
1

Computer Architecture
(CSC-3501)
Lecture 21

1

Lecture 21
(10 April 2008)

Seung-Jong Park (Jay)
http://www.csc.lsu.edu/~sjpark

CSC3501 - S.J. Park

Announcement

2

CSC3501 - S.J. Park

6.4 Cache Memory (Fully Associative Cache)

Instead of placing memory blocks in specific
cache locations based on memory address, we
could allow a block to go anywhere in cache.

In this way, cache would have to fill up before
any blocks are evicted

3

any blocks are evicted.

This is how fully associative cache works.

A memory address is partitioned into only two
fields: the tag and the word.

CSC3501 - S.J. Park

Suppose, as before, we have 14-bit memory
addresses and a cache with 16 blocks, each block
of size 8. The field format of a memory reference
is:

6.4 Cache Memory (Fully Associative Cache)

4

When the cache is searched, all tags are searched
in parallel to retrieve the data quickly.
This requires special, costly hardware.

CSC3501 - S.J. Park

6.4 Cache Memory

You will recall that direct mapped cache evicts a
block whenever another memory reference
needs that block.
With fully associative cache, we have no such
mapping thus we must devise an algorithm to

5

mapping, thus we must devise an algorithm to
determine which block to evict from the cache.
The block that is evicted is the victim block.
There are a number of ways to pick a victim, we
will discuss them shortly.

CSC3501 - S.J. Park

6.4 Cache Memory (Set Associative Cache)

Set associative cache combines the ideas of direct
mapped cache and fully associative cache.
An N-way set associative cache mapping is like
direct mapped cache in that a memory reference
maps to a particular location in cache

6

maps to a particular location in cache.
Unlike direct mapped cache, a memory reference
maps to a set of several cache blocks, similar to the
way in which fully associative cache works.
Instead of mapping anywhere in the entire cache, a
memory reference can map only to the subset of
cache slots.

2

CSC3501 - S.J. Park

Direct Mapped, Set associative, Fully associative

7

CSC3501 - S.J. Park

The number of cache blocks per set in set
associative cache varies according to overall system
design.
For example, a 2-way set associative cache can be
conceptualized as shown in the schematic below

6.4 Cache Memory (Set Associative Cache)

8

conceptualized as shown in the schematic below.
Each set contains two different memory blocks.

CSC3501 - S.J. Park

6.4 Cache Memory

In set associative cache mapping, a memory
reference is divided into three fields: tag, set, and
word, as shown below.
As with direct-mapped cache, the word field chooses
the word within the cache block and the tag field

9

the word within the cache block, and the tag field
uniquely identifies the memory address.
The set field determines the set to which the memory
block maps.

CSC3501 - S.J. Park

6.4 Cache Memory

Suppose we have a main memory of 214 bytes.
This memory is mapped to a 2-way set associative
cache having 16 blocks where each block contains 8
words.
Since this is a 2-way cache, each set consists of 2
blocks and there are 8 sets

10

blocks, and there are 8 sets.
Thus, we need 3 bits for the set, 3 bits for the word,
giving 8 leftover bits for the tag:

CSC3501 - S.J. Park

Implementation of Set Associative Cache

22 8

V TagIndex
0
1
2

253

Data V Tag Data V Tag Data V Tag Data

123891011123031 0

253
254
255

3222

4 - to -1 m ultiplexor

H it Data

CSC3501 - S.J. Park

Performance among Caches

12

3

CSC3501 - S.J. Park

6.4 Cache Memory

With fully associative and set associative cache, a
replacement policy is invoked when it becomes
necessary to evict a block from cache.
An optimal replacement policy would be able to look
into the future to see which blocks won’t be needed

13

into the future to see which blocks won t be needed
for the longest period of time.
Although it is impossible to implement an optimal
replacement algorithm, it is instructive to use it as a
benchmark for assessing the efficiency of any other
scheme we come up with.

CSC3501 - S.J. Park

6.4 Cache Memory

The replacement policy that we choose depends
upon the locality that we are trying to optimize--
usually, we are interested in temporal locality.
A least recently used (LRU) algorithm keeps track of
the last time that a block was assessed and evicts

14

the last time that a block was assessed and evicts
the block that has been unused for the longest
period of time.
The disadvantage of this approach is its complexity:
LRU has to maintain an access history for each
block, which ultimately slows down the cache.

