
1

Computer ArchitectureComputer Architecture
(CSC-3501)
Lecture 2
(17 Jan 2008)

1

Seung-Jong Park
http://www.csc.lsu.edu/~sjpark

CSC3501 - S.J. Park

Announcement
1st Pop Quiz Today

2

2

CSC3501 - S.J. Park

Goal and Objectives of Chapter 2
Goal

Understand how computers think and speak

ObjectivesObjectives
Understand the fundamentals of numerical data representation and
manipulation in digital computers.

Master the skill of converting between various radix systems.

Understand how errors can occur in computations because of
overflow and truncation.

Understand the fundamental concepts of floating-point representation.

3

Gain familiarity with the most popular character codes.

Understand the concepts of error detecting and correcting codes.

CSC3501 - S.J. Park

Information Representation
People

Calculate base 10 number
Basic information unit ?

?Maybe neuron ?

Computers
2 base number is easy to represent in digital domain

It is a state of “on” or “off” in a digital circuit
Sometimes these states are “high” or “low” voltage instead of “on” or “off..”

So, bit is the most basic unit in computers
A byte is a group of eight bits.

A byte is the smallest possible addressable unit of computer storage.
The term “addressable ” means that a particular byte can be retrieved according to its

4

The term, addressable, means that a particular byte can be retrieved according to its
location in memory.

A word is a contiguous group of bytes.
Words can be any number of bits or bytes.

Word sizes of 16, 32, or 64 bits are most common depending on compute architecture

3

CSC3501 - S.J. Park

Positional Numbering Systems
Bytes store numbers using the position of each bit to represent a power
of 2.

The binary system is also called the base-2 system.y y y

Our decimal system is the base-10 system. It uses powers of 10 for
each position in a number.

Any integer quantity can be represented exactly using any base (or
radix).

The decimal number 5836.47 in powers of 10 is:
5 × 10 3 + 8 × 10 2 + 3 × 10 1 + 6 × 10 0 + 4 × 10 -1 + 7 × 10 -2

5

The binary number 11001 in powers of 2 is:

1 × 2 4 + 1 × 2 3 + 0 × 2 2 + 0 × 2 1 + 1 × 2 0

= 16 + 8 + 0 + 0 + 1 = 25

CSC3501 - S.J. Park

2.3 Decimal to Base 3 Conversions
Converting 190 to base 3...

Continue in this way until the quotient is
zero.

In the final calculation, we note that 3
divides 2 zero times with a remainder of 2.

Our result, reading from bottom to top is:

19010 = 210013

6

4

CSC3501 - S.J. Park

Fractional Value
Fractional values can be approximated in all base systems.
Unlike integer values, fractions do not necessarily have exact
representations under all radices.
Th i ½ i l bl i h bi d d i lThe quantity ½ is exactly representable in the binary and decimal
systems, but is not in the ternary (base 3) numbering system.
Fractional decimal values have nonzero digits to the right of the
decimal point.
Fractional values of other radix systems have nonzero digits to the
right of the radix point.
Numerals to the right of a radix point represent negative powers of
the radix:

7

0.4710 = 4 × 10 -1 + 7 × 10 -2

0.112 = 1 × 2 -1 + 1 × 2 -2

= ½ + ¼
= 0.5 + 0.25 = 0.75

CSC3501 - S.J. Park

Conversion Fractional Number from Base 10
to Base 2

As with whole-number conversions, you can use either of two
methods: a subtraction method and an easy multiplication
method.e od

The subtraction method for fractions is identical to the
subtraction method for whole numbers. Instead of subtracting
positive powers of the target radix, we subtract negative
powers of the radix.

We always start with the largest value first, n -1, where n is our
radix, and work our way along using larger negative

8

, y g g g g
exponents.

5

CSC3501 - S.J. Park

Subtraction Method
The calculation to the right is an
example of using the subtraction
method to convert the decimal 0.8125
t bito binary.

Our result, reading from top to
bottom is:

0.812510 = 0.11012

Of course, this method works with
any base, not just binary.

