

	CSC3501 - S.J. Park
Multiplication Method	
 Using the multiplication method to convert the decimal 0.8125 to binary, we multiply by the radix 2. 	
The first product carries into the units place.	.8125
 Ignoring the value in the units place at each step, continue multiplying each fractional part by the radix. 	1.6250
 You are finished when the product is zero, or until you have reached the desired number of binary places. 	1.2500
□ Our result, reading from top to bottom is: $0.8125_{10} = 0.1101_2$.2500 × 2 0.5000
This method also works with any base. Just use the target radix as the multiplier.	.5000
	1.0000

	CSC3501 - S.J. Park
Signed Magnitude Representation	
 The signs in signed magnitude representation work just like the signs in pencil and paper arithmetic. 	1 1
 Example: Using signed magnitude binary arithmetic, find the sum of - 46 and - 25. 	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
 Because the signs are the same, all we do is add the numbers and <u>supply the negative sign when</u> we are done. 	1 1000111
 Mixed sign addition (or subtraction) is done the same way. 	
 Example: Using signed magnitude binary arithmetic, find the sum of 46 and - 25. 	0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0
The sign of the result gets the sign of the number that is larger.	$\frac{1}{0} + \frac{1}{0010101}$
 Note the "borrows" from the second and sixth bits. 	
	14

	CSC3501 - S.J. Park
Overflow Detection of 2's Complement	
 While we can't always prevent overflow, we can always detect overflow. 	
 In complement arithmetic, an overflow condition is easy to detect. 	
Example:	
 Using two's complement binary arithmetic, find the sum of 107 and 46. 	$\begin{array}{ccc} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ \end{array}$
We see that the nonzero carry from the seventh bit overflows into the sign bit, giving us the erroneous result: 107 + 46 = -103.	$\frac{+\ 0\ 0\ 1\ 0\ 1\ 1\ 0}{1\ 0\ 0\ 1\ 0\ 0\ 1}$
Rule for detecting signed two's complement When the "carry in" and the "carry out" of differ, overflow has occurred.	<u>nt overflow:</u> the sign bit
	20