CSC3501 - S.J. Park

6.4 Cache Memory

First-in, first-out (FIFO) is a popular cache
replacement policy.
In FIFO, the block that has been in the cache the
longest, regardless of when it was last used.
A random replacement policy does what its name

15

A random replacement policy does what its name
implies: It picks a block at random and replaces it
with a new block.
Random replacement can certainly evict a block that
will be needed often or needed soon, but it never
thrashes.

CSC3501 - S.J. Park

6.4 Cache Memory

The performance of hierarchical memory is
measured by its effective access time (EAT).
EAT is a weighted average that takes into account
the hit ratio and relative access times of successive
levels of memory.

16

The EAT for a two-level memory is given by:
EAT = H × AccessC + (1-H) × AccessMM.

where H is the cache hit rate and AccessC and
AccessMM are the access times for cache and main
memory, respectively.

CSC3501 - S.J. Park

6.4 Cache Memory

For example, consider a system with a main memory
access time of 200ns supported by a cache having a
10ns access time and a hit rate of 99%.

The EAT is:
0 99(10) 0 01(200) 9 9 2 11

17

0.99(10ns) + 0.01(200ns) = 9.9ns + 2ns = 11ns.

This equation for determining the effective access
time can be extended to any number of memory
levels, as we will see in later sections.

CSC3501 - S.J. Park

6.4 Cache Memory

Cache replacement policies must also take into
account dirty blocks, those blocks that have been
updated while they were in the cache.
Dirty blocks must be written back to memory. A
write policy determines how this will be done

18

write policy determines how this will be done.

There are two types of write policies,write through
and write back.

Write through updates cache and main memory
simultaneously on every write.

4

CSC3501 - S.J. Park

6.4 Cache Memory

Write back (also called copyback) updates memory
only when the block is selected for replacement.
The disadvantage of write through is that memory
must be updated with each cache write, which slows
down the access time on updates. This slowdown is

19

p
usually negligible, because the majority of accesses
tend to be reads, not writes.
The advantage of write back is that memory traffic is
minimized, but its disadvantage is that memory does
not always agree with the value in cache, causing
problems in systems with many concurrent users.

CSC3501 - S.J. Park

6.4 Cache Memory

The cache we have been discussing is called a
unified or integrated cache where both instructions
and data are cached.
Many modern systems employ separate caches for
data and instructions

20

data and instructions.
This is called a Harvard cache.

The separation of data from instructions provides
better locality, at the cost of greater complexity.

Simply making the cache larger provides about the
same performance improvement without the
complexity.

CSC3501 - S.J. Park

6.4 Cache Memory

Cache performance can also be improved by
adding a small associative cache to hold blocks
that have been evicted recently.

This is called a victim cache.

A t h i i t f i t ti

21

A trace cache is a variant of an instruction
cache that holds decoded instructions for
program branches, giving the illusion that
noncontiguous instructions are really
contiguous.

CSC3501 - S.J. Park

6.4 Cache Memory

Most of today’s small systems employ multilevel
cache hierarchies.
The levels of cache form their own small memory
hierarchy.
Le el1 cache (8KB to 64KB) is sit ated on the

22

Level1 cache (8KB to 64KB) is situated on the
processor itself.

Access time is typically about 4ns.
Level 2 cache (64KB to 2MB) may be on the
motherboard, or on an expansion card.

Access time is usually around 15 - 20ns.

CSC3501 - S.J. Park

6.4 Cache Memory

In systems that employ three levels of cache, the
Level 2 cache is placed on the same die as the CPU
(reducing access time to about 10ns)
Accordingly, the Level 3 cache (2MB to 256MB)
refers to cache that is situated between the

23

refers to cache that is situated between the
processor and main memory.
Once the number of cache levels is determined, the
next thing to consider is whether data (or
instructions) can exist in more than one cache level.

CSC3501 - S.J. Park

A Real-World Example – Pentium Memory

24

