

Seung-Jong Park
http://www.csc.Isu.edu/~sjpark

Announcement

- $1^{\text {st }}$ Pop Quiz Today

Goal and Objectives of Chapter 2

- Goal
\square Understand how computers think and speak
- Objectives
\square Understand the fundamentals of numerical data representation and manipulation in digital computers.
\square Master the skill of converting between various radix systems.
\square Understand how errors can occur in computations because of overflow and truncation.
\square Understand the fundamental concepts of floating-point representation.
\square Gain familiarity with the most popular character codes.
\square Understand the concepts of error detecting and correcting codes.

Information Representation

- People
\square Calculate base 10 number
\square Basic information unit?
- Maybe neuron?
- Computers
$\square 2$ base number is easy to represent in digital domain
- It is a state of "on" or "off" in a digital circuit
- Sometimes these states are "high" or "low" voltage instead of "on" or "off.."
\square So, bit is the most basic unit in computers
\square A byte is a group of eight bits.
- A byte is the smallest possible addressable unit of computer storage.
- The term, "addressable," means that a particular byte can be retrieved according to its location in memory.
\square A word is a contiguous group of bytes.
- Words can be any number of bits or bytes.
- Word sizes of 16,32 , or 64 bits are most common depending on compute architecture

Positional Numbering Systems

- Bytes store numbers using the position of each bit to represent a power of 2.
\square The binary system is also called the base- 2 system.
\square Our decimal system is the base-10 system. It uses powers of 10 for each position in a number.
\square Any integer quantity can be represented exactly using any base (or radix).
- The decimal number 5836.47 in powers of 10 is:

$$
5 \times 10^{3}+8 \times 10^{2}+3 \times 10^{1}+6 \times 10^{0}+4 \times 10^{-1}+7 \times 10^{-2}
$$

- The binary number 11001 in powers of 2 is:
$1 \times 2^{4}+1 \times 2^{3}+0 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}$
$=16+8+0+0+1=25$

2.3 Decimal to Base 3 Conversions

- Converting 190 to base $\mathbf{3} . .$.
\square Continue in this way until the quotient is zero.
\square In the final calculation, we note that 3 divides 2 zero times with a remainder of 2.
\square Our result, reading from bottom to top is:

$$
190_{10}=21001_{3}
$$

Fractional Value

- Fractional values can be approximated in all base systems.
- Unlike integer values, fractions do not necessarily have exact representations under all radices.
- The quantity $1 / 2$ is exactly representable in the binary and decimal systems, but is not in the ternary (base 3) numbering system.
- Fractional decimal values have nonzero digits to the right of the decimal point.
- Fractional values of other radix systems have nonzero digits to the right of the radix point.
- Numerals to the right of a radix point represent negative powers of the radix:

$$
\begin{aligned}
0.47_{10} & =4 \times 10^{-1}+7 \times 10^{-2} \\
0.11_{2} & =1 \times 2^{-1}+1 \times 2^{-2} \\
& =1 / 2+1 / 4 \\
& =0.5+0.25=0.75
\end{aligned}
$$

- - csca301 - s... Pak
 Conversion Fractional Number from Base 10 to Base 2

- As with whole-number conversions, you can use either of two methods: a subtraction method and an easy multiplication method.
- The subtraction method for fractions is identical to the subtraction method for whole numbers. Instead of subtracting positive powers of the target radix, we subtract negative powers of the radix.
- We always start with the largest value first, n^{-1}, where n is our radix, and work our way along using larger negative exponents.

Subtraction Method

- The calculation to the right is an example of using the subtraction method to convert the decimal 0.8125 to binary.
\square Our result, reading from top to bottom is:
$0.8125_{10}=0.1101_{2}$
\square Of course, this method works with any base, not just binary.

0.8125
-0.5000
0.3125
$-\quad 2^{-1} \times 1$
-0.2500

Multiplication Method

- Using the multiplication method to convert the decimal 0.8125 to binary, we multiply by the radix 2.
\square The first product carries into the units place.
\square Ignoring the value in the units place at each
.8125 step, continue multiplying each fractional part by the radix.