9

CSC3501 - S.J. Park

Multiplication Method
Using the multiplication method to convert
the decimal 0.8125 to binary, we multiply by
the radix 2.

The first product carries into the units place.
Ignoring the value in the units place at each
step, continue multiplying each fractional part
by the radix.
You are finished when the product is zero, or
until you have reached the desired number of
binary places

10

binary places.
Our result, reading from top to bottom is:

0.812510 = 0.11012

This method also works with any base. Just use
the target radix as the multiplier.

6

CSC3501 - S.J. Park

Hexadecimal Number
The binary numbering system is the most important radix system for
digital computers.
However, it is difficult to read long strings of binary numbers

For example: 110101000110112 = 1359510

For compactness and ease of reading, binary values are usually
expressed using the hexadecimal, or base-16, numbering system.
The hexadecimal numbering system uses the numerals 0 through 9
and the letters A through F.

The decimal number 26 is 1A16.
It is easy to convert between base 16 and base 2, because 16 = 24.
Th t t f bi t h d i l ll d t d i

11

Thus, to convert from binary to hexadecimal, all we need to do is
group the binary digits into groups of four.
Using groups of hextets, the binary number 110101000110112 (=
1359510) in hexadecimal is:

CSC3501 - S.J. Park

Signed Integer Representation
There are three ways in which signed binary numbers may be
expressed:

Signed magnitude,
One’s complement and
Two’s complement.

In an 8-bit word, signed magnitude representation places the
absolute value of the number in the 7 bits to the right of the sign
bit.
For example, in 8-bit signed magnitude,

positive 3 is: 00000011

12

positive 3 is: 00000011
Negative 3 is: 10000011

Computers perform arithmetic operations on signed magnitude
numbers in much the same way as humans carry out pencil and
paper arithmetic.

7

CSC3501 - S.J. Park

Addition of Signed Magnitude Integer
Example 1:

Using signed magnitude binary
arithmetic find the sum of 75 and 46arithmetic, find the sum of 75 and 46.

First, convert 75 and 46 to binary, and
arrange as a sum, but separate the
(positive) sign bits from the magnitude bits.

Example2:
Using signed magnitude binary arithmetic,
fi d th f 107 d 46

13

find the sum of 107 and 46.
We see that the carry from the seventh bit
overflows and is discarded, giving us the
erroneous result: 107 + 46 = 25.

CSC3501 - S.J. Park

Signed Magnitude Representation
The signs in signed magnitude representation
work just like the signs in pencil and paper
arithmetic.

Example: Using signed magnitude binary
arithmetic, find the sum of - 46 and - 25.
Because the signs are the same, all we do is add
the numbers and supply the negative sign when
we are done.

Mixed sign addition (or subtraction) is done the same
way.

Example: Using signed magnitude binary arithmetic,

14

p g g g y ,
find the sum of 46 and - 25.
The sign of the result gets the sign of the number
that is larger.

Note the “borrows” from the second and sixth bits.

8

CSC3501 - S.J. Park

Signed Magnitude: Pro and Cons
Problems

Signed magnitude representation is easy for people to
understand but it requires complicated computer hardwareunderstand, but it requires complicated computer hardware.

Subtraction requires an additional hardware different to
addition if you have signed magnitude method

Another disadvantage of signed magnitude is that it allows two
different representations for zero:

positive zero and negative zero.

For these reasons (among others) computers systems employ
l t t f i l t ti

15

complement systems for numeric value representation.
Subtraction also use same addition hardware if you use 2’s complement

CSC3501 - S.J. Park

1’s Complement
In complement systems, negative values are represented by some
difference between a number and its base.
In the binary system, this gives us one’s complement. It amounts to
littl th fli i th bit f bi blittle more than flipping the bits of a binary number.
For example, in 8-bit one’s complement,

positive 3 is: 00000011
Negative 3 is: 11111100

In one’s complement, as with signed magnitude, negative values are
indicated by a 1 in the high order bit.
Complement systems are useful because they eliminate the
need for different subtraction.

