaining tasks is (n - 1)tp.
Thus, to complete n tasks using a k-stage pipeline 
requires:

(k × tp) + (n - 1)tp = (k + n - 1)tp.
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5.5 Instruction-Level Pipelining

If we take the time required to complete n tasks 
without a pipeline and divide it by the time it takes to 
complete n tasks using a pipeline, we find:
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If we take the limit as n approaches infinity, (k + n - 1) 
approaches n, which results in a theoretical speedup 
of:
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5.5 Instruction-Level Pipelining

Our neat equations take a number of things for 
granted.

First, we have to assume that the architecture 
supports fetching instructions and data in parallel.
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Second, we assume that the pipeline can be kept 
filled at all times.  This is not always the case.  
Pipeline hazards arise that cause pipeline conflicts 
and stalls.
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5.5 Instruction-Level Pipelining

An instruction pipeline may stall, or be flushed for 
any of the following reasons:

Resource conflicts.

Data dependencies.
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Conditional branching.

Measures can be taken at the software level as well 
as at the hardware level to reduce the effects of 
these hazards, but they cannot be totally eliminated.
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5.6 Real-World Examples of ISAs

We return briefly to the Intel and MIPS architectures 
from the last chapter, using some of the ideas 
introduced in this chapter.
Intel introduced pipelining to their processor line with 
its Pentium chip
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its Pentium chip.
The first Pentium had two five-stage pipelines.  Each 
subsequent Pentium processor had a longer 
pipeline than its predecessor with the Pentium IV 
having a 24-stage pipeline.
The Itanium (IA-64) has only a 10-stage pipeline.
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5.6 Real-World Examples of ISAs

Intel processors support a wide array of addressing 
modes.
The original 8086 provided 17 ways to address 
memory, most of them variants on the methods 
presented in this chapter.
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presented in this chapter.
Owing to their need for backward compatibility, the 
Pentium chips also support these 17 addressing 
modes.
The Itanium, having a RISC core, supports only 
one: register indirect addressing with optional post 
increment.
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5.6 Real-World Examples of ISAs

MIPS was an acronym for Microprocessor Without 
Interlocked Pipeline Stages.

The architecture is little endian and word-
addressable with three-address, fixed-length 
instructions
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instructions.

Like Intel, the pipeline size of the MIPS processors 
has grown: The R2000 and R3000 have five-stage 
pipelines.; the R4000 and R4400 have 8-stage 
pipelines.
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5.6 Real-World Examples of ISAs

The R10000 has three pipelines: A five-stage 
pipeline for integer instructions, a seven-stage 
pipeline for floating-point instructions, and a six-
state pipeline for LOAD/STORE instructions. 
In all MIPS ISAs, only the LOAD and STORE
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, y
instructions can access memory.
The ISA uses only base addressing mode.
The assembler accommodates programmers who 
need to use immediate, register, direct, indirect 
register, base, or indexed addressing modes.
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5.6 Real-World Examples of ISAs

The Java programming language is an interpreted 
language that runs in a software machine called the 
Java Virtual Machine (JVM).
A JVM is written in a native language for a wide 
array of processors, including MIPS and Intel.
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array of processors, including MIPS and Intel.
Like a real machine, the JVM has an ISA all of its 
own, called bytecode. This ISA was designed to be 
compatible with the architecture of any machine on 
which the JVM is running.

The next slide shows how the pieces fit toge
ther.
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5.6 Real-World Examples of ISAs
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5.6 Real-World Examples of ISAs

Java bytecode is a stack-based language.
Most instructions are zero address instructions.
The JVM has four registers that provide access to 
five regions of main memory.
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All references to memory are offsets from these 
registers. Java uses no pointers or absolute 
memory references.
Java was designed for platform interoperability, not 
performance!
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ISAs are distinguished according to their bits 
per instruction, number of operands per 
instruction, operand location and types and 
sizes of operands.

Chapter 5 Conclusion

21

Endianness as another major architectural 
consideration.
CPU can store store data based on
1. A stack architecture
2. An accumulator architecture
3. A general purpose register architecture.
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Instructions can be fixed length or variable 
length.
To enrich the instruction set for a fixed length 
instruction set, expanding opcodes can be used.

Chapter 5 Conclusion
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The addressing mode of an ISA is also another 
important factor.  We looked at:

Immediate – Direct
Register – Register Indirect
Indirect – Indexed
Based – Stack
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A k-stage pipeline can theoretically produce 
execution speedup of k as compared to a non-
pipelined machine.
Pipeline hazards such as resource conflicts and 

Chapter 5 Conclusion
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conditional branching prevents this speedup 
from being achieved in practice.
The Intel, MIPS, and JVM architectures provide 
good examples of the concepts presented in 
this chapter.