1. $\frac{\times \quad 2}{6250}$

You are finished when the product is zero, or until you have reached the desired number of . 6250 1.2500 binary places.
\square Our result, reading from top to bottom is:
.2500
$0.8125_{10}=0.1101_{2}$
$0 . \frac{2}{\times}$

- This method also works with any base. Just use the target radix as the multiplier.

Hexadecimal Number

- The binary numbering system is the most important radix system for digital computers.
- However, it is difficult to read long strings of binary numbers
\square For example: $\quad 11010100011011_{2}=13595_{10}$
- For compactness and ease of reading, binary values are usually expressed using the hexadecimal, or base-16, numbering system.
- The hexadecimal numbering system uses the numerals 0 through 9 and the letters A through F.

The decimal number 26 is $1 \mathrm{~A}_{16}$.

- It is easy to convert between base 16 and base 2 , because $16=2^{4}$.
- Thus, to convert from binary to hexadecimal, all we need to do is group the binary digits into groups of four.
- Using groups of hextets, the binary number 11010100011011_{2} (= 13595_{10}) in hexadecimal is:

0011010100011011
$\begin{array}{llll}3 & 5 & 1 & B\end{array}$

Signed Integer Representation

- There are three ways in which signed binary numbers may be expressed:
\square Signed magnitude,
\square One's complement and
\square Two's complement.
- In an 8-bit word, signed magnitude representation places the absolute value of the number in the 7 bits to the right of the sign bit.
- For example, in 8-bit signed magnitude,
\square positive 3 is: 00000011
\square Negative 3 is: 10000011
- Computers perform arithmetic operations on signed magnitude numbers in much the same way as humans carry out pencil and paper arithmetic.

Addition of Signed Magnitude Integer

- Example 1:
\square Using signed magnitude binary arithmetic, find the sum of 75 and 46.
- First, convert 75 and 46 to binary, and arrange as a sum, but separate the (positive) sign bits from the magnitude bits.
- Example2:
\square Using signed magnitude binary arithmetic find the sum of 107 and 46.
- We see that the carry from the seventh bit overflows and is discarded, giving us the erroneous result: $107+46=25$.
(bosive) sign bis

111
$0 \quad 1001011$
$0+0101110$
01111001

Signed Magnitude Representation

- The signs in signed magnitude representation work just like the signs in pencil and paper arithmetic.
\square Example: Using signed magnitude binary arithmetic, find the sum of - 46 and -25.
\square Because the signs are the same, all we do is add

```
10101110
1+0011001
```

the numbers and supply the negative sign when we are done.

- Mixed sign addition (or subtraction) is done the same way.
\square Example: Using signed magnitude binary arithmetic, find the sum of 46 and - 25 .
\square The sign of the result gets the sign of the number that is larger.
- Note the "borrows" from the second and sixth bits.

CSC3501 - S.J. Park

Signed Magnitude: Pro and Cons

- Problems
\square Signed magnitude representation is easy for people to understand, but it requires complicated computer hardware.
- Subtraction requires an additional hardware different to addition if you have signed magnitude method
\square Another disadvantage of signed magnitude is that it allows two different representations for zero:
- positive zero and negative zero.
\square For these reasons (among others) computers systems employ complement systems for numeric value representation.
- Subtraction also use same addition hardware if you use 2's complement

1's Complement

- In complement systems, negative values are represented by some difference between a number and its base.
- In the binary system, this gives us one's complement. It amounts to little more than flipping the bits of a binary number.
- For example, in 8 -bit one's complement,
\square positive 3 is: 00000011
\square Negative 3 is: 11111100
- In one's complement, as with signed magnitude, negative values are indicated by a 1 in the high order bit.
- Complement systems are useful because they eliminate the need for different subtraction.

1's Complement Example

- With one's complement addition, the carry bit is "carried around" and added to the sum. (1) 11
\square Example: Using one's complement binary arithmetic, find the sum of 48 and - 19
- Although the "end carry around" adds some complexity, one's complement is simpler to implement than signed magnitude.