16

need for different subtraction.

9

CSC3501 - S.J. Park

1’s Complement Example
With one’s complement addition, the carry
bit is “carried around” and added to the sum.

Example: Using one’s complement binary
arithmetic, find the sum of 48 and – 19

Although the “end carry around” adds some
complexity, one’s complement is simpler to
implement than signed magnitude.

But it still has the disadvantage of having
two different representations for zero:
positive zero and negative zero.

17

p g

Two’s complement solves this problem.

CSC3501 - S.J. Park

2’s Complement
To express a value in two’s complement:

If the number is positive, just convert it to binary and you’re done.
If the number is negative, find the one’s complement of the number g p
and then add 1.

Example:
In 8-bit one’s complement, positive 3 is: 00000011
Negative 3 in one’s complement is: 11111100

Adding 1 gives us -3 in two’s complement form: 11111101.

With two’s complement arithmetic, all we do is add our two binary
numbers. Just discard any carries emitting from the high order bit.

18

y g g
Example: Using one’s complement binary arithmetic, find the sum of
48 and - 19

10

CSC3501 - S.J. Park

Binary Arithmetic

2’s complement is better because2 s complement is better because
- only one representation for zero
- simpler addition without subtraction

19

CSC3501 - S.J. Park

Overflow Detection of 2’s Complement
While we can’t always prevent overflow, we can
always detect overflow.

In complement arithmetic an overflow conditionIn complement arithmetic, an overflow condition
is easy to detect.
Example:

Using two’s complement binary arithmetic, find the
sum of 107 and 46.

We see that the nonzero carry from the seventh bit
overflows into the sign bit, giving us the erroneous
result: 107 + 46 = -103.

20

Rule for detecting signed two’s complement overflow:
When the “carry in” and the “carry out” of the sign bit
differ, overflow has occurred.

11

CSC3501 - S.J. Park

Booth Algorithm for Multiplication of 2’s
Complement Numbers

One of the many interesting products of this work is
Booth’s algorithm.
In most cases Booth’s algorithm carries outIn most cases, Booth’s algorithm carries out
multiplication faster and more accurately than naïve
pencil-and-paper methods.
Method

In Booth’s algorithm, the first 1 in a string of 1s in the
multiplier is replaced with a subtraction of the
multiplicand.
Shift the partial sums until the last 1 of the string is

0011

x 0110

+ 0000

0011Shift the partial sums until the last 1 of the string is
detected.
Then add the multiplicand.

21

- 0011

+ 0000

+ 0011____

00010010

CSC3501 - S.J. Park

Booth Algorithm
Idea

Example 2.24 (p.61)
00110101

x 01111110
+ 0000000000000000 2n bit

22

+ 111111111001011
+ 00000000000000
+ 0000000000000
+ 000000000000
+ 00000000000
+ 0000000000
+ 000110101_______
10001101000010110Ignore all bits over 2n.

Subtract multiplicand

= Add 2’s Complement of the multiplicand

= 11001011 then extend sign

= 111111111001011

Add multiplicand

12

CSC3501 - S.J. Park

Increasing Bit Width
• A value can be extended from N bits to M bits (where M > N) by using:

– Sign-extension
– Zero-extensionZero extension

Copyright © 2007 Elsevier
1-<23>

CSC3501 - S.J. Park

Sign-Extension
• Sign bit is copied into most significant bits.
• Number value remains the same.

• Example 1:• Example 1:

– 4-bit representation of 3 = 0011
– 8-bit sign-extended value: 00000011

• Example 2:

– 4-bit representation of -5 = 1011
– 8-bit sign-extended value: 11111011

Copyright © 2007 Elsevier
1-<24>

13

CSC3501 - S.J. Park

Zero-Extension
• Zeros are copied into most significant bits.
• Number value may change.

• Example 1:• Example 1:

– 4-bit value = 0011
– 8-bit zero-extended value: 00000011

• Example 2:

– 4-bit value = 1011
– 8-bit zero-extended value: 00001011

Copyright © 2007 Elsevier
1-<25>