00110000
$\frac{11101100}{00011100}$
$\frac{+1}{00011101}$

- But it still has the disadvantage of having two different representations for zero: positive zero and negative zero.
- Two's complement solves this problem.

2's Complement

- To express a value in two's complement:
\square If the number is positive, just convert it to binary and you're done.
\square If the number is negative, find the one's complement of the number and then add 1.
- Example:
\square In 8-bit one's complement, positive 3 is: 00000011
\square Negative 3 in one's complement is: 11111100
\square Adding 1 gives us -3 in two's complement form: 11111101.
- With two's complement arithmetic, all we do is add our two binary numbers. Just discard any carries emitting from the high order bit.
\square Example: Using one's complement binary arithmetic, find the sum of 48 and - 19
(1) 11 00110000
$+11101101$

Binary Arithmetic

Decimal	1's complement	2's complement
$\begin{array}{r} 10 \\ +(-3) \end{array}$	$\begin{aligned} & 00001010 \\ & 11111100 \end{aligned}$	$\begin{aligned} & 00001010 \\ & 11111101 \end{aligned}$
+7	$\underbrace{00000110}_{\text {carry } 1}$	$\begin{aligned} & 100000111 \\ & \text { discarded } \end{aligned}$
	00000111	2's complement is better because - only one representation for zero - simpler addition without subtraction

Overflow Detection of 2's Complement

- While we can't always prevent overflow, we can always detect overflow.
- In complement arithmetic, an overflow condition is easy to detect.
- Example:
\square Using two's complement binary arithmetic, find the sum of 107 and 46.
- We see that the nonzero carry from the seventh bit overflows into the sign bit, giving us the erroneous result: $107+46=-103$.

$$
\begin{array}{r}
111111 \\
01101011 \\
+\quad 00101110 \\
\hline 10011001
\end{array}
$$

Rule for detecting signed two's complement overflow: When the "carry in" and the "carry out" of the sign bit differ, overflow has occurred.

Booth Algorithm for Multiplication of 2's

 Complement Numbers- One of the many interesting products of this work is Booth's algorithm.
- In most cases, Booth's algorithm carries out multiplication faster and more accurately than naïve pencil-and-paper methods.
- Method
\square In Booth's algorithm, the first 1 in a string of 1 s in the multiplier is replaced with a subtraction of the 0011 multiplicand.
Shift the partial sums until the last 1 of the string is
\square Then add the multiplicand.
00010010

Booth Algorithm

- Idea

Consider a positive multiplier consisting of a block of 1 s surrounded by 0 s. For example, 00111110. The product is given by

$$
M \times{ }^{\prime \prime} 00111110^{\prime \prime}=M \times\left(2^{5}+2^{4}+2^{3}+2^{2}+2^{1}\right)=M \times 62
$$

where M is the multiplicand. The number of operations can be reduced to two by rewriting the same as

$$
M \times{ }^{\prime \prime} 010000-10^{\prime \prime}=M \times\left(2^{6}-2^{1}\right)=M \times 62
$$

In fact, it can be shown that any sequence of 1 's in a binary number can be broken into the difference of two binary numbers:

- Example 2.24 (p.61)

Increasing Bit Width

- A value can be extended from N bits to M bits (where $M>N$) by using:
- Sign-extension
- Zero-extension

Sign-Extension

- Sign bit is copied into most significant bits.
- Number value remains the same.
- Example 1:
- 4-bit representation of $3=0011$
- 8-bit sign-extended value: 00000011
- Example 2:
- 4-bit representation of $-5=1011$
- 8-bit sign-extended value: 11111011

Zero-Extension

- Zeros are copied into most significant bits.
- Number value may change.
- Example 1:
- 4-bit value $=0011$
- 8-bit zero-extended value: 00000011
- Example 2:
- 4-bit value = 1011
- 8-bit zero-extended value: 00001011

